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Abstract

For the generalized-Euler-constant function

a 7→ γ(a) := lim
n→∞

(

n−1

∑
i=0

1

a + i
− ln

a + n − 1

a

)

defined on R
+, the expansion γ(a) = ∑

∞
j=2

(−1)j

j ζ(j, a), where ζ(j, a) is the

Hurwitz zeta function, is derived and a formula for its numerical computa-
tion is presented.

1 Introduction

Recently, [4] and [5], a generalized-Euler-constant-function a 7→ γ(a) has been
introduced as the limit of the sequence n 7→ γn(a) given as

γn(a) =
n−1

∑
i=0

1

a + i
− ln

a + n − 1

a
, (1)

where γ(1) is the Euler-Mascheroni constant. The author showed that, for a > 0,
the function a 7→ γ(a) is well defined and strictly decreasing on R

+. Subse-
quently, several estimates concerning the rate of convergence of the sequence
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n 7→ γn(a) were presented. In our contribution we shall reconfirm, using a dif-
ferent method, the existence of the function γ(a) by expanding it into an infinite
series in terms of the Hurwitz zeta function1 ζ(s, a) := ∑

∞
i=0(a + i)−s. This way

we shall obtain a generalization of the well known expansion (see e.g. [3, p. 35])

γ(1) =
∞

∑
k=2

(−1)k ζ(k)

k
,

where ζ(s) =
∞

∑
k=1

k−s (s > 1) is the Riemann zeta-function. Concerning the com-

putational aspects we shall derive an approximation to γ(a) in terms of the func-
tion ζ(s, a), assumed to be numerically known. This supposition is not too pre-
tentious since there are known certain algorithms for numerical computation of
Hurwitz zeta function ζ(s, a), especially when s is an integer and a an algebraic
number [1]. We also note that ζ(s, a) is a function built-in Mathematica [6], for
example.

2 An expansion using Hurwitz zeta function

The identity (1) can be re-formed using the telescoping method as follows

γn(a) =
n

∑
i=0

[

1

a + i
− ln

(

1 +
1

a + i

)]

−
1

a + n
+ ln

(

1 +
2

a + n − 1

)

=
n

∑
i=0

[

hi − ln (1 + hi)
]

− hn + ln (1 + 2 hn−1) , (2)

where

hi = hi(a) :=
1

a + i
. (3)

Thus, for positive integers n ≥ m ≥ 1,

γn(a) =
m−1

∑
i=0

1

a + i
− ln

a + m

a

+
n

∑
i=m

[

hi − ln (1 + hi)
]

− hn + ln (1 + 2 hn−1) . (4)

Now, the Hurwitz zeta function can be introduced approximating the loga-
rithmic function. Indeed, according to the identity

1

1 + t
=

p−1

∑
i=0

(−t)i +
(−t)p

1 + t

valid for any positive integer p and t 6= −1, we have

ln(1 + h) =
p−1

∑
i=0

(−1)i hi+1

i + 1
+
∫ h

0

(−t)p

1 + t
dt ,

1Hurwitz zeta function is also known as the generalized Riemann zeta function.
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for h > −1. Thus

h − ln(1 + h) =
p

∑
j=2

(−h)j

j
+ rp(h) , (5)

where

0 <
hp+1

(1 + h)(p + 1)
< (−1)p+1 · rp(h) <

∫ h

0
tp dt =

hp+1

p + 1
, (6)

for p ≥ 2 and h > 0.
Now, considering (2) and (5), we obtain

γn(a) =
n

∑
i=0

[

p

∑
j=2

(−hi)
j

j
+ rp(hi)

]

−
1

a + n
+ ln

(

1 +
2

a + n − 1

)

=
p

∑
j=2

(−1)j

j
Z0,n(j, a)−

1

a + n
+ ln

(

1 +
2

a + n − 1

)

+ ρ0,n(a, p), (7)

where

Zm,n

(

s, a
)

:=
n

∑
i=m

1

(a + i)s
(a > 0, n ≥ m ≥ 0, s > 1), (8)

and

ρm,n(a, p) :=
n

∑
i=m

rp(hi) = (−1)p+1
n

∑
i=m

∫ 1/(a+i)

0

tp

1 + t
dt, (9)

stands for the error term. Obviously, appealing to (6), we have

0 < (−1)p+1 · ρm,n(a, p) =
n

∑
i=m

(−1)p+1 · rp(hi)

<

n

∑
i=m

h
p+1
i

p + 1
=

n

∑
i=m

1

(p + 1)(a + i)p+1
. (10)

Additionally, using the inequality 1/(1+ hi) = 1/
(

1+ 1/(a + i)
)

≥ a+m
a+m+1 , valid

for i ≥ m, and appealing to (9) and (6), we also estimate

(−1)p+1 · ρm,n(a, p) =
n

∑
i=m

(−1)p+1 · rp(hi)

>

n

∑
i=m

h
p+1
i

(1 + hi)(p + 1)
≥ a+m

a+m+1 ·
n

∑
i=m

1

(p + 1)(a + i)p+1
. (11)

Considering (10) and the convergence of the series ∑
∞
i=0(a + i)−(p+1), we see

that
ρ∗(a, p) := lim

n→∞
ρ 0,n(a, p)

exists for a > 0 and p ≥ 2 and the estimate

0 < (−1)p+1ρ∗(a, p) <
1

p + 1

∞

∑
i=0

1

(a + i)p+1
=

ζ(p + 1, a)

p + 1
, (12)
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holds true with ζ(s, a) being the Hurwitz zeta function,

ζ(s, a) := lim
n→∞

Z0,n(s, a) =
∞

∑
i=0

1

(a + i)s
(a > 0, s > 1). (13)

Moreover, referring to (7), the convergence

γ(a) := lim
n→∞

γn(a)

is established together with the equality

γ(a) =
p

∑
j=2

(−1)j

j
ζ(j, a) + ρ∗(a, p). (14)

Hence, letting p → ∞ in (12)–(14) and considering the absolute convergence of
the obtained double series, we get the following theorem.

Theorem 1. The generalized-Euler-constant function γ(a) has the expansions

γ(a) =
∞

∑
j=2

(−1)j

j
ζ(j, a) =

∞

∑
i=0

∞

∑
j=2

(−1)j

j (a + i)j
, (15)

for a > 0, where ζ(j, a) = ∑
∞
i=0(a + i)−j is the generalized Riemann zeta function

known also as Hurwitz zeta function.

Using the theorem above, properties of the function γ(a) such as the mono-
tonicity, the differentiability and the boundedness, for example, can be studied.
However, to estimate γ(a) numerically we shall use a slightly different approach.

3 An approximation to γ(a)

The following theorem gives a useful two-parameter approximation.

Theorem 2. For real a > 0 and for integers (parameters) m ≥ 1 and p ≥ 2 we have

γ(a) = σm(a, p) + ρ∗m(a, p), (16)

where

σm(a, p) =
p

∑
j=2

(−1)j

j
ζ(j, a) +

m−1

∑
i=0

(

1

a + i
−

p

∑
j=2

(−1)j

j (a + i)j

)

− ln
a + m

a
(17)

and

a + m

a + m + 1
·

1

p(p + 1)(a + m)p < (−1)p+1ρ∗m(a, p) <
1

p(p + 1)(a + m − 1)p . (18)
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Proof. Using (4), (5) and (8), we get

γn(a) =
m−1

∑
i=0

1

a + i
− ln

a + m

a
+

p

∑
j=2

(−1)j

j
Zm,n(j, a)

−
1

a + n
+ ln

(

1 +
2

a + n − 1

)

+ ρm,n(a, p), (19)

where, according to (10),

ρ∗m(a, p) := lim
n→∞

ρm,n(a, p) (20)

exists for p ≥ 2. Referring to (10) and (11), the estimates

a + m

a + m + 1
·

∞

∑
i=m

1

(p + 1)(a + i)p+1
< (−1)p+1ρ∗m(a, p) <

∞

∑
i=m

1

(p + 1)(a + i)p+1
.

(21)

are seen to hold true. Consequently, letting n → ∞ in (19), the relations (16)–(17)
follow.

Since, for b > 0 and s > 1, the function x 7→ (b + x)−s is strictly decreasing on
R

+, the estimates

Zm,n(s, b) =
n

∑
i=m

1

(b + i)s
>

∫ n+1

m

1

(b + x)s
dx

=
1

s − 1

[

1

(b + m)s−1
−

1

(b + n + 1)s−1

]

, (22)

Zm,n(s, b) =
n

∑
i=m

1

(b + i)s
<

∫ n

m−1

1

(b + x)s
dx

=
1

s − 1

[

1

(b + m − 1)s−1
−

1

(b + n)s−1

]

(23)

hold true for integers n ≥ m ≥ 1 and for real b > 0 and s > 1.

Obviously, the relations (21)–(23) imply the estimates (18).

Now, using Theorem 2, the constant γ(a) can be computed quite accurately.
Namely, according to (18), we have, for a > 0,

−2.1 × 10−3
< ρ∗10(a, 2) < −1.6 × 10−3,

0.9 × 10−5
< ρ∗20(a, 3) < 1.3 × 10−5,

−2.6 × 10−41
< ρ∗100(a, 19) < −3.2 × 10−41.

Even for small m or p, Theorem 2 gives a useful estimate for γ(a). For example,
setting m = p = 2 in it, we obtain the next corollary.
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Corollary 2.1. For a > 0 the following estimates hold

γ(a) > γ∗(a) :=

[

1

a
+

1

a + 1
− ln

(

1 +
2

a

)]

+
1

2(a + 2)
−

1

6(a + 1)2
(24)

γ(a) < γ∗∗(a) :=

[

1

a
+

1

a + 1
− ln

(

1 +
2

a

)]

+
1

2(a + 1)
−

1

6(a + 2)(a + 3)
.

(25)

Consequently, lim
a↓0

γ(a) = ∞ and lim
a→∞

γ(a) = 0.

Proof. Using (17), we calculate

σ2(a, 2) =
1

2
ζ(2, a) +

1

a
+

1

a + 1
−

1

2a2
−

1

2(a + 1)2
− ln

(

1 +
2

a

)

=

[

1

a
+

1

a + 1
− ln

(

1 +
2

a

)]

+
1

2

∞

∑
i=2

1

(a + i)2
(a > 0). (26)

Using (22)–(23), we estimate

1

a + 2
<

∞

∑
i=2

1

(a + i)2
<

1

a + 1
(a > 0) (27)

and, appealing to (18), also

−
1

6(a + 1)2
< ρ∗2(a, 2) < −

1

6(a + 2)(a + 3)
(a > 0). (28)

The relations (26)–(28) verify the corollary.

Figure 1 shows the graph of the function γ(a) and the graphs of its lower and
upper bounds γ∗(a) and γ∗∗(a).

Figure 1: The graph of the function γ(a) (dashed line) between its bounds; γ∗(a)
and γ∗∗(a).

The relative error E(a) of the approximation γ(a) ≈ γ∗∗(a),

E(a) :=
γ(a)− γ∗∗(a)

γ∗∗(a)
,
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Figure 2: The graph of the absolute relative error of the approximation γ(a) ≈
γ∗∗(a).

is absolutely less than 20% as it is evident from Figure2 showing the graph of the
function a 7→

(

γ∗∗(a)− γ∗(a)
)

/γ∗∗(a) > |E(a)|.

Corollary 2.2. For real a > 0 and for integers n ≥ m ≥ 1, we have

n

∑
i=m

1

a + i
=

p

∑
j=2

(−1)j

j
Zm,n(j, a) + ln

a + n + 1

a + m
+ ρm,n(a, p), (29)

where ρm,n(a, p) can be estimated using (10)–(11) and (22)–(23).

Proof. The corollary follows directly from (19) and (1).

References

[1] E.A. Karatsuba, Fast computation of the values of the Hurwitz zeta function and
Dirichlet L-series, (Russian) Problemy Peredachi Informatsii 34(1998), no. 4,
62–75; translation in Problems Inform. Transmission 34(1998), no. 4, 342–353.

[2] R. Kreminski, Newton-Cotes integration for approximating Stieltjes (generalized
Euler) constants, Math. Comp. 72(2003), no. 243, 1379–1397.

[3] W. Magnus, F. Oberhettinger and R.P. Soni; Formulas and theorems for the
special functions of mathematical physics, 3rd/ed, Springer-Verlag, Berlin-
Heidelberg-New York, 1966.
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