Existence and multiplicity of solutions to fourth order elliptic equations with critical exponent on compact manifolds

Mohammed Benalili

Abstract

This paper deals with some perturbation of the so called prescribed scalar Q-curvature type equations on compact Riemannian manifolds; these equations are fourth order elliptic and of critical Sobolev growth. Sufficient conditions are given to have at least two distinct solutions first without using the concentration-compactness technic but with a suitable range of the parameters and secondly by using the concentration-compactness methods.

1 Introduction

Let (M, g) be a Riemannian compact smooth n-manifold, $n \geq 5$, with metric g, we let $H_{2}^{2}(M)$ be the standard Sobolev space which is the completion of the space

$$
C_{2}^{2}(M)=\left\{u \in C^{\infty}(M):\|u\|_{2,2}<+\infty\right\}
$$

with respect to the norm $\|u\|_{2,2}=\sum_{l=0}^{2}\left\|\nabla^{l} u\right\|_{2}$.
We denotes by H_{2}, the space H_{2}^{2} endowed with the equivalent norm

$$
\|u\|_{H_{2}}=\left(\|\Delta u\|_{2}^{2}+\|\nabla u\|_{2}^{2}+\|u\|_{2}^{2}\right)^{\frac{1}{2}} .
$$

Received by the editors July 2007.
Communicated by P. Godin.
2000 Mathematics Subject Classification : Primary 58J05.
Key words and phrases : Fourth order elliptic equation, critical Sobolev exponent.

We investigate multiple solutions of the equation

$$
\begin{equation*}
\Delta^{2} u+\nabla^{i}\left(a(x) \nabla_{i} u\right)+h(x) u=f(x)|u|^{N-2} u+\lambda|u|^{q-2} u+\epsilon g(x) \tag{1.1}
\end{equation*}
$$

where a, h, f and g are smooth functions on $M, N=\frac{2 n}{n-4}$ is the critical exponent, $2<q<N$ a real number, $\lambda>0$ a real parameter and $\epsilon>0$ any small real number. Since the embedding $H_{2} \hookrightarrow H_{N}^{k},(k=0,1)$ fails to be compact, as known, one encounters serious difficulties in solving equations like (1.1).

In 1983, Paneitz [8] introduced a conformal fourth order operator defined on 4-dimensional Riemannian manifolds which was generalized by Branson [3] to higher dimensions.

$$
P B_{g}(u)=\Delta^{2} u+\operatorname{div}\left(-\frac{(n-2)^{2}+4}{2(n-1)(n-2)} R . g+\frac{4}{n-2} R i c\right) d u+\frac{n-4}{2} Q^{n} u
$$

where $\Delta u=-\operatorname{div}(\nabla u), R$ is the scalar curvature, Ric is the Ricci curvature of g and where

$$
Q^{n}=\frac{1}{2(n-1)} \Delta R+\frac{n^{3}-4 n^{2}+16 n-16}{8(n-1)^{2}(n-2)^{2}} R^{2}-\frac{2}{(n-2)^{2}}|R i c|^{2}
$$

is associated to the notion of Q-curvature.
We refer to a Paneitz-Branson type operator as an operator of the form

$$
P_{g} u=\Delta^{2} u+\nabla^{i}\left(a(x) \nabla_{i} u\right)+h(x) u .
$$

Equation (1.1) is a perturbation of the equation

$$
\begin{equation*}
\Delta^{2} u+\nabla^{i}\left(a(x) \nabla_{i} u\right)+h(x) u=f(x)|u|^{N-2} u . \tag{1.2}
\end{equation*}
$$

Since 1990 many results have been established for the equation (1.2) and for precise functions a, h and f. D.E. Edmunds, D. Fortunato, E. Jannelli [7] proved for $n \geq 8$ that if $\lambda \in\left(0, \lambda_{1}\right)$, with λ_{1} the first eigenvalue of Δ^{2} on the euclidean open ball B, the problem

$$
\left\{\begin{array}{c}
\Delta^{2} u-\lambda u=u \left\lvert\, u u^{\frac{8}{n-4}}\right. \text { in } B \\
u=\frac{\partial u}{\partial n}=0 \text { on } \partial B
\end{array}\right.
$$

has a non trivial solution.
In 1995, R. Vander Vorst [9] obtained the same results as D.E. Edmunds, D. Fortunato, E. Jannelli. when he considered the problem

$$
\left\{\begin{array}{c}
\Delta^{2} u-\lambda u=u|u|^{\frac{8}{n-4}} \text { in } \Omega \\
u=\Delta u=0 \text { on } \partial \Omega
\end{array}\right.
$$

where Ω is an open bounded set of R^{n} and moreover he showed that the solution is positive.

In [5] D.Caraffa studied the equation (1.2) in the case $f(x)=$ constant; and in the particular case where the functions $a(x)$ and $h(x)$ are precise constants she obtained the existence of positive regular solutions. In [6], P. Esposito and
F. Robert studied the existence of solutions to fourth order equations involving Paneitz-Branson type operators and critical Sobolev exponent.

In this paper we show that, under conditions on the operator $L u=\Delta^{2} u+$ $\nabla^{i}\left(a(x) \nabla_{i} u\right)+h(x) u$ and on the function f, the existence of at least two solutions of equation (1.1) first without using the concentration compactness methods but with a suitable range of the parameter λ and secondly by mean of the concentration compactness technique we prove the existence of at least two solutions. Merely speaking, we prove the following results

Theorem 1. Let (M, g) be a compact Riemannian n-manifold, $n \geq 5, a, h, f, g$ be smooth real functions on M with
(i) $f(x)>0$ everywhere on M
(ii) the operator $L u=\Delta^{2} u+\nabla^{i}\left(a(x) \nabla_{i} u\right)+h(x) u$ is coercive.

Then there exist $\lambda_{0}>0$ and $\varepsilon_{0}>0$ such that the equation 1.1 admits at least two distinct solutions in $H_{2}(M)$ for any $\lambda \geq \lambda_{0}$ and $0<\varepsilon \leq \varepsilon_{0}$.

Remark 1. The above result was already obtained by the author in [2], but with an incomplete proof, so I deliberately reconsidered this theorem with a complete proof.

Theorem 2. Let (M, g) be a compact Riemannian n-manifold, $n \geq 6, a, h, f, g$ be smooth real functions on M with
(i) $f(x)>0$ and $g(x)>0$ everywhere on M
(ii) the operator $L u=\Delta^{2} u+\nabla^{i}\left(a(x) \nabla_{i} u\right)+h(x) u$ is coercive
(iii) if $n>6$, we suppose $\frac{\Delta f\left(x_{0}\right)}{2 f\left(x_{0}\right)}+C_{1}(n) R\left(x_{0}\right)-C_{2}(n) a\left(x_{0}\right)>0$ and if $n=6$, we suppose that $\frac{4}{3 n} R\left(x_{0}\right)-\frac{1}{(n-4)} a\left(x_{0}\right)>0$

Then equation (1.1) has at least two distinct solutions in H_{2}.

2 Palais-Smale conditions

We quote after D. Caraffa the following Sobolev's inequality
Lemma 1. [5]Let (M, g) be a compact n-Riemannian manifold $(n \geq 4)$ and q a real $1 \leq q<\frac{n}{2}$. The best constant K_{2} in the Sobolev inequality corresponding to the embedding $H_{2}^{q} \subset L_{p}$ with $\frac{1}{p}=\frac{1}{q}-\frac{2}{n}$ depends only on n and q and for any $\epsilon>0$ there is a constant $A(\epsilon)$ such that for any $\varphi \in H_{2}^{q}$

$$
\|\varphi\|_{p} \leq K_{2}(1+\epsilon)\|\varphi\|_{H_{2}^{q}}+A(\epsilon)\|\varphi\|_{q}
$$

Consider the functional $I_{\epsilon, \lambda}$ defined on H_{2} by

$$
\begin{align*}
& I_{\epsilon, \lambda}(u)=\|\Delta u\|_{2}^{2}-\int_{M} a(x)|\nabla u|^{2} d v_{g}+\int_{M} h(x) u^{2} d v_{g}-\frac{2}{N} \int_{M} f(x)|u|^{N} d v_{g} \\
&-\frac{2}{q} \lambda \int_{M}|u|^{q} d v_{g}-2 \epsilon \int_{M} g(x) u d v_{g} . \tag{2.1}
\end{align*}
$$

Lemma 2. The the functional $I_{\epsilon, \lambda}(u)$ is of class C^{1} on H_{2}.

Proof. It suffices to show that the functional $F(u)=\int_{M} f(x)|u|^{N} d v_{g}$ is of class C^{1} on M. Let $u, v \in H_{2}$, we have

$$
\begin{gathered}
\left.\left|F(u+v)-F(u)-N \int_{M}\right| u\right|^{N-2} u . v d v_{g} \mid \\
=\left|\int_{M} f(x)\left(|u+v|^{N}-|u|^{N}-N f(x)|u|^{N-2} u . v\right) d v_{g}\right|
\end{gathered}
$$

and using the Taylor expansion

$$
|u+v|^{N}=|u|^{N}+N \int_{0}^{1}|u+t v|^{N-2}(u+t v) d t
$$

we obtain

$$
\begin{gathered}
|u+v|^{N}-|u|^{N}-N|u|^{N-2} u . v= \\
=N\left[\int_{0}^{1}\left(|u+t v|^{N-2}(u+t v) v-|u|^{N-2} u\right) v d t\right] .
\end{gathered}
$$

Since $N>2$,(with $t \in[0,1]$) we write

$$
\begin{gathered}
\left(|u+t v|^{N-2}(u+t v) v-|u|^{N-2} u\right) v=\left(|u+t v|^{N-2}-|u|^{N-2}\right) u v \\
+|u+t v|^{N-2} t v^{2}
\end{gathered}
$$

so if $2<N \leq 3$, we get

$$
\left|\left(|u+t v|^{N-2}(u+t v) v-|u|^{N-2} u\right) v\right| \leq|v|^{N-1}|u|+|u+v|^{N-2} v^{2}
$$

and by Hölder inequality, we obtain

$$
\begin{gathered}
\left.\left|F(u+v)-F(u)-N \int_{M} f(x)\right| u\right|^{N-2} u \cdot v d v g \mid \leq \\
N \max _{x \in M} f(x) \int_{M}\left(|v|^{N-1}|u|+|u+v|^{N-2} v^{2}\right) d v_{g} \leq \\
N \max _{x \in M} f(x)\left(\|u\|_{N}+\|u+v\|_{N}^{N-2}\|v\|_{N}^{3-N}\right)\|v\|_{N}^{N-1} .
\end{gathered}
$$

The case $N>3$, we have

$$
\begin{gathered}
\left|\left(|u+t v|^{N-2}(u+t v) v-|u|^{N-2} u\right) v\right| \leq\left(|u+v|^{N-2}-|u|^{N-2}\right)|u||v| \\
+(|u|+|v|)^{N-2} v^{2}
\end{gathered}
$$

and using the following formula, which can be derived from the the Taylor expansion, for any $x>1$ and any real $p>1$

$$
(1+x)^{p}<x^{p}+p x^{p-1}+\frac{1}{2} p(p-1) x^{p-2}+\ldots
$$

$$
+\frac{1}{E(p)} p(p-1) \ldots(p-E(p)+1) x^{p-E(p)}
$$

where $E(p)$ is the entire part of the integer p, we obtain

$$
\begin{gathered}
\left(|u+v|^{N-2}-|u|^{N-2}\right)|u||v| \leq\left[(N-2)|u|^{N-1}+\ldots+\right. \\
\left.\frac{1}{E(N-2)}(N-2) \ldots(N-1-E(N-2))|u|^{N-1-E(N-2)}|v|^{E(N-2)-1}\right]|v|^{2}
\end{gathered}
$$

and using again the Hölder inequality, we get

$$
\begin{gathered}
\left.\left|F(u+v)-F(u)-N \int_{M} f(x)\right| u\right|^{N-2} u . v d v_{g} \mid \\
\leq N \sup _{x \in M} f(x)\left[(N-2)\|u\|_{N}^{N-1}+\ldots+\right. \\
\left.\frac{1}{E(N-2)}(N-2) \ldots .(N-1-E(N-2))\|u\|_{N}^{N-1-E(N-2)}\right]\|v\|_{N}^{2}
\end{gathered}
$$

and finally by the Sobolev inequality given in Lemma 1, we deduce that in the two cases we have

$$
\left.\left|F(u+v)-F(u)-N \int_{M} f(x)\right| u\right|^{N-2} u . v d v_{g} \mid=o\left(\|v\|_{H_{2}}\right)
$$

which shows that the functional $F(u)$ is differentiable with derivative at the point u given by $F^{\prime}(u) v=N \int_{M} f(x)|u|^{N-2} u v d v_{g}$.

3 Existence of solution with negative energy

In this section, we aim to prove the existence of a positive solution to equation (1.1) with negative energy. To do so, we establish the following results.

Lemma 3. There exits $\rho>0$, such that for any $\lambda>0$ and $\epsilon>0$ the functional $I_{\varepsilon, \lambda}$ is weakly lower semi-continuous on the closed ball $\left\{u \in H_{1}^{P}(M):\|u\|_{H_{2}} \leq \rho\right\}$.
Proof. Let $\left(u_{k}\right)_{k}$ be a sequence in $H_{2}(M)$ such that $u_{k} \rightarrow u$ weakly in $H_{2}(M)$ and $\left\|u_{k}\right\|_{H_{2}} \leq \rho$. Up to a subsequence, we obtain

$$
\begin{gathered}
\nabla u_{k} \rightarrow \nabla u \text { weakly in } H_{2}(M) \\
u_{k} \rightarrow u \text { strongly in } L^{r}(M) \text { with } r<p^{*} \\
u_{k} \rightarrow u \text { strongly in } H_{2}^{1}(M)
\end{gathered}
$$

and

$$
u_{k} \rightarrow u \text { a.e. in } M .
$$

We have to show that

$$
\liminf _{k} I_{\epsilon, \lambda}\left(u_{k}\right) \geq I_{\epsilon, \lambda}(u)
$$

By the Brezis-Lieb Lemma [4], we have

$$
\left\|\Delta u_{k}\right\|_{2}^{2}-\|\Delta u\|_{2}^{2}=\left\|\Delta\left(u_{k}-u\right)\right\|_{2}^{2}+o(1)
$$

and

$$
\int_{M} f(x)\left(\left|u_{k}\right|^{N}-|u|^{N}\right) d v(g)=\int_{M} f(x)\left|u_{k}-u\right|^{N} d v(g)+o(1) .
$$

On the other hand the Sobolev inequality given by Lemma 1.1 allows us to write

$$
\int_{M} f(x)\left|u_{k}-u\right|^{N} d v(g) \leq \sup _{x \in M} f(x)\left[\max \left(K_{2}^{2}+\epsilon_{1}, A\left(\epsilon_{1}\right)\right)\right]^{\frac{N}{2}}\left\|u_{k}-u\right\|_{H_{2}}^{N}
$$

where ϵ_{1} is any positive number, K_{2} and $A\left(\epsilon_{1}\right)$ are the constants appearing in the Sobolev embedding. So

$$
\begin{gathered}
I_{\epsilon, \lambda}\left(u_{k}\right)-I_{\epsilon, \lambda}(u) \geq\left\|u_{k}-u\right\|_{H_{2}}^{2} \\
\times\left(1-\sup _{x \in M} f(x)\left[\max \left(K_{2}^{2}+\epsilon_{1}, A\left(\epsilon_{1}\right)\right)\right]^{\frac{N}{2}} 2^{N-2} \max \left(\left\|u_{k}\right\|_{H_{2}}^{N-2},\|u\|_{H_{2}}^{N-2}\right)\right)+o(1) .
\end{gathered}
$$

We choose the radius of the ball $\left\{u \in H_{2}(M):\|u\|_{H_{2}} \leq \rho\right\}$ small enough so that it satisfies our claim.

Lemma 4. For each fixed $\lambda>0$, there exist $\epsilon_{0}>0$ sufficiently small, $\rho>0$ and $\eta>0$ such that for any $u \in H_{2}$ with $\|u\|_{H_{2}}=\rho$ it holds $I_{\epsilon, \lambda}(u)>\eta$ for any $0<\epsilon<\epsilon_{0}$.
Proof. Consider the functional $I_{\epsilon, \lambda}(u)$ defined by (2.1). By the coerciveness of the operator $L(u)=\Delta^{2} u+\nabla^{i}\left(a(x) \nabla_{i} u\right)+h(x) u$ and the Sobolev inequality given by Lemma 1, we get

$$
\begin{gathered}
I_{\epsilon, \lambda}(u) \geq \Lambda\|u\|_{H_{2}}^{2}-\frac{2}{N} \max _{x \in M} f(x)\|u\|_{N}^{N}-\frac{2}{q} \lambda \operatorname{vol}(M)^{1-\frac{q}{N}}\|u\|_{N}^{q} \\
-2 \epsilon \max _{x \in M}^{q}|g(x)| \operatorname{vol}(M)^{1-\frac{1}{N}}\|u\|_{N} \\
\geq\left[\left(\Lambda-\frac{2}{N} \max _{x \in M} f(x) \max \left(\left(1+\epsilon_{1}\right) K_{2}, A\left(\epsilon_{1}\right)\right)^{N}\|u\|_{H_{2}}^{N-2}\right.\right. \\
\left.\quad-\lambda \frac{2}{q} \max \left(\left(1+\epsilon_{1}\right) K_{2}, A\left(\epsilon_{1}\right)\right)^{q}\|u\|_{H_{2}}^{q-2}\right)\|u\|_{H_{2}} \\
\left.-2 \epsilon \max _{x \in M}|g(x)| \operatorname{vol}(M)^{1-\frac{1}{N}} \max \left(\left(1+\epsilon_{1}\right) K_{2}, A\left(\epsilon_{1}\right)\right)\right]\|u\|_{H_{2}}
\end{gathered}
$$

where Λ is the constant of the coercivity and $\epsilon_{1}>0$ is the one appearing in the Sobolev inequality.

Then there are $\rho>0, \epsilon_{0}>0$ and $\eta>0$ such that for any $u \in H_{2}$ with $\|u\|_{H_{2}}=\rho$ and any $0<\epsilon<\epsilon_{0}, I_{\epsilon, \lambda}(u)>\eta$.

Now we are able to prove the existence of solution to equation (1.1) with negative energy

Theorem 3. Let (M, g) be a compact Riemannian n-manifold, $n \geq 5, a, h, f, g$ be smooth real functions on M with
(i) $f(x)>0$ everywhere on M
(ii) the operator $L u=\Delta^{2} u+\nabla^{i}\left(a(x) \nabla_{i} u\right)+h(x) u$ is coercive.

Then there exists $\varepsilon_{0}>0$ small enough such that for any $0<\varepsilon \leq \varepsilon_{0}$ the equation (1.1) admits a weak solution with negative energy.

Proof. Let $v \in H_{2}(M)$ such that $\int_{M} g(x) v d v_{g}>0$. For any $t>0$,

$$
\begin{gathered}
I_{\epsilon, \lambda}(t v)=t^{2}\left(\|\Delta v\|_{2}^{2}-\int_{M} a(x)|\nabla v|^{2} d v_{g}+\int_{M} h(x) v^{2} d v_{g}\right)-\frac{2}{N} t^{N} \int_{M} f(x)|v|^{N} d v_{g} \\
\\
-\lambda \frac{2}{q} t^{q} \int_{M}|v|^{q} d v_{g}-2 \epsilon t \int_{M} g(x) v d v_{g}
\end{gathered}
$$

so we deduce that there is a $t_{1}(\lambda, \epsilon)>0$ such that for any $\left.t \in\right] 0, t_{1}(\lambda, \epsilon)[$, $I_{\epsilon, \lambda}(t v)<0$ and for $\rho>0$

$$
\inf _{\|u\|_{H_{2}} \leq \rho} I_{\epsilon, \lambda}(u)<0 .
$$

Now, by Lemma 3 there exist $\rho>0$ and $w \in H_{2}(M)$ with $\|w\|_{H_{2}} \leq \rho$ such that

$$
I_{\epsilon, \lambda}(w)=\inf _{\|u\|_{H_{2}} \leq \rho} I(u)<0 .
$$

On the other hand for sufficiently small $\epsilon>0$ and sufficiently small $\rho>0$,w is such that $\|w\|_{H_{2}}<\rho$, otherwise by Lemma $4 I_{\epsilon, \lambda}(w) \geq 0$. Hence w is a weak solution of equation (1.1) with negative energy.

4 Palais-Smale condition

Lemma 5. Suppose $n \geq 5, a, h, f, g$ be smooth real functions on M with
(i) $f(x)>0$ everywhere on M.
(ii) the operator $L u=\Delta^{2} u+\nabla^{i}\left(a(x) \nabla_{i} u\right)+h(x) u$ is coercive.

Then there exists $\varepsilon_{0}>0$ sufficiently small such for any $0<\varepsilon \leq \varepsilon_{0}$, each $(P S)_{c^{-}}$ sequence is bounded in H_{2}.

Proof. Take $\left(u_{n}\right) \subset H_{2}$ such that $I_{\epsilon, \lambda}\left(u_{k}\right) \rightarrow c$ and $I_{\epsilon, \lambda}^{\prime}\left(u_{k}\right) \rightarrow 0$ strongly in $H_{2}^{\prime}(M)$ the dual space of $H_{2}(M)$; then

$$
\begin{aligned}
& I_{\epsilon, \lambda}\left(u_{k}\right)-\frac{1}{q} I_{\epsilon, \lambda}^{\prime}\left(u_{k}\right)\left(u_{k}\right) \geq\left(1-\frac{2}{q}\right)\left(\left\|\Delta u_{k}\right\|_{2}^{2}-\int_{M} a(x)\left|\nabla u_{k}(x)\right|^{2} d v_{g}\right. \\
& \left.\quad+\int_{M} h(x) u_{k}(x)^{2} d v_{g}\right)+2 \epsilon\left(-1+\frac{1}{q}\right) \max _{x \in M}|g(x)| \operatorname{vol}(M)^{1-\frac{1}{N}}\left\|u_{k}\right\|_{N}
\end{aligned}
$$

and from the coerciveness of the operator L, and the Sobolev inequality formulated in Lemma 1 one gets for any $\eta>0$, there is an integer $k_{0}>0$ such that for any $k \geq k_{o}$

$$
c+\eta \geq\left[\left(1-\frac{2}{q}\right) \Lambda\left\|u_{k}\right\|_{H_{2}}+2 \epsilon\left(-1+\frac{1}{q}\right) \max _{x \in M}|g(x)| \operatorname{vol}(M)^{1-\frac{1}{N}}\right.
$$

$$
\left.\times \max \left(K_{2}\left(1+\epsilon_{1}\right), A\left(\epsilon_{1}\right)\right)\right]\left\|u_{k}\right\|_{H_{2}}
$$

where Λ denotes the coefficient of the coerciveness, and letting ϵ sufficiently small, the boundedness of the $(P S)_{c}$ - sequence follows.

Now, we are going to show that the Palais-Smale condition is satisfied.
Lemma 6. Let $\left(u_{k}\right)$ be a $(P S)_{c_{e, \lambda}}$ - sequence. Suppose that the conditions of Lemma 2 are satisfied and

$$
c_{\epsilon, \lambda}<\frac{4}{n} \max _{x \in M} f(x)^{1-\frac{n}{4}} K_{2}^{-\frac{n}{2}}
$$

then there exists a strongly convergent subsequence of $\left(u_{k}\right)$.
Proof. Let $\left(u_{k}\right)$ be a (PS) $)_{c}$ - sequence, then by Lemma $5\left(u_{k}\right)$ is bounded in H_{2}. From the reflexivity of H_{2} and the compactness of the embedding $H_{2} \subset H_{q}^{k},(k=0,1$; $q<N)$ we have a subsequence of $\left(u_{k}\right)$ still denoted $\left(u_{k}\right)$ such that
$u_{k} \rightarrow u$ weakly in H_{2}
$u_{k} \rightarrow u$ and $\nabla u_{k} \rightarrow \nabla u$ strongly in $L_{q}(M), q<N$.
Now by standard variational method we obtain that u is a weak solution of the equation (1.1) that is to say: for any $v \in H_{2}$, we have

$$
\begin{aligned}
& \int_{M} \Delta u \Delta v d v_{g}-\int_{M} a(x)\langle\nabla u, \nabla v\rangle d v_{g}+\int_{M} h(x) u v d v_{g}= \\
& =\int_{M} f|u|^{N-2} u v d v_{g}+\lambda \int_{M}|u|^{q-2} u v d v_{g}+\epsilon \int_{M} g(x) v d v_{g}
\end{aligned}
$$

where $\langle.,\rangle=.g(.,$.$) denotes the Riemannian metric. Letting v=u$, we get the expression of $I_{\epsilon, \lambda}(u)$

$$
\begin{aligned}
& I_{\epsilon, \lambda}(u)=\left(1-\frac{2}{N}\right) \int_{M} f|u|^{N} d v_{g}+\left(1-\frac{2}{q}\right) \lambda \int_{M}|u|^{q} d v_{g}-\epsilon \int_{M} g(x) u d v_{g} \\
\geq & \left(1-\frac{2}{N}\right) \int_{M} f|u|^{N} d v_{g}+\left[\left(1-\frac{2}{q}\right) \lambda\|u\|_{q}^{q-1}-\epsilon \max _{x \in M}|g(x)| \operatorname{vol}(M)\right]\|u\|_{q} .
\end{aligned}
$$

Letting $w_{k}=u_{k}-u$, thanks to the Brezis-Lieb lemma [4], we have

$$
\left\|\nabla w_{k}\right\|_{2}^{2}=\left\|\nabla u_{k}\right\|_{2}^{2}-\|\nabla u\|_{2}^{2}+o(1)
$$

and

$$
\begin{equation*}
\left\|\Delta w_{k}\right\|_{2}^{2}=\left\|\Delta u_{k}\right\|_{2}^{2}-\|\Delta u\|_{2}^{2}+o(1) . \tag{4.1}
\end{equation*}
$$

By standard integration theory we can write

$$
\begin{equation*}
\int_{M} f\left|u_{k}-u\right|^{N} d v_{g}=\int_{M} f\left|u_{k}\right|^{N} d v_{g}-\int_{M} f|u|^{N} d v_{g}+o(1) \tag{4.2}
\end{equation*}
$$

Since $\int_{M} a(x)\left|\nabla u_{k}\right|^{2} d v_{g} \rightarrow \int_{M} a(x)|\nabla u|^{2} d v_{g}, \int_{M} h(x) u_{k}^{2} d v_{g} \rightarrow \int_{M} h(x) u^{2} d v_{g}$, and $\int_{M} g(x) u_{k} d v_{g} \rightarrow \int_{M} g(x) u d v_{g}$, and taking into account of (4.1) and (4.2), we obtain

$$
I_{\epsilon, \lambda}\left(u_{k}\right)-I_{\epsilon, \lambda}(u)=\int_{M}\left(\Delta u_{k}\right)^{2} d v_{g}-\int_{M}(\Delta u)^{2} d v_{g}
$$

$$
\begin{gather*}
-\frac{2}{N} \int_{M} f(x)\left(\left|u_{k}\right|^{N}-|u|^{N}\right) d v_{g}+o(1) \\
=\int_{M}\left(\Delta\left(u_{k}-u\right)\right)^{2} d v_{g}-\frac{2}{N} \int_{M} f(x)\left|u_{k}-u\right|^{N} d v_{g}+o(1) . \tag{4.3}
\end{gather*}
$$

Now, testing the function $\operatorname{DI}\left(u_{k}\right)$ in the weak convergence $u_{k} \rightarrow u$ in H_{2}, we get

$$
\begin{gather*}
o(1)=D I\left(u_{k}\right)\left(u_{k}-u\right) \\
\int_{M}\left(\Delta\left(u_{k}-u\right)\right)^{2} d v_{g}-\int_{M} f(x)\left|u_{k}-u\right|^{N} d v_{g}+o(1) \tag{4.4}
\end{gather*}
$$

and combining (4.3) and (4.4), we obtain

$$
\begin{gather*}
\int_{M}\left(\Delta\left(u_{k}-u\right)\right)^{2} d v_{g}=\int_{M} f(x)\left|u_{k}-u\right|^{N} d v_{g}+o(1) \\
=\int_{M} f(x)\left|u_{k}\right|^{N-2}\left(u_{k}-u\right)^{2} d v_{g}+o(1) . \tag{4.5}
\end{gather*}
$$

Hence

$$
\begin{equation*}
I_{\epsilon, \lambda}\left(u_{k}\right)-I_{\epsilon, \lambda}(u)=\left(1-\frac{2}{N}\right) \int_{M}\left(\Delta\left(u_{k}-u\right)\right)^{2} d v_{g}+o(1) . \tag{4.6}
\end{equation*}
$$

On the other hand using (4.1), and (4.2) we write

$$
I\left(u_{k}\right)-I(u)=\int_{M}\left(\Delta\left(u_{k}-u\right)\right)^{2}-\frac{2}{N} \int_{M} f(x)\left|u_{k}\right|^{N-2}\left(u_{k}-u\right)^{2}+o(1)
$$

and from the Hölder's inequality, one gets

$$
I\left(u_{k}\right)-I(u) \geq\left\|\Delta\left(u_{k}-u\right)\right\|_{2}^{2}-\frac{2}{N} \max _{x \in M} f(x)\left\|u_{k}\right\|_{N}^{N-2}\left\|u_{k}-u\right\|_{N}^{2}+o(1)
$$

and by the Sobolev inequality given by Lemma 1 one writes

$$
\begin{aligned}
& I\left(u_{k}\right)-I(u) \geq\left\|\Delta\left(u_{k}-u\right)\right\|_{2}^{2}-\frac{2}{N} \max _{x \in M} f(x)\left\|u_{k}\right\|_{N}^{N-2} \\
& \times\left[\left(K_{2}^{2}+\epsilon_{1}\right)\left\|\Delta\left(u_{k}-u\right)\right\|_{2}^{2}+A\left(\epsilon_{1}\right)\left\|u_{k}-u\right\|_{2}^{2}\right]+o(1)
\end{aligned}
$$

so

$$
\begin{align*}
I\left(u_{k}\right)-I(u) \geq & \left(1-\frac{2}{N}\left(K_{2}^{2}+\epsilon_{1}\right) \max _{x \in M} f(x)\left\|u_{k}\right\|_{N}^{N-2}\right) \tag{4.7}\\
& \times\left\|\Delta\left(u_{k}-u\right)\right\|_{2}^{2}+o(1)
\end{align*}
$$

and taking account of the equality (4.6), we get

$$
\begin{aligned}
& \left(1-\frac{2}{N}\right)\left\|\Delta\left(u_{k}-u\right)\right\|_{2}^{2} d v_{g} \geq \\
& \quad\left(1-\frac{2}{N}\left(K_{2}^{2}+\epsilon_{1}\right) \max _{x \in M} f(x)\left\|u_{k}\right\|_{N}^{N-2}\right)\left\|\Delta\left(u_{k}-u\right)\right\|_{2}^{2}+o(1)
\end{aligned}
$$

so

$$
\left(1-\left(K_{2}^{2}+\epsilon_{1}\right) \max _{x \in M} f(x)\left\|u_{k}\right\|_{N}^{N-2}\right)\left\|\Delta\left(u_{k}-u\right)\right\|_{2}^{2} \leq o(1)
$$

Consequently if

$$
\begin{equation*}
\lim \sup _{k}\left\|u_{k}\right\|_{N}<\left(\left(K_{2}^{2}+\epsilon_{1}\right) \max _{x \in M} f(x)\right)^{-\frac{1}{N-2}} \tag{4.8}
\end{equation*}
$$

we get that

$$
\left\|\Delta\left(u_{k}-u\right)\right\|_{2}=o(1)
$$

that is to say the strong convergence of the sequence u_{k} to u in $H_{2}(M)$.
Now, from $I_{\epsilon, \lambda}\left(u_{k}\right) \rightarrow c_{\epsilon, \lambda}$, we deduce that

$$
\begin{align*}
& \int_{M}\left(\Delta u_{k}\right)^{2} d v_{g}+\int_{M} a(x)\left|\nabla u_{k}\right|^{2} d v_{g}-\frac{2}{N} \int_{M} f(x)\left|u_{k}\right|^{N} d v_{g}= \tag{4.9}\\
- & \int_{M} h(x) u_{k}^{2} d v_{g}+\lambda \frac{2}{q} \int_{M}\left|u_{k}\right|^{q} d v_{g}+2 \epsilon \int_{M} g(x) u_{k} d v_{g}+c_{\epsilon, \lambda}+o(1)
\end{align*}
$$

and from $I_{\epsilon, \lambda}^{\prime}\left(u_{k}\right)\left(u_{k}\right) \rightarrow 0$, we obtain

$$
\begin{align*}
& \int_{M}\left(\Delta u_{k}\right)^{2} d v_{g}+\int_{M} a(x)\left|\nabla u_{k}\right|^{2} d v_{g}-\int_{M} f(x)\left|u_{k}\right|^{N} d v_{g}= \tag{4.10}\\
= & -\int_{M} h(x) u_{k}^{2} d v_{g}+\lambda \int_{M}\left|u_{k}\right|^{q} d v_{g}+\epsilon \int_{M} k(x)\left|u_{k}\right|^{p} d v_{g}+o(1) .
\end{align*}
$$

By combining (4.9) and (4.10), we get

$$
\left(1-\frac{2}{N}\right) \int_{M} f(x)\left|u_{k}\right|^{N} d v_{g}+\lambda\left(1-\frac{2}{q}\right) \int_{M}\left|u_{k}\right|^{q} d v_{g}-\epsilon \int_{M} g(x) u_{k} d v_{g}=c_{\epsilon, \lambda}+o(1) .
$$

Now since $\lambda>0$, the sequence $\left(u_{k}\right)$ is bounded and $\epsilon>0$ small enough, to have (4.8) satisfied, we must assume

$$
\begin{equation*}
c_{\epsilon, \lambda}<\frac{4}{n} \max _{x \in M} f(x)^{1-\frac{n}{4}}\left(K_{2}^{2}+\epsilon_{1}\right)^{-\frac{n}{4}} \tag{4.11}
\end{equation*}
$$

and a fortiori

$$
c_{\epsilon, \lambda}<\frac{4}{n} \max _{x \in M} f(x)^{1-\frac{n}{4}} K_{2}^{-\frac{n}{2}} .
$$

5 Generic existence theorem of a second solution

Using the Mountain Pass theorem, we get a second weak solution with positive energy.

Lemma 7. Suppose that
(i) $f(x)>0$ everywhere on M.
(ii) the operator $L u=\Delta^{2} u+\nabla^{i}\left(a(x) \nabla_{i} u\right)+h(x) u$ is coercive
(iii) $0<c_{\epsilon, \lambda}<\left(\frac{N}{2}\right)^{\frac{1}{N-2}}\left(K_{2}^{2} \max _{x \in M} f(x)\right)^{-\frac{1}{N-2}}$

1) there exists a positive constants r and ρ such that $I(u)>r>0$ for any u with $\|u\|_{H_{2}}=\rho$.
2) there exists $v \in H_{2}(M)$ with $I(v)<0$ and $\|v\|_{H_{2}}>\rho$.

Proof. The condition(i) is obtained similarly as in the proof of Lemma 4. The second condition follows, since $I_{\epsilon, \lambda}(t u)$ goes to $-\infty$ as $t \rightarrow+\infty$. Let $v \in H_{2}$ with $I_{\epsilon, \lambda}(v)<0$,

$$
\left.\Gamma=\left\{\gamma \in C([0,1]), H_{2}\right) ; \gamma(0)=0, \gamma(1)=v\right\}
$$

and $c_{\epsilon, \lambda}=\inf _{\gamma \in \Gamma} \sup _{t \in[0,1]} I(\gamma(t))$. By the Mountain Pass Theorem there exists a (PS) $)_{c_{\epsilon, \lambda}}$-sequence $\left(u_{k}\right) \subset H_{2}$ and by the condition(iii) the (PS) $\mathcal{c}_{c_{, \lambda}}$ condition holds and therefore $c_{\epsilon, \lambda}$ is a critical level for the functional $I_{\epsilon, \lambda}$.

6 Proof of the main results

First, we prove the following results which is crucial to the proof of the existence of multiple solutions without the use of the concentration-compactness method.

Lemma 8. There exist $\lambda_{o}>0$ and $\epsilon_{o}>0$ such that for any $\lambda \geq \lambda_{o}$ and $0<\epsilon \leq \epsilon_{0}$, we have

$$
\begin{equation*}
0<c_{\epsilon, \lambda}<\frac{4}{n} \max _{x \in M} f(x)^{1-\frac{n}{4}} K_{2}^{-\frac{n}{2}} \tag{6.1}
\end{equation*}
$$

Proof. Let $\phi \in H_{2}(M)$ be such that $\int_{M} g(x) \phi d v_{g}>0$ and $\int_{M} f(x)|\phi|^{N} d v_{g}=1$, then we have

$$
\lim _{t \rightarrow+\infty} I_{\lambda, \epsilon}(t \phi)=-\infty
$$

so there exists $t_{\epsilon, \lambda}>0$ such that

$$
\begin{equation*}
I_{\lambda, \epsilon}\left(t_{\epsilon, \lambda} \phi\right)=\sup _{t \geq 0} I_{\lambda, \epsilon}(t \phi)>0 . \tag{6.2}
\end{equation*}
$$

Hence
$t_{\epsilon, \lambda}^{q-1}\left\{t_{\lambda, \epsilon}^{2-q}\left(\|\Delta \phi\|_{2}^{2}-\int_{M} a(x)|\nabla \phi|^{2} d v_{g}\right)-\frac{2}{N} t_{\epsilon, \lambda}^{N-q}-\frac{2}{q} \lambda\|\phi\|_{q}^{q}\right\}=2 \epsilon \int_{M} g(x) \phi d v_{g}$.
Noting that

$$
\begin{equation*}
\lim _{\lambda \rightarrow+\infty}\left(\frac{2}{N} t_{\epsilon, \lambda}^{N-q}+\frac{2}{q} \lambda\|\phi\|_{q}^{q}\right)=+\infty \tag{6.3}
\end{equation*}
$$

it follows by (6.3) that

$$
\lim _{\lambda \rightarrow \infty} t_{\lambda, \epsilon}=0
$$

and taking into account of (6.2), we obtain

$$
\lim _{\lambda \rightarrow+\infty} \sup _{t \geq 0} I_{\epsilon, \lambda}\left(t_{\lambda, \epsilon} \phi\right)=0
$$

So there exists λ_{o} with

$$
\begin{equation*}
0<\sup _{t \geq 0} I_{\epsilon, \lambda}(t \phi)<\frac{4}{n} \max _{x \in M} f(x)^{1-\frac{n}{4}} K_{2}^{-\frac{n}{2}} \tag{6.4}
\end{equation*}
$$

for any $\lambda \geq \lambda_{0}$.
Let $\psi=t \phi$ with t large enough so that $I_{\epsilon, \lambda}(\psi)<0$ and let

$$
\Gamma=\left\{\gamma \in C\left([0,1], H_{2}(M): \gamma(0)=0, \gamma(1)=\psi\right)\right\}
$$

and

$$
c_{\epsilon, \lambda}=\inf _{\gamma \in \Gamma} \sup _{t \in[0,1]} I_{\epsilon, \lambda}(\gamma(t))
$$

Taking into account of Lemma 6, there exist $\epsilon_{0}>0$ and a sequence $\left(u_{k}\right)$ in $H_{2}(M)$ such that for any $0<\epsilon \leq \epsilon_{o}$
$I_{\epsilon, \lambda}\left(u_{k}\right) \rightarrow c_{\epsilon, \lambda}$ and $I_{\epsilon, \lambda}^{\prime}\left(u_{k}\right) \rightarrow 0$ with

$$
0<c_{\epsilon, \lambda}=\inf _{\gamma \in \Gamma} \sup _{t \in[0,1]} I_{\epsilon, \lambda}(\gamma(t)) \leq \sup _{t \geq 0} I_{\epsilon, \lambda}(t \phi)
$$

$I_{\epsilon, \lambda}$ satisfies the $(P S)_{\mathcal{c}_{\epsilon, \lambda}}$ condition.
Hence by (6.4), we obtain

$$
0<c_{\epsilon, \lambda}<\frac{4}{n} \max _{x \in M} f(x)^{1-\frac{n}{4}} K_{2}^{-\frac{n}{2}}
$$

for any $0<\epsilon \leq \epsilon_{o}$ and any $\lambda \geq \lambda_{o}$.

7 Proof of the main theorems

Proof. (of Theorem 1) Theorem 1 is a corollary of Lemma 8.
Proof. (of Theorem 2)
Let $x_{0} \in M$ where the function f is maximum, $\delta>0$ sufficiently small so that $\delta<\frac{1}{2} i_{g}(M)$, where $i_{g}(M)$ denotes the injectivity radius of M and $\eta \in C^{\infty}(M)$ a cutting function

$$
\eta(r)=\left\{\begin{array}{lll}
1 & \text { if } & x \in B_{x_{o}}(\delta) \\
0 & \text { if } & x \notin B_{x_{o}}(2 \delta)
\end{array}\right.
$$

and consider the function

$$
\varphi_{k}(r)=\left(\frac{n(n-2)(n+2)(n-4)}{2} f\left(x_{0}\right)^{-1} k^{4}\right)^{\frac{n-4}{8}} \frac{\eta(r)}{\left(k^{2}+r^{2}\right)^{\frac{n-4}{2}}}
$$

Theorem 1 will be proven if the condition (6.1) holds that is

$$
0<c_{\epsilon, \lambda}<\frac{4}{n} f\left(x_{o}\right)^{1-\frac{n}{4}} K_{2}^{-\frac{n}{2}} .
$$

Now since the function g is positive everywhere on M, we have

$$
\begin{aligned}
I_{\epsilon, \lambda}\left(\varphi_{k}\right) \leq I\left(\varphi_{k}\right)=\left[\left\|\Delta \varphi_{k}\right\|_{2}^{2}+\int_{M} a(x)\left|\nabla \varphi_{k}\right|^{2} d v_{g}\right. & \left.+\int_{M} h(x) \varphi_{k}^{2} d v_{g}\right] \\
& -\frac{2}{N} \int_{M} f(x) \varphi_{k}^{N} d v_{g}
\end{aligned}
$$

So by Lemma 5 to prove Theorem 1, it suffices to show that

$$
I\left(\varphi_{k}\right)<\frac{4}{n} f\left(x_{o}\right)^{1-\frac{n}{4}} K_{2}^{-\frac{n}{2}} .
$$

Let ω_{n-1} be the volume of the Euclidean unit sphere and R be the scalar curvature and let

$$
I_{p}^{q}=\int_{0}^{\infty}(1+t)^{-p} t^{q} d t
$$

for any real numbers p, q with $p>q+1$.
We have

$$
I_{p+1}^{q}=\frac{p-q-1}{p}
$$

and

$$
I_{p+1}^{q+1}=\frac{q+1}{p-q-1} .
$$

If $\delta \in R^{+}$,

$$
\lim _{k \rightarrow 0^{+}}\left\{\int_{0}^{\delta}(r+k)^{-p} t^{p} d t-k^{p-q-1} I_{p}^{q}\right\}
$$

is finite if $p-q-1>0$.
Similarly

$$
\lim _{k \rightarrow 0^{+}}\left\{\int_{0}^{\delta}(r+k)^{-p} t^{p} d t-\log \frac{1}{k}\right\}
$$

if $p-q-1=0$.
Now, the computations given in [6] lead to, for $n>6$ and $k \rightarrow 0$

$$
\begin{aligned}
& A=\int_{M}\left(\Delta \varphi_{k}\right)^{2} d v_{g}=\frac{n^{\frac{n}{4}}[(n-2)(n+2)(n-4)]^{\frac{n}{4}}}{2^{\frac{n}{4}}} f\left(x_{o}\right)^{1-\frac{n}{4}} \omega_{n-1} I_{n}^{\frac{n}{2}-1} \\
&\left\{1-k^{2} R\left(x_{0}\right)\left[\frac{\left(n^{2}+4\right)(n-4)}{6 n(n-2)(n+2)(n-6)}+\frac{n-1}{2 n(n+2)}\right]+O\left(k^{3}\right)\right\} .
\end{aligned}
$$

Also

$$
\begin{array}{r}
B=\int_{M} a(x)\left|\nabla \varphi_{k}\right|^{2} d v_{g}=\frac{n^{\frac{n}{4}}(n-1)[(n-4)(n-2)(n+2)]^{\frac{n}{4}-1}(n-4)^{3}}{2^{\frac{n}{4}-2}(n-6)} \\
f\left(x_{o}\right)^{1-\frac{n}{4}} \omega_{n-1} I_{n}^{\frac{n}{2}-1} k^{2}\left\{a\left(x_{o}\right)+O\left(k^{3}\right)\right\}
\end{array}
$$

and

$$
C=\int_{M} h(x) \varphi_{k}^{2} d v_{g}=\frac{[n(n-2)(n+2)(n-4)]^{\frac{n}{4}-1}}{2^{\frac{n}{4}-1}} f\left(x_{o}\right)^{1-\frac{n}{4}} O\left(k^{4}\right) .
$$

Finally

$$
\begin{aligned}
D=\frac{2}{N} \int_{M} f(x) \varphi_{k}^{N} d v_{g}=\frac{n^{\frac{n}{4}}[(n-4)(n-2)(n+2)]^{\frac{n}{4}}}{2^{\frac{n}{4}+1}} f\left(x_{o}\right)^{1-\frac{n}{4}} \omega_{n-1} I_{n}^{\frac{n}{2}-1} \\
\left\{1-\frac{k^{2}}{n-2}\left(\frac{\Delta f\left(x_{o}\right)}{2 f\left(x_{0}\right)}+\frac{R\left(x_{o}\right)}{6}+O\left(k^{3}\right)\right)\right\} .
\end{aligned}
$$

Consequently

$$
\begin{aligned}
I\left(\varphi_{k}\right)=A & +B+C-D=\frac{n^{\frac{n}{4}}[(n-4)(n-2)(n+2)]^{\frac{n}{4}}}{2^{\frac{n}{4}+1}} f\left(x_{o}\right)^{1-\frac{n}{4}} \omega_{n-1} I_{n}^{\frac{n}{2}-1} \\
& \times\left\{1-\frac{k^{2}}{n-2}\left(\frac{\Delta f\left(x_{o}\right)}{2 f\left(x_{o}\right)}+\frac{5 n^{2}(n-7)+52(n-1)}{6 n(n+2)(n-6)} R\left(x_{o}\right)\right.\right. \\
& \left.\left.\quad-\frac{8(n-1)}{(n+2)(n-6)} a\left(x_{o}\right)\right)+O\left(k^{3}\right)\right\} .
\end{aligned}
$$

On the other, the best constant K_{2} in the Sobolev embedding $H_{2}^{2}\left(R^{n}\right) \hookrightarrow L^{N}\left(R^{n}\right)$ is

$$
\begin{equation*}
K_{2}^{-2}=n(n+2)(n-2)(n-4)\left(\frac{\omega_{n-1} I_{n}^{\frac{n}{2}-1}}{2}\right)^{\frac{n}{4}} \tag{7.1}
\end{equation*}
$$

so letting

$$
C_{1}(n)=\frac{5 n^{2}(n-7)+52(n-1)}{6 n(n+2)(5 n-6)}
$$

and

$$
C_{2}(n)=\frac{8(n-1)}{(n+2)(n-6)}
$$

we get

$$
\begin{aligned}
& I\left(\varphi_{k}\right) \leq \frac{1}{2^{\frac{n}{4}}} K_{2}^{-\frac{n}{2}} f\left(x_{o}\right)^{1-\frac{n}{4}} \\
&\left\{1-\frac{k^{2}}{n-2}\left(\frac{\Delta f\left(x_{o}\right)}{2 f\left(x_{0}\right)}+C_{1}(n) R\left(x_{o}\right)-C_{2}(n) a\left(x_{o}\right)\right)+O\left(k^{3}\right)\right\} .
\end{aligned}
$$

So if

$$
\frac{\Delta f\left(x_{o}\right)}{2 f\left(x_{0}\right)}+C_{1}(n) R\left(x_{o}\right)-C_{2}(n) a\left(x_{o}\right)>0
$$

then

$$
I\left(\varphi_{k}\right)<\frac{4}{n} f\left(x_{o}\right)^{1-\frac{n}{4}} K_{2}^{-\frac{n}{2}} .
$$

For $n=6$ and $k \rightarrow 0$, the expression of $D=\int_{M} f(x) \varphi_{k}^{4} d v_{g}$ remains unchanged, however

$$
\begin{gathered}
A=\frac{n^{\frac{n}{2}-1}(n-4)[(n-2)(n+2)]^{\frac{n}{4}} \omega_{n-1}}{2^{\frac{n}{4}}} f\left(x_{o}\right)^{1-\frac{n}{4}} \\
\times\left\{I_{n}^{\frac{n}{2}-1}-\frac{4(n-4)}{3 n(n-2)(n+2)} R\left(x_{o}\right) k^{2} \log \left(\frac{1}{k^{2}}\right)+O\left(k^{2}\right)\right\} \\
B=\frac{n^{\frac{n}{2}-1}(n-4)[(n-2)(n+2)]^{\frac{n}{4}} \omega_{n-1}}{2^{\frac{n}{4}}} f\left(x_{o}\right)^{1-\frac{n}{4}} \\
\times\left\{\frac{1}{(n-4)(n-2)(n+2)} a\left(x_{o}\right) k^{2} \log \left(\frac{1}{k^{2}}\right)+O\left(k^{2}\right)\right\}
\end{gathered}
$$

and

$$
C=\frac{1}{k^{n-4}} \cdot O\left(k^{4}\right)
$$

Consequently

$$
\begin{gathered}
A+B+C=\frac{n^{\frac{n}{4}}[(n-4)(n-2)(n+2)]^{\frac{n}{4}} \omega_{n-1}}{2^{\frac{n}{4}}} f\left(x_{o}\right)^{1-\frac{n}{4}} \\
\times\left\{I_{n}^{\frac{n}{2}-1}-\frac{1}{(n-2)(n+2)}\left(\frac{4(n-4)}{3 n} R\left(x_{0}\right)-\frac{1}{(n-4)} a\left(x_{0}\right)\right) k^{2} \log \left(\frac{1}{k^{2}}\right)+O\left(k^{2}\right)\right\}
\end{gathered}
$$

hence

$$
\begin{gathered}
A+B+C-D=\frac{[n(n-4)(n-2)(n+2)]^{\frac{n}{4}} \omega_{n-1}}{2^{\frac{n}{4}+1}} f\left(x_{0}\right)^{1-\frac{n}{4}} \\
\times\left\{I_{n}^{\frac{n}{2}-1}-\frac{2}{(n-2)(n+2)}\left(\frac{4}{3 n} R\left(x_{0}\right)-\frac{1}{(n-4)} a\left(x_{0}\right)\right) k^{2} \log \left(\frac{1}{k^{2}}\right)+O\left(k^{2}\right)\right\} .
\end{gathered}
$$

So if

$$
\frac{4}{3 n} R\left(x_{o}\right)-\frac{1}{(n-4)} a\left(x_{0}\right)>0
$$

and taking account of the value of K_{2} given by (7.1) we get

$$
I\left(\varphi_{k}\right)<\frac{1}{2^{\frac{n}{4}}} f\left(x_{o}\right)^{1-\frac{n}{4}} K_{2}^{-\frac{n}{2}}<\frac{4}{n} f\left(x_{o}\right)^{1-\frac{n}{4}} K_{2}^{-\frac{n}{2}} .
$$

References

[1] T. Aubin, Some nonlinear problems in Riemannian geometry, Springer (1998).
[2] M. Benalili, Multiplicity of solutions for fourth order elliptic equation with critical exponent on compact manifolds. Applied Math Letters, 20, (2007), 232-237.
[3] T.P.Branson, Group representations arising from Lorentz conformal geometry. J. Funct. Anal. 74, (1987), 199-291.
[4] H. Brezis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88(1983), 486-490.
[5] D. Caraffa, Equations elliptiques du quatrième ordre avec exposants critiques sur les variétés riemanniennes compactes. J. Math. Pures Appl., 80, 9 (2001), 941-960.
[6] P. Esposito, F. Robert, Mountain pass critical points for Paneitz-Branson operators, Calc. Var. 15, 493-517.
[7] D.E. Edmunds, D. Fortunato and E. Jannelli, Critical exponents, critical dimensions and biharmonic operator, Arch.Rational Mech. Anal., 112, (1990), 269-289.
[8] S. Paneitz, A quartic conformally covariant differential operator for any arbitrary pseudo-Riemannian manifold. Preprint, 1983.
[9] R. Van der Vorst, Fourth order elliptic equations, with critical growth, C.R. Acad. Sci. Paris t.320, série I, (1998), 295-299.

University Abou-Bakr Belkaïd, Faculty of Sciences,Dept.of Mathematics, B.P. 119. Tlemcen Algeria.
email:m_benalili@Yahoo.fr

