An interplay between a generalized-Euler-constant function and the Hurwitz zeta function

Vito Lampret

Abstract

For the generalized-Euler-constant function $$
a \mapsto \gamma(a):=\lim _{n \rightarrow \infty}\left(\sum_{i=0}^{n-1} \frac{1}{a+i}-\ln \frac{a+n-1}{a}\right)
$$ defined on \mathbb{R}^{+}, the expansion $\gamma(a)=\sum_{j=2}^{\infty} \frac{(-1)^{j}}{j} \zeta(j, a)$, where $\zeta(j, a)$ is the Hurwitz zeta function, is derived and a formula for its numerical computation is presented.

1 Introduction

Recently, [4] and [5], a generalized-Euler-constant-function $a \mapsto \gamma(a)$ has been introduced as the limit of the sequence $n \mapsto \gamma_{n}(a)$ given as

$$
\begin{equation*}
\gamma_{n}(a)=\sum_{i=0}^{n-1} \frac{1}{a+i}-\ln \frac{a+n-1}{a} \tag{1}
\end{equation*}
$$

where $\gamma(1)$ is the Euler-Mascheroni constant. The author showed that, for $a>0$, the function $a \mapsto \gamma(a)$ is well defined and strictly decreasing on \mathbb{R}^{+}. Subsequently, several estimates concerning the rate of convergence of the sequence

[^0]$n \mapsto \gamma_{n}(a)$ were presented. In our contribution we shall reconfirm, using a different method, the existence of the function $\gamma(a)$ by expanding it into an infinite series in terms of the Hurwitz zeta function ${ }^{1} \zeta(s, a):=\sum_{i=0}^{\infty}(a+i)^{-s}$. This way we shall obtain a generalization of the well known expansion (see e.g. [3, p. 35])
$$
\gamma(1)=\sum_{k=2}^{\infty}(-1)^{k} \frac{\zeta(k)}{k},
$$
where $\zeta(s)=\sum_{k=1}^{\infty} k^{-s}(s>1)$ is the Riemann zeta-function. Concerning the computational aspects we shall derive an approximation to $\gamma(a)$ in terms of the function $\zeta(s, a)$, assumed to be numerically known. This supposition is not too pretentious since there are known certain algorithms for numerical computation of Hurwitz zeta function $\zeta(s, a)$, especially when s is an integer and a an algebraic number [1]. We also note that $\zeta(s, a)$ is a function built-in Mathematica [6], for example.

2 An expansion using Hurwitz zeta function

The identity (1) can be re-formed using the telescoping method as follows

$$
\begin{align*}
\gamma_{n}(a) & =\sum_{i=0}^{n}\left[\frac{1}{a+i}-\ln \left(1+\frac{1}{a+i}\right)\right]-\frac{1}{a+n}+\ln \left(1+\frac{2}{a+n-1}\right) \\
& =\sum_{i=0}^{n}\left[h_{i}-\ln \left(1+h_{i}\right)\right]-h_{n}+\ln \left(1+2 h_{n-1}\right) \tag{2}
\end{align*}
$$

where

$$
\begin{equation*}
h_{i}=h_{i}(a):=\frac{1}{a+i} . \tag{3}
\end{equation*}
$$

Thus, for positive integers $n \geq m \geq 1$,

$$
\begin{align*}
\gamma_{n}(a)= & \sum_{i=0}^{m-1} \frac{1}{a+i}-\ln \frac{a+m}{a} \\
& +\sum_{i=m}^{n}\left[h_{i}-\ln \left(1+h_{i}\right)\right]-h_{n}+\ln \left(1+2 h_{n-1}\right) . \tag{4}
\end{align*}
$$

Now, the Hurwitz zeta function can be introduced approximating the logarithmic function. Indeed, according to the identity

$$
\frac{1}{1+t}=\sum_{i=0}^{p-1}(-t)^{i}+\frac{(-t)^{p}}{1+t}
$$

valid for any positive integer p and $t \neq-1$, we have

$$
\ln (1+h)=\sum_{i=0}^{p-1}(-1)^{i} \frac{h^{i+1}}{i+1}+\int_{0}^{h} \frac{(-t)^{p}}{1+t} \mathrm{~d} t
$$

[^1]for $h>-1$. Thus
\[

$$
\begin{equation*}
h-\ln (1+h)=\sum_{j=2}^{p} \frac{(-h)^{j}}{j}+r_{p}(h), \tag{5}
\end{equation*}
$$

\]

where

$$
\begin{equation*}
0<\frac{h^{p+1}}{(1+h)(p+1)}<(-1)^{p+1} \cdot r_{p}(h)<\int_{0}^{h} t^{p} \mathrm{~d} t=\frac{h^{p+1}}{p+1} \tag{6}
\end{equation*}
$$

for $p \geq 2$ and $h>0$.
Now, considering (2) and (5), we obtain

$$
\begin{align*}
\gamma_{n}(a) & =\sum_{i=0}^{n}\left[\sum_{j=2}^{p} \frac{\left(-h_{i}\right)^{j}}{j}+r_{p}\left(h_{i}\right)\right]-\frac{1}{a+n}+\ln \left(1+\frac{2}{a+n-1}\right) \\
& =\sum_{j=2}^{p} \frac{(-1)^{j}}{j} \mathrm{Z}_{0, n}(j, a)-\frac{1}{a+n}+\ln \left(1+\frac{2}{a+n-1}\right)+\rho_{0, n}(a, p) \tag{7}
\end{align*}
$$

where

$$
\begin{equation*}
Z_{m, n}(s, a):=\sum_{i=m}^{n} \frac{1}{(a+i)^{s}} \quad(a>0, n \geq m \geq 0, s>1) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{m, n}(a, p):=\sum_{i=m}^{n} r_{p}\left(h_{i}\right)=(-1)^{p+1} \sum_{i=m}^{n} \int_{0}^{1 /(a+i)} \frac{t^{p}}{1+t} \mathrm{~d} t \tag{9}
\end{equation*}
$$

stands for the error term. Obviously, appealing to (6), we have

$$
\begin{align*}
0<(-1)^{p+1} \cdot \rho_{m, n}(a, p) & =\sum_{i=m}^{n}(-1)^{p+1} \cdot r_{p}\left(h_{i}\right) \\
& <\sum_{i=m}^{n} \frac{h_{i}^{p+1}}{p+1}=\sum_{i=m}^{n} \frac{1}{(p+1)(a+i)^{p+1}} . \tag{10}
\end{align*}
$$

Additionally, using the inequality $1 /\left(1+h_{i}\right)=1 /(1+1 /(a+i)) \geq \frac{a+m}{a+m+1}$, valid for $i \geq m$, and appealing to (9) and (6), we also estimate

$$
\begin{align*}
(-1)^{p+1} \cdot \rho_{m, n}(a, p) & =\sum_{i=m}^{n}(-1)^{p+1} \cdot r_{p}\left(h_{i}\right) \\
& >\sum_{i=m}^{n} \frac{h_{i}^{p+1}}{\left(1+h_{i}\right)(p+1)} \geq \frac{a+m}{a+m+1} \cdot \sum_{i=m}^{n} \frac{1}{(p+1)(a+i)^{p+1}} . \tag{11}
\end{align*}
$$

Considering (10) and the convergence of the series $\sum_{i=0}^{\infty}(a+i)^{-(p+1)}$, we see that

$$
\rho^{*}(a, p):=\lim _{n \rightarrow \infty} \rho_{0, n}(a, p)
$$

exists for $a>0$ and $p \geq 2$ and the estimate

$$
\begin{equation*}
0<(-1)^{p+1} \rho^{*}(a, p)<\frac{1}{p+1} \sum_{i=0}^{\infty} \frac{1}{(a+i)^{p+1}}=\frac{\zeta(p+1, a)}{p+1} \tag{12}
\end{equation*}
$$

holds true with $\zeta(s, a)$ being the Hurwitz zeta function,

$$
\begin{equation*}
\zeta(s, a):=\lim _{n \rightarrow \infty} Z_{0, n}(s, a)=\sum_{i=0}^{\infty} \frac{1}{(a+i)^{s}} \quad(a>0, s>1) \tag{13}
\end{equation*}
$$

Moreover, referring to (7), the convergence

$$
\gamma(a):=\lim _{n \rightarrow \infty} \gamma_{n}(a)
$$

is established together with the equality

$$
\begin{equation*}
\gamma(a)=\sum_{j=2}^{p} \frac{(-1)^{j}}{j} \zeta(j, a)+\rho^{*}(a, p) \tag{14}
\end{equation*}
$$

Hence, letting $p \rightarrow \infty$ in (12)-(14) and considering the absolute convergence of the obtained double series, we get the following theorem.

Theorem 1. The generalized-Euler-constant function $\gamma(a)$ has the expansions

$$
\begin{equation*}
\gamma(a)=\sum_{j=2}^{\infty} \frac{(-1)^{j}}{j} \zeta(j, a)=\sum_{i=0}^{\infty} \sum_{j=2}^{\infty} \frac{(-1)^{j}}{j(a+i)^{j}}, \tag{15}
\end{equation*}
$$

for $a>0$, where $\zeta(j, a)=\sum_{i=0}^{\infty}(a+i)^{-j}$ is the generalized Riemann zeta function known also as Hurwitz zeta function.

Using the theorem above, properties of the function $\gamma(a)$ such as the monotonicity, the differentiability and the boundedness, for example, can be studied. However, to estimate $\gamma(a)$ numerically we shall use a slightly different approach.

3 An approximation to $\gamma(a)$

The following theorem gives a useful two-parameter approximation.
Theorem 2. For real $a>0$ and for integers (parameters) $m \geq 1$ and $p \geq 2$ we have

$$
\begin{equation*}
\gamma(a)=\sigma_{m}(a, p)+\rho_{m}^{*}(a, p) \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{m}(a, p)=\sum_{j=2}^{p} \frac{(-1)^{j}}{j} \zeta(j, a)+\sum_{i=0}^{m-1}\left(\frac{1}{a+i}-\sum_{j=2}^{p} \frac{(-1)^{j}}{j(a+i)^{j}}\right)-\ln \frac{a+m}{a} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{a+m}{a+m+1} \cdot \frac{1}{p(p+1)(a+m)^{p}}<(-1)^{p+1} \rho_{m}^{*}(a, p)<\frac{1}{p(p+1)(a+m-1)^{p}} \tag{18}
\end{equation*}
$$

Proof. Using (4), (5) and (8), we get

$$
\begin{align*}
\gamma_{n}(a)= & \sum_{i=0}^{m-1} \frac{1}{a+i}-\ln \frac{a+m}{a}+\sum_{j=2}^{p} \frac{(-1)^{j}}{j} Z_{m, n}(j, a) \\
& -\frac{1}{a+n}+\ln \left(1+\frac{2}{a+n-1}\right)+\rho_{m, n}(a, p) \tag{19}
\end{align*}
$$

where, according to (10),

$$
\begin{equation*}
\rho_{m}^{*}(a, p):=\lim _{n \rightarrow \infty} \rho_{m, n}(a, p) \tag{20}
\end{equation*}
$$

exists for $p \geq 2$. Referring to (10) and (11), the estimates

$$
\begin{equation*}
\frac{a+m}{a+m+1} \cdot \sum_{i=m}^{\infty} \frac{1}{(p+1)(a+i)^{p+1}}<(-1)^{p+1} \rho_{m}^{*}(a, p)<\sum_{i=m}^{\infty} \frac{1}{(p+1)(a+i)^{p+1}} \tag{21}
\end{equation*}
$$

are seen to hold true. Consequently, letting $n \rightarrow \infty$ in (19), the relations (16)-(17) follow.

Since, for $b>0$ and $s>1$, the function $x \mapsto(b+x)^{-s}$ is strictly decreasing on \mathbb{R}^{+}, the estimates

$$
\begin{align*}
Z_{m, n}(s, b)=\sum_{i=m}^{n} \frac{1}{(b+i)^{s}} & >\int_{m}^{n+1} \frac{1}{(b+x)^{s}} \mathrm{~d} x \\
& =\frac{1}{s-1}\left[\frac{1}{(b+m)^{s-1}}-\frac{1}{(b+n+1)^{s-1}}\right] \tag{22}\\
Z_{m, n}(s, b)=\sum_{i=m}^{n} \frac{1}{(b+i)^{s}} & <\int_{m-1}^{n} \frac{1}{(b+x)^{s}} \mathrm{~d} x \\
& =\frac{1}{s-1}\left[\frac{1}{(b+m-1)^{s-1}}-\frac{1}{(b+n)^{s-1}}\right] \tag{23}
\end{align*}
$$

hold true for integers $n \geq m \geq 1$ and for real $b>0$ and $s>1$.
Obviously, the relations (21)-(23) imply the estimates (18).
Now, using Theorem 2, the constant $\gamma(a)$ can be computed quite accurately. Namely, according to (18), we have, for $a>0$,

$$
\begin{aligned}
-2.1 \times 10^{-3} & <\rho_{10}^{*}(a, 2)<-1.6 \times 10^{-3} \\
0.9 \times 10^{-5} & <\rho_{20}^{*}(a, 3)<1.3 \times 10^{-5} \\
-2.6 \times 10^{-41} & <\rho_{100}^{*}(a, 19)<-3.2 \times 10^{-41}
\end{aligned}
$$

Even for small m or p, Theorem 2 gives a useful estimate for $\gamma(a)$. For example, setting $m=p=2 \mathrm{in}$ it, we obtain the next corollary.

Corollary 2.1. For $a>0$ the following estimates hold

$$
\begin{align*}
\gamma(a)>\gamma^{*}(a) & :=\left[\frac{1}{a}+\frac{1}{a+1}-\ln \left(1+\frac{2}{a}\right)\right]+\frac{1}{2(a+2)}-\frac{1}{6(a+1)^{2}} \tag{24}\\
\gamma(a)<\gamma^{* *}(a) & :=\left[\frac{1}{a}+\frac{1}{a+1}-\ln \left(1+\frac{2}{a}\right)\right]+\frac{1}{2(a+1)}-\frac{1}{6(a+2)(a+3)} \tag{25}
\end{align*}
$$

Consequently, $\lim _{a \downarrow 0} \gamma(a)=\infty$ and $\lim _{a \rightarrow \infty} \gamma(a)=0$.
Proof. Using (17), we calculate

$$
\begin{align*}
\sigma_{2}(a, 2) & =\frac{1}{2} \zeta(2, a)+\frac{1}{a}+\frac{1}{a+1}-\frac{1}{2 a^{2}}-\frac{1}{2(a+1)^{2}}-\ln \left(1+\frac{2}{a}\right) \\
& =\left[\frac{1}{a}+\frac{1}{a+1}-\ln \left(1+\frac{2}{a}\right)\right]+\frac{1}{2} \sum_{i=2}^{\infty} \frac{1}{(a+i)^{2}} \quad(a>0) . \tag{26}
\end{align*}
$$

Using (22)-(23), we estimate

$$
\begin{equation*}
\frac{1}{a+2}<\sum_{i=2}^{\infty} \frac{1}{(a+i)^{2}}<\frac{1}{a+1} \quad(a>0) \tag{27}
\end{equation*}
$$

and, appealing to (18), also

$$
\begin{equation*}
-\frac{1}{6(a+1)^{2}}<\rho_{2}^{*}(a, 2)<-\frac{1}{6(a+2)(a+3)} \quad(a>0) . \tag{28}
\end{equation*}
$$

The relations (26)-(28) verify the corollary.
Figure 1 shows the graph of the function $\gamma(a)$ and the graphs of its lower and upper bounds $\gamma^{*}(a)$ and $\gamma^{* *}(a)$.

Figure 1: The graph of the function $\gamma(a)$ (dashed line) between its bounds; $\gamma^{*}(a)$ and $\gamma^{* *}(a)$.

The relative error $E(a)$ of the approximation $\gamma(a) \approx \gamma^{* *}(a)$,

$$
E(a):=\frac{\gamma(a)-\gamma^{* *}(a)}{\gamma^{* *}(a)},
$$

Figure 2: The graph of the absolute relative error of the approximation $\gamma(a) \approx$ $\gamma^{* *}(a)$.
is absolutely less than 20% as it is evident from Figure 2 showing the graph of the function $a \mapsto\left(\gamma^{* *}(a)-\gamma^{*}(a)\right) / \gamma^{* *}(a)>|E(a)|$.
Corollary 2.2. For real $a>0$ and for integers $n \geq m \geq 1$, we have

$$
\begin{equation*}
\sum_{i=m}^{n} \frac{1}{a+i}=\sum_{j=2}^{p} \frac{(-1)^{j}}{j} Z_{m, n}(j, a)+\ln \frac{a+n+1}{a+m}+\rho_{m, n}(a, p) \tag{29}
\end{equation*}
$$

where $\rho_{m, n}(a, p)$ can be estimated using (10)-(11) and (22)-(23).
Proof. The corollary follows directly from (19) and (1).

References

[1] E.A. Karatsuba, Fast computation of the values of the Hurwitz zeta function and Dirichlet L-series, (Russian) Problemy Peredachi Informatsii 34(1998), no. 4, 62-75; translation in Problems Inform. Transmission 34(1998), no. 4, 342-353.
[2] R. Kreminski, Newton-Cotes integration for approximating Stieltjes (generalized Euler) constants, Math. Comp. 72(2003), no. 243, 1379-1397.
[3] W. Magnus, F. Oberhettinger and R.P. Soni; Formulas and theorems for the special functions of mathematical physics, 3rd/ed, Springer-Verlag, Berlin-Heidelberg-New York, 1966.
[4] A. Sîntămărian, A generalization of Euler's constant, Numer. Algor. 46(2007), 141-151.
[5] A. Sîntămărian, Some inequalities regarding a generalization of Euler's constant, J. Ineq. Pure Appl. Math. 9(2008)2, art. 46, 7 pp.
[6] S. Wolfram, Mathematica, version 6.0, Wolfram Research, Inc., 1988-2008.

University of Ljubljana, Slovenia email :vito.lampret@fgg.uni-lj.si

[^0]: Received by the editors May 2009- In revised form in September 2009.
 Communicated by A. Bultheel.
 2000 Mathematics Subject Classification : 11Y60, 40A05, 40A25.
 Key words and phrases : estimate, generalized-Euler-constant function, Hurwitz-zeta function.

[^1]: ${ }^{1}$ Hurwitz zeta function is also known as the generalized Riemann zeta function.

