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Abstract

This paper deals with some perturbation of the so called prescribed scalar
Q-curvature type equations on compact Riemannian manifolds; these equa-
tions are fourth order elliptic and of critical Sobolev growth. Sufficient con-
ditions are given to have at least two distinct solutions first without using the
concentration-compactness technic but with a suitable range of the parame-
ters and secondly by using the concentration-compactness methods.

1 Introduction

Let (M, g) be a Riemannian compact smooth n−manifold, n ≥ 5, with metric g,
we let H2

2(M) be the standard Sobolev space which is the completion of the space

C2
2(M) =

{

u ∈ C∞(M): ‖u‖2,2 < +∞
}

with respect to the norm ‖u‖2,2 = ∑
2
l=0

∥

∥

∥
∇lu

∥

∥

∥

2
.

We denotes by H2, the space H2
2 endowed with the equivalent norm

‖u‖H2
=
(

‖∆u‖2
2 + ‖∇u‖2

2 + ‖u‖2
2

)
1
2

.
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We investigate multiple solutions of the equation

∆2u +∇i(a(x)∇iu) + h(x)u = f (x) |u|N−2 u + λ |u|q−2 u + ǫg(x) (1.1)

where a, h, f and g are smooth functions on M , N = 2n
n−4 is the critical exponent,

2 < q < N a real number, λ > 0 a real parameter and ǫ > 0 any small real
number. Since the embedding H2 →֒ Hk

N , ( k = 0, 1) fails to be compact, as
known, one encounters serious difficulties in solving equations like (1.1).

In 1983, Paneitz [8] introduced a conformal fourth order operator defined on
4-dimensional Riemannian manifolds which was generalized by Branson [3] to
higher dimensions.

PBg(u) = ∆2u + div(−
(n − 2)2 + 4

2(n − 1)(n − 2)
R.g +

4

n − 2
Ric)du +

n − 4

2
Qnu

where ∆u = −div (∇u), R is the scalar curvature, Ric is the Ricci curvature of g
and where

Qn =
1

2(n − 1)
∆R +

n3 − 4n2 + 16n − 16

8(n − 1)2(n − 2)2
R2 −

2

(n − 2)2
|Ric|2

is associated to the notion of Q -curvature.
We refer to a Paneitz-Branson type operator as an operator of the form

Pgu = ∆2u +∇i(a(x)∇iu) + h(x)u.

Equation (1.1) is a perturbation of the equation

∆2u +∇i(a(x)∇iu) + h(x)u = f (x) |u|N−2 u. (1.2)

Since 1990 many results have been established for the equation (1.2) and for pre-
cise functions a, h and f . D.E. Edmunds, D. Fortunato, E. Jannelli [7] proved for
n ≥ 8 that if λ ∈ (0, λ1), with λ1 the first eigenvalue of ∆2 on the euclidean open
ball B, the problem

{

∆2u − λu = u |u|
8

n−4 in B

u = ∂u
∂n = 0 on ∂B

has a non trivial solution.
In 1995, R. Vander Vorst [9] obtained the same results as D.E. Edmunds, D.

Fortunato, E. Jannelli. when he considered the problem

{

∆2u − λu = u |u|
8

n−4 in Ω

u = ∆u = 0 on ∂Ω

where Ω is an open bounded set of Rn and moreover he showed that the solution
is positive.

In [5] D.Caraffa studied the equation (1.2) in the case f (x) =constant; and
in the particular case where the functions a(x) and h(x) are precise constants
she obtained the existence of positive regular solutions. In [6], P. Esposito and
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F. Robert studied the existence of solutions to fourth order equations involving
Paneitz-Branson type operators and critical Sobolev exponent.

In this paper we show that, under conditions on the operator Lu = ∆2u +

∇i(a(x)∇iu)+ h(x)u and on the function f , the existence of at least two solutions
of equation (1.1) first without using the concentration compactness methods but
with a suitable range of the parameter λ and secondly by mean of the concen-
tration compactness technique we prove the existence of at least two solutions.
Merely speaking, we prove the following results

Theorem 1. Let (M, g) be a compact Riemannian n−manifold, n ≥ 5, a, h, f , g be
smooth real functions on M with

(i) f (x) > 0 everywhere on M

(ii) the operator Lu = ∆2u +∇i(a(x)∇iu) + h(x)u is coercive.
Then there exist λo > 0 and εo > 0 such that the equation 1.1 admits at least two

distinct solutions in H2(M) for any λ ≥ λo and 0 < ε ≤ εo .

Remark 1. The above result was already obtained by the author in [2], but with an
incomplete proof, so I deliberately reconsidered this theorem with a complete proof.

Theorem 2. Let (M, g) be a compact Riemannian n−manifold, n ≥ 6, a, h, f , g be
smooth real functions on M with

(i) f (x) > 0 and g(x) > 0 everywhere on M

(ii) the operator Lu = ∆2u +∇i(a(x)∇iu) + h(x)u is coercive

(iii) if n > 6 , we suppose
∆ f (xo)
2 f (xo)

+ C1(n)R(xo)− C2(n)a(xo) > 0 and if n = 6, we

suppose that 4
3n R(xo)−

1
(n−4)

a(xo) > 0

Then equation (1.1) has at least two distinct solutions in H2.

2 Palais-Smale conditions

We quote after D. Caraffa the following Sobolev’s inequality

Lemma 1. [5]Let (M, g) be a compact n−Riemannian manifold (n ≥ 4) and q a real
1 ≤ q <

n
2 . The best constant K2 in the Sobolev inequality corresponding to the embed-

ding H
q
2 ⊂ Lp with 1

p = 1
q −

2
n depends only on n and q and for any ǫ > 0 there is a

constant A(ǫ) such that for any ϕ ∈ H
q
2

‖ϕ‖p ≤ K2(1 + ǫ) ‖ϕ‖H
q
2
+ A(ǫ) ‖ϕ‖q

Consider the functional Iǫ,λ defined on H2 by

Iǫ,λ(u) = ‖∆u‖2
2 −

∫

M
a(x) |∇u|2 dvg +

∫

M
h(x)u2dvg −

2

N

∫

M
f (x) |u|N dvg

(2.1)

−
2

q
λ
∫

M
|u|q dvg − 2ǫ

∫

M
g(x)udvg .

Lemma 2. The the functional Iǫ,λ(u) is of class C1 on H2.
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Proof. It suffices to show that the functional F(u) =
∫

M f (x) |u|N dvg is of class

C1 on M. Let u, v ∈ H2, we have

∣

∣

∣

∣

F(u + v)− F(u) − N
∫

M
|u|N−2 u.vdvg

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

M
f (x)

(

|u + v|N − |u|N − N f (x) |u|N−2 u.v
)

dvg

∣

∣

∣

∣

and using the Taylor expansion

|u + v|N = |u|N + N
∫ 1

0
|u + tv|N−2 (u + tv)dt

we obtain
|u + v|N − |u|N − N |u|N−2 u.v =

= N

[

∫ 1

0

(

|u + tv|N−2 (u + tv)v − |u|N−2 u
)

vdt

]

.

Since N > 2,(with t ∈ [0, 1] ) we write

(

|u + tv|N−2 (u + tv)v − |u|N−2 u
)

v =
(

|u + tv|N−2 − |u|N−2
)

uv

+ |u + tv|N−2 tv2

so if 2 < N ≤ 3, we get

∣

∣

∣

(

|u + tv|N−2 (u + tv)v − |u|N−2 u
)

v
∣

∣

∣
≤ |v|N−1 |u|+ |u + v|N−2 v2

and by Hölder inequality, we obtain

∣

∣

∣

∣

F(u + v)− F(u) − N
∫

M
f (x) |u|N−2 u.vdvg

∣

∣

∣

∣

≤

N max
x∈M

f (x)
∫

M

(

|v|N−1 |u|+ |u + v|N−2 v2
)

dvg ≤

N max
x∈M

f (x)
(

‖u‖N + ‖u + v‖N−2
N ‖v‖3−N

N

)

‖v‖N−1
N .

The case N > 3, we have

∣

∣

∣

(

|u + tv|N−2 (u + tv)v − |u|N−2 u
)

v
∣

∣

∣
≤
(

|u + v|N−2 − |u|N−2
)

|u| |v|

+ (|u|+ |v|)N−2 v2

and using the following formula, which can be derived from the the Taylor ex-
pansion, for any x > 1 and any real p > 1

(1 + x)p
< xp + pxp−1 +

1

2
p(p − 1)xp−2 + ...
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+
1

E(p)
p(p − 1)...(p − E(p) + 1)xp−E(p)

where E(p) is the entire part of the integer p, we obtain

(

|u + v|N−2 − |u|N−2
)

|u| |v| ≤
[

(N − 2) |u|N−1 + ...+

1

E(N − 2)
(N − 2)....(N − 1 − E(N − 2)) |u|N−1−E(N−2) |v|E(N−2)−1

]

|v|2

and using again the Hölder inequality, we get

∣

∣

∣

∣

F(u + v)− F(u) − N
∫

M
f (x) |u|N−2 u.vdvg

∣

∣

∣

∣

≤ N sup
x∈M

f (x)
[

(N − 2) ‖u‖N−1
N + ...+

1

E(N − 2)
(N − 2)....(N − 1 − E(N − 2)) ‖u‖

N−1−E(N−2)
N

]

‖v‖2
N

and finally by the Sobolev inequality given in Lemma 1, we deduce that in the
two cases we have

∣

∣

∣

∣

F(u + v)− F(u) − N
∫

M
f (x) |u|N−2 u.vdvg

∣

∣

∣

∣

= o(‖v‖H2
)

which shows that the functional F(u) is differentiable with derivative at the point

u given by F′(u)v = N
∫

M f (x) |u|N−2 uvdvg.

3 Existence of solution with negative energy

In this section, we aim to prove the existence of a positive solution to equation
(1.1) with negative energy. To do so, we establish the following results.

Lemma 3. There exits ρ > 0, such that for any λ > 0 and ǫ > 0 the functional Iε,λ is

weakly lower semi-continuous on the closed ball
{

u ∈ HP
1 (M) : ‖u‖H2

≤ ρ
}

.

Proof. Let (uk)k be a sequence in H2(M) such that uk → u weakly in H2(M) and
‖uk‖H2

≤ ρ. Up to a subsequence, we obtain

∇uk → ∇u weakly in H2(M)

uk → u strongly in Lr(M) with r < p∗

uk → u strongly in H1
2(M)

and
uk → u a.e. in M.

We have to show that
lim

k
inf Iǫ,λ(uk) ≥ Iǫ,λ(u).
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By the Brezis-Lieb Lemma [4], we have

‖∆uk‖
2
2 − ‖∆u‖2

2 = ‖∆ (uk − u)‖2
2 + o(1)

and
∫

M
f (x)

(

|uk|
N − |u|N

)

dv(g) =
∫

M
f (x) |uk − u|N dv(g) + o(1).

On the other hand the Sobolev inequality given by Lemma 1.1 allows us to write

∫

M
f (x) |uk − u|N dv(g) ≤ sup

x∈M

f (x)
[

max
(

K2
2 + ǫ1, A(ǫ1)

)]
N
2
‖uk − u‖N

H2

where ǫ1 is any positive number, K2 and A(ǫ1) are the constants appearing in the
Sobolev embedding. So

Iǫ,λ(uk)− Iǫ,λ(u) ≥ ‖uk − u‖2
H2

×

(

1 − sup
x∈M

f (x)
[

max
(

K2
2 + ǫ1, A(ǫ1)

)]
N
2

2N−2 max(‖uk‖
N−2
H2

, ‖u‖N−2
H2

)

)

+ o(1).

We choose the radius of the ball
{

u ∈ H2(M) : ‖u‖H2
≤ ρ

}

small enough so that

it satisfies our claim.

Lemma 4. For each fixed λ > 0, there exist ǫo > 0 sufficiently small, ρ > 0 and η > 0
such that for any u ∈ H2 with ‖u‖H2

= ρ it holds Iǫ,λ(u) > η for any 0 < ǫ < ǫo .

Proof. Consider the functional Iǫ,λ(u) defined by (2.1). By the coerciveness of the

operator L(u) = ∆2u +∇i (a(x)∇iu) + h(x)u and the Sobolev inequality given
by Lemma 1, we get

Iǫ,λ(u) ≥ Λ ‖u‖2
H2

−
2

N
max
x∈M

f (x) ‖u‖N
N −

2

q
λvol(M)1−

q
N ‖u‖

q
N

−2ǫ max
x∈M

|g(x)| vol(M)1− 1
N ‖u‖N

≥

[(

Λ −
2

N
max
x∈M

f (x)max ((1 + ǫ1)K2, A(ǫ1))
N ‖u‖N−2

H2

−λ
2

q
max ((1 + ǫ1)K2, A(ǫ1))

q ‖u‖
q−2
H2

)

‖u‖H2

−2ǫ max
x∈M

|g(x)| vol(M)1− 1
N max ((1 + ǫ1)K2, A(ǫ1))

]

‖u‖H2

where Λ is the constant of the coercivity and ǫ1 > 0 is the one appearing in the
Sobolev inequality.

Then there are ρ > 0, ǫo > 0 and η > 0 such that for any u ∈ H2 with
‖u‖H2

= ρ and any 0 < ǫ < ǫo, Iǫ,λ(u) > η.

Now we are able to prove the existence of solution to equation (1.1) with neg-
ative energy
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Theorem 3. Let (M, g) be a compact Riemannian n−manifold, n ≥ 5, a, h, f , g be
smooth real functions on M with

(i) f (x) > 0 everywhere on M

(ii) the operator Lu = ∆2u +∇i(a(x)∇iu) + h(x)u is coercive.
Then there exists εo > 0 small enough such that for any 0 < ε ≤ εo the equation

(1.1) admits a weak solution with negative energy.

Proof. Let v ∈ H2(M) such that
∫

M g(x)vdvg > 0. For any t > 0,

Iǫ,λ(tv) = t2

(

‖∆v‖2
2 −

∫

M
a(x) |∇v|2 dvg +

∫

M
h(x)v2dvg

)

−
2

N
tN
∫

M
f (x) |v|N dvg

−λ
2

q
tq
∫

M
|v|q dvg − 2ǫt

∫

M
g(x)vdvg

so we deduce that there is a t1(λ, ǫ) > 0 such that for any t ∈ ]0, t1(λ, ǫ)[,
Iǫ,λ(tv) < 0 and for ρ > 0

inf
‖u‖H2

≤ρ
Iǫ,λ(u) < 0.

Now, by Lemma 3 there exist ρ > 0 and w ∈ H2(M) with ‖w‖H2
≤ ρ such that

Iǫ,λ(w) = inf
‖u‖H2

≤ρ
I(u) < 0.

On the other hand for sufficiently small ǫ > 0 and sufficiently small ρ > 0 , w
is such that ‖w‖H2

< ρ, otherwise by Lemma 4 Iǫ,λ(w) ≥ 0. Hence w is a weak
solution of equation (1.1) with negative energy.

4 Palais-Smale condition

Lemma 5. Suppose n ≥ 5, a, h, f , g be smooth real functions on M with
(i) f (x) > 0 everywhere on M.

(ii) the operator Lu = ∆2u +∇i(a(x)∇iu) + h(x)u is coercive.
Then there exists εo > 0 sufficiently small such for any 0 < ε ≤ εo, each (PS)c-

sequence is bounded in H2.

Proof. Take (un) ⊂ H2 such that Iǫ,λ(uk) → c and I ′ǫ,λ(uk) → 0 strongly in H′
2(M)

the dual space of H2(M); then

Iǫ,λ(uk)−
1

q
I ′ǫ,λ(uk)(uk) ≥

(

1 −
2

q

)(

‖∆uk‖
2
2 −

∫

M
a(x) |∇uk(x)|

2 dvg

+
∫

M
h(x)uk(x)

2dvg

)

+ 2ǫ(−1 +
1

q
)max

x∈M
|g(x)| vol(M)1− 1

N ‖uk‖N

and from the coerciveness of the operator L, and the Sobolev inequality formu-
lated in Lemma 1 one gets for any η > 0, there is an integer ko > 0 such that for
any k ≥ ko

c + η ≥

[

(1 −
2

q
)Λ ‖uk‖H2

+ 2ǫ(−1 +
1

q
)max

x∈M
|g(x)| vol(M)1− 1

N
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×max(K2(1 + ǫ1), A(ǫ1))] ‖uk‖H2

where Λ denotes the coefficient of the coerciveness, and letting ǫ sufficiently
small, the boundedness of the (PS)c- sequence follows.

Now, we are going to show that the Palais-Smale condition is satisfied.

Lemma 6. Let (uk) be a (PS)cǫ,λ
- sequence. Suppose that the conditions of Lemma 2 are

satisfied and

cǫ,λ <
4

n
max
x∈M

f (x)1− n
4 K

− n
2

2

then there exists a strongly convergent subsequence of (uk).

Proof. Let (uk) be a (PS)c- sequence , then by Lemma 5 (uk) is bounded in H2. From
the reflexivity of H2 and the compactness of the embedding H2 ⊂ Hk

q , ( k = 0, 1;
q < N ) we have a subsequence of (uk) still denoted (uk) such that

uk → u weakly in H2

uk → u and ∇uk → ∇u strongly in Lq(M), q < N.
Now by standard variational method we obtain that u is a weak solution of

the equation (1.1) that is to say: for any v ∈ H2, we have

∫

M
∆u∆vdvg −

∫

M
a(x) 〈∇u,∇v〉 dvg +

∫

M
h(x)uvdvg =

=
∫

M
f |u|N−2 uvdvg + λ

∫

M
|u|q−2 uvdvg + ǫ

∫

M
g(x)vdvg

where 〈., .〉 = g(., .) denotes the Riemannian metric. Letting v = u, we get the
expression of Iǫ,λ(u)

Iǫ,λ(u) =

(

1 −
2

N

)

∫

M
f |u|N dvg +

(

1 −
2

q

)

λ
∫

M
|u|q dvg − ǫ

∫

M
g(x)udvg

≥

(

1 −
2

N

)

∫

M
f |u|N dvg +

[(

1 −
2

q

)

λ ‖u‖q−1
q − ǫ max

x∈M
|g(x)| vol(M)

]

‖u‖q .

Letting wk = uk − u, thanks to the Brezis-Lieb lemma [4], we have

‖∇wk‖
2
2 = ‖∇uk‖

2
2 − ‖∇u‖2

2 + o(1)

and
‖∆wk‖

2
2 = ‖∆uk‖

2
2 − ‖∆u‖2

2 + o(1). (4.1)

By standard integration theory we can write

∫

M
f |uk − u|N dvg =

∫

M
f |uk|

N dvg −
∫

M
f |u|N dvg + o(1) (4.2)

Since
∫

M a(x) |∇uk|
2 dvg →

∫

M a(x) |∇u|2 dvg,
∫

M h(x)u2
k dvg →

∫

M h(x)u2dvg,

and
∫

M g(x)ukdvg →
∫

M g(x)udvg , and taking into account of (4.1) and (4.2), we
obtain

Iǫ,λ(uk)− Iǫ,λ(u) =
∫

M
(∆uk)

2 dvg −
∫

M
(∆u)2 dvg
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−
2

N

∫

M
f (x)(|uk|

N − |u|N)dvg + o(1)

=
∫

M
(∆(uk − u))2 dvg −

2

N

∫

M
f (x) |uk − u|N dvg + o(1). (4.3)

Now, testing the function DI(uk) in the weak convergence uk → u in H2, we get

o(1) = DI(uk)(uk − u)
∫

M
(∆(uk − u))2 dvg −

∫

M
f (x) |uk − u|N dvg + o(1) (4.4)

and combining (4.3) and (4.4), we obtain

∫

M
(∆(uk − u))2 dvg =

∫

M
f (x) |uk − u|N dvg + o(1)

=
∫

M
f (x) |uk|

N−2 (uk − u)2 dvg + o(1). (4.5)

Hence

Iǫ,λ(uk)− Iǫ,λ(u) =

(

1 −
2

N

)

∫

M
(∆(uk − u))2 dvg + o(1). (4.6)

On the other hand using (4.1), and (4.2) we write

I(uk)− I(u) =
∫

M
(∆(uk − u))2 −

2

N

∫

M
f (x) |uk|

N−2 (uk − u)2 + o(1)

and from the Hölder’s inequality, one gets

I(uk)− I(u) ≥ ‖∆(uk − u)‖2
2 −

2

N
max
x∈M

f (x) ‖uk‖
N−2
N ‖uk − u‖2

N + o(1)

and by the Sobolev inequality given by Lemma 1 one writes

I(uk)− I(u) ≥ ‖∆(uk − u)‖2
2 −

2

N
max
x∈M

f (x) ‖uk‖
N−2
N

×
[

(K2
2 + ǫ1) ‖∆(uk − u)‖2

2 + A(ǫ1) ‖uk − u‖2
2

]

+ o(1)

so

I(uk)− I(u) ≥

(

1 −
2

N

(

K2
2 + ǫ1

)

max
x∈M

f (x) ‖uk‖
N−2
N

)

(4.7)

×‖∆(uk − u)‖2
2 + o(1)

and taking account of the equality (4.6), we get

(

1 −
2

N

)

‖∆(uk − u)‖2
2 dvg ≥

(

1 −
2

N

(

K2
2 + ǫ1

)

max
x∈M

f (x) ‖uk‖
N−2
N

)

‖∆(uk − u)‖2
2 + o(1)
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so
(

1 −
(

K2
2 + ǫ1

)

max
x∈M

f (x) ‖uk‖
N−2
N

)

‖∆(uk − u)‖2
2 ≤ o(1).

Consequently if

lim sup
k

‖uk‖N <

(

(

K2
2 + ǫ1

)

max
x∈M

f (x)

)− 1
N−2

(4.8)

we get that
‖∆(uk − u)‖2 = o(1)

that is to say the strong convergence of the sequence uk to u in H2(M).
Now, from Iǫ,λ(uk) → cǫ,λ , we deduce that

∫

M
(∆uk)

2 dvg +
∫

M
a(x) |∇uk|

2 dvg −
2

N

∫

M
f (x) |uk|

N dvg = (4.9)

−
∫

M
h(x)u2

k dvg + λ
2

q

∫

M
|uk|

q dvg + 2ǫ
∫

M
g(x)ukdvg + cǫ,λ + o(1)

and from I ′ǫ,λ(uk)(uk) → 0, we obtain

∫

M
(∆uk)

2 dvg +
∫

M
a(x) |∇uk|

2 dvg −
∫

M
f (x) |uk|

N dvg = (4.10)

= −
∫

M
h(x)u2

k dvg + λ
∫

M
|uk|

q dvg + ǫ
∫

M
k(x) |uk|

p dvg + o(1).

By combining (4.9) and (4.10), we get

(

1 −
2

N

)

∫

M
f (x) |uk|

N dvg +λ(1−
2

q
)
∫

M
|uk|

q dvg − ǫ
∫

M
g(x)ukdvg = cǫ,λ + o(1).

Now since λ > 0 , the sequence (uk) is bounded and ǫ > 0 small enough, to have
(4.8) satisfied, we must assume

cǫ,λ <
4

n
max
x∈M

f (x)1− n
4

(

K2
2 + ǫ1

)− n
4

(4.11)

and a fortiori

cǫ,λ <
4

n
max
x∈M

f (x)1− n
4 K

− n
2

2 .
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5 Generic existence theorem of a second solution

Using the Mountain Pass theorem, we get a second weak solution with positive
energy.

Lemma 7. Suppose that
(i) f (x) > 0 everywhere on M.

(ii) the operator Lu = ∆2u +∇i(a(x)∇iu) + h(x)u is coercive

(iii) 0 < cǫ,λ <

(

N
2

)

1
N−2
(

K2
2 maxx∈M f (x)

)− 1
N−2

1) there exists a positive constants r and ρ such that I(u) > r > 0 for any u with
‖u‖H2

= ρ.

2) there exists v ∈ H2(M) with I(v) < 0 and ‖v‖H2
> ρ.

Proof. The condition(i) is obtained similarly as in the proof of Lemma 4. The
second condition follows, since Iǫ,λ(tu) goes to −∞ as t → +∞. Let v ∈ H2 with
Iǫ,λ(v) < 0,

Γ = {γ ∈ C ([0, 1]), H2) ; γ(0) = 0, γ(1) = v}

and cǫ,λ = infγ∈Γ supt∈[0,1] I(γ(t)). By the Mountain Pass Theorem there exists a

(PS)cǫ,λ
-sequence (uk) ⊂ H2 and by the condition(iii) the (PS)cǫ,λ

condition holds
and therefore cǫ,λ is a critical level for the functional Iǫ,λ.

6 Proof of the main results

First, we prove the following results which is crucial to the proof of the existence
of multiple solutions without the use of the concentration-compactness method.

Lemma 8. There exist λo > 0 and ǫo > 0 such that for any λ ≥ λo and 0 < ǫ ≤ ǫo,
we have

0 < cǫ,λ <
4

n
max
x∈M

f (x)1− n
4 K

− n
2

2 . (6.1)

Proof. Let φ ∈ H2(M) be such that
∫

M g(x)φdvg > 0 and
∫

M f (x) |φ|N dvg = 1,
then we have

lim
t→+∞

Iλ,ǫ (tφ) = −∞

so there exists tǫ,λ > 0 such that

Iλ,ǫ (tǫ,λφ) = sup
t≥0

Iλ,ǫ (tφ) > 0. (6.2)

Hence

t
q−1
ǫ,λ

{

t
2−q
λ,ǫ

(

‖∆φ‖2
2 −

∫

M
a (x) |∇φ|2 dvg

)

−
2

N
t

N−q
ǫ,λ −

2

q
λ ‖φ‖q

q

}

= 2ǫ
∫

M
g(x)φdvg.

(6.3)
Noting that

lim
λ→+∞

(

2

N
t

N−q
ǫ,λ +

2

q
λ ‖φ‖q

q

)

= +∞
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it follows by (6.3) that
lim

λ→∞
tλ,ǫ = 0

and taking into account of (6.2), we obtain

lim
λ→+∞

sup
t≥0

Iǫ,λ(tλ,ǫφ) = 0.

So there exists λo with

0 < sup
t≥0

Iǫ,λ(tφ) <
4

n
max
x∈M

f (x)1− n
4 K

− n
2

2 (6.4)

for any λ ≥ λo.
Let ψ = tφ with t large enough so that Iǫ,λ(ψ) < 0 and let

Γ = {γ ∈ C ([0, 1] , H2(M) : γ (0) = 0, γ (1) = ψ)}

and
cǫ,λ = inf

γ∈Γ
sup

t∈[0,1]

Iǫ,λ (γ (t)) .

Taking into account of Lemma 6, there exist ǫo > 0 and a sequence (uk) in H2(M)
such that for any 0 < ǫ ≤ ǫo

Iǫ,λ(uk) → cǫ,λ and I ′ǫ,λ(uk) → 0 with

0 < cǫ,λ = inf
γ∈Γ

sup
t∈[0,1]

Iǫ,λ (γ (t)) ≤ sup
t≥0

Iǫ,λ (tφ) .

Iǫ,λ satisfies the (PS)cǫ,λ
condition.

Hence by (6.4), we obtain

0 < cǫ,λ <
4

n
max
x∈M

f (x)1− n
4 K

− n
2

2

for any 0 < ǫ ≤ ǫo and any λ ≥ λo.

7 Proof of the main theorems

Proof. (of Theorem 1) Theorem 1 is a corollary of Lemma 8 .

Proof. ( of Theorem 2)
Let xo ∈ M where the function f is maximum, δ > 0 sufficiently small so that

δ <
1
2 ig(M) , where ig(M) denotes the injectivity radius of M and η ∈ C∞(M) a

cutting function

η(r) =

{

1 if x ∈ Bxo(δ)
0 if x /∈ Bxo(2δ)

and consider the function

ϕk(r) =

(

n (n − 2) (n + 2) (n − 4)

2
f (xo)

−1k4

)
n−4

8 η(r)

(k2 + r2)
n−4

2

.



Existence and multiplicity of solutions to fourth order elliptic equations... 619

Theorem 1 will be proven if the condition (6.1) holds that is

0 < cǫ,λ <
4

n
f (xo)

1− n
4 K

− n
2

2 .

Now since the function g is positive everywhere on M, we have

Iǫ,λ(ϕk) ≤ I(ϕk) =

[

‖∆ϕk‖
2
2 +

∫

M
a(x) |∇ϕk|

2 dvg +
∫

M
h(x)ϕ2

kdvg

]

−
2

N

∫

M
f (x)ϕN

k dvg.

So by Lemma 5 to prove Theorem 1, it suffices to show that

I(ϕk) <
4

n
f (xo)

1− n
4 K

− n
2

2 .

Let ωn−1 be the volume of the Euclidean unit sphere and R be the scalar curvature
and let

I
q
p =

∫ ∞

0
(1 + t)−ptqdt

for any real numbers p, q with p > q + 1.
We have

I
q
p+1 =

p − q − 1

p

and

I
q+1
p+1 =

q + 1

p − q − 1
.

If δ ∈ R+,

lim
k→0+

{

∫ δ

0
(r + k)−ptpdt − kp−q−1 I

q
p

}

is finite if p − q − 1 > 0.

Similarly

lim
k→0+

{

∫ δ

0
(r + k)−ptpdt − log

1

k

}

if p − q − 1 = 0.
Now, the computations given in [6] lead to, for n > 6 and k → 0

A =
∫

M
(∆ϕk)

2 dvg =
n

n
4 [(n − 2)(n + 2) (n − 4)]

n
4

2
n
4

f (xo)
1− n

4 ωn−1I
n
2 −1
n

{

1 − k2R(xo)

[

(

n2 + 4
)

(n − 4)

6n(n − 2)(n + 2)(n − 6)
+

n − 1

2n(n + 2)

]

+ O(k3)

}

.



620 M. Benalili

Also

B =
∫

M
a(x) |∇ϕk|

2 dvg =
n

n
4 (n − 1) [(n − 4) (n − 2)(n + 2)]

n
4 −1 (n − 4)3

2
n
4 −2(n − 6)

f (xo)
1− n

4 ωn−1I
n
2−1
n k2

{

a(xo) + O(k3)
}

and

C =
∫

M
h(x)ϕ2

kdvg =
[n (n − 2) (n + 2) (n − 4)]

2
n
4 −1

n
4 −1

f (xo)
1− n

4 O(k4).

Finally

D =
2

N

∫

M
f (x)ϕN

k dvg =
n

n
4 [(n − 4) (n − 2)(n + 2)]

n
4

2
n
4 +1

f (xo)
1− n

4 ωn−1I
n
2 −1
n

{

1 −
k2

n − 2

(

∆ f (xo)

2 f (xo)
+

R(xo)

6
+ O(k3)

)}

.

Consequently

I(ϕk) = A + B + C − D =
n

n
4 [(n − 4) (n − 2)(n + 2)]

n
4

2
n
4 +1

f (xo)
1− n

4 ωn−1I
n
2 −1
n

×

{

1 −
k2

n − 2

(

∆ f (xo)

2 f (xo)
+

5n2(n − 7) + 52(n − 1)

6n(n + 2)(n − 6)
R(xo)

−
8(n − 1)

(n + 2)(n − 6)
a(xo)

)

+ O(k3)

}

.

On the other, the best constant K2 in the Sobolev embedding H2
2(R

n) →֒ LN(Rn)
is

K−2
2 = n(n + 2)(n − 2)(n − 4)

(

ωn−1I
n
2 −1
n

2

)

n
4

(7.1)

so letting

C1(n) =
5n2(n − 7) + 52(n − 1)

6n(n + 2)(5n − 6)

and

C2(n) =
8(n − 1)

(n + 2)(n − 6)

we get

I(ϕk) ≤
1

2
n
4

K
− n

2
2 f (xo)

1− n
4

{

1 −
k2

n − 2

(

∆ f (xo)

2 f (xo)
+ C1(n)R(xo)− C2(n)a(xo)

)

+ O(k3)

}

.
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So if
∆ f (xo)

2 f (xo)
+ C1(n)R(xo)− C2(n)a(xo) > 0

then

I(ϕk) <
4

n
f (xo)

1− n
4 K

− n
2

2 .

For n = 6 and k → 0, the expression of D =
∫

M f (x)ϕ4
kdvg remains un-

changed, however

A =
n

n
2 −1 (n − 4) [(n − 2)(n + 2)]

n
4 ωn−1

2
n
4

f (xo)
1− n

4

×

{

I
n
2 −1
n −

4(n − 4)

3n(n − 2)(n + 2)
R(xo)k

2 log(
1

k2
) + O(k2)

}

B =
n

n
2 −1(n − 4) [(n − 2)(n + 2)]

n
4 ωn−1

2
n
4

f (xo)
1− n

4

×

{

1

(n − 4)(n − 2)(n + 2)
a(xo)k

2 log(
1

k2
) + O(k2)

}

and

C =
1

kn−4
.O(k4).

Consequently

A + B + C =
n

n
4 [(n − 4) (n − 2)(n + 2)]

n
4 ωn−1

2
n
4

f (xo)
1− n

4

×

{

I
n
2 −1
n −

1

(n − 2)(n + 2)

(

4(n − 4)

3n
R(xo)−

1

(n − 4)
a(xo)

)

k2 log(
1

k2
) + O(k2)

}

hence

A + B + C − D =
[n(n − 4)(n − 2)(n + 2)]

n
4 ωn−1

2
n
4+1

f (xo)
1− n

4

×

{

I
n
2 −1
n −

2

(n − 2)(n + 2)

(

4

3n
R(xo)−

1

(n − 4)
a(xo)

)

k2 log(
1

k2
) + O(k2)

}

.

So if
4

3n
R(xo)−

1

(n − 4)
a(xo) > 0

and taking account of the value of K2 given by (7.1) we get

I(ϕk) <
1

2
n
4

f (xo)
1− n

4 K
− n

2
2 <

4

n
f (xo)

1− n
4 K

− n
2

2 .
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