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Abstract

In this paper we will prove the coexistence of unbounded solutions and
periodic solutions for a class of planar systems with asymmetric nonlineari-
ties

{
u′ = v − αu+ + βu−

v′ = −µu+ + γu− − g(u) + p(t),

where g(u) is continuous and bounded, p(t) is a continuous 2π-periodic
function and α, β ∈ R, µ, γ are positive constants.

1 Introduction

Recently, many researchers are concerned with the unboundedness of solutions
of the following planar system:

{
u′ = v − F(u);
v′ = −µu+ + γu− − g(u) + p(t).

(1.1)
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where µ, γ are positive constants , u+ = max{u, 0}, u− = max{−u, 0}, g(u) is a
continuous function and p(t) is a continuous 2π-periodic function.

When F(u) =
∫ u

0 f (s)ds, Eq. (1.1) becomes Liénard equations

u′′ + f (u)u′ + µu+ − γu− + g(x) = p(t), (1.2)

which have been studied by Zaihong, Wang and others in [1-3, 18-23]. When
g(x) ≡ 0, in [22] Wang has shown that the solutions of Eq. (1.2) with sufficiently
large initial conditions are unbounded either in the past or in the future if

1√
µ
+

1√
γ
∈ R \ Q, F(+∞) 6= F(−∞),

where F is a primary function of f (u) and F(±∞) = lim
u→±∞

F(u) are not zero and

finite. (Here only taking some constant d, replace the conditions in [22] with

F(+∞)− d < 0 < F(−∞) − d or F(−∞)− d < 0 < F(+∞) − d.)

Wang also prove the equation (1.1) has unbounded solutions provided that

1√
µ
+

1√
γ
=

2

n

and F(u) and g(u) satisfies some limit conditions in [23].
The existence of unbounded solutions for the perturbed forced planar Hamil-

ton system are proved in [7] by A.Fonda and J. Mawhin. The results in [7] can
be applied to Eq. (1.1), but the obtained existence conditions of unbounded solu-
tions also depend upon the limit conditions

lim
u→±∞

B(u)

u
= B±, B(u) =

∫ u

0

∫ s

0
f (σ)dσds.

When F(u) is unbounded , the estimates become difficult and therefore so far
few results have been obtained in the literature.

In the present paper , we will mainly discuss the unboundedness and period
of solutions of the following interesting planar system:

{
u′ = v − αu+ + βu− ;
v′ = −µu+ + γu− − g(u) + p(t).

(1.3)

where g(u) is a continuous and bounded function and p(t) is a continuous
2π − periodic function and α, β ∈ R, µ, γ are positive constants satisfying

(H0) : A := µ − (
α

2
)2

> 0, B := γ − (
β

2
)2

> 0,
α√
µ
+

β√
γ
= 0.

Let us consider now the autonomous piecewise linear planar system

{
u′ = v − αu+ + βu− ;
v′ = −µu+ + γu− (1.4)
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Figure 1: Phase curves of the autonomous piecewise linear planar system

associated to Eq. (1.3) with the initial condition u(0) = 0, v(0) = v > 0. It is
easy to know that every solution of Eq. (1.4) is a periodic function with period
T = π√

A
+ π√

B
under the condition (H0) and every solution of Eq. (1.4) moves

clockwise in the phase plane (see Fig. 1). However, given a small disturbance as
Eq. (1.3), the solutions of Eq. (1.3), which become complex, may be not periodic
solutions even being unbounded solutions.

Based on some estimates for the successor map , we obtain some sufficient
conditions for the existence of unbounded solutions and periodic solution for
Eq. (1.3).

2 the Successor Map

The successor map was used successfully in studying bounded perturbations of
oscillators in [4, 11, 13]. At first, we will need to prove the definition of the succes-
sor map S well, then give some estimates for the successor map based on phase
plane analysis.

Let (u(t; τ0, v0), v(t; τ0, v0)) be the unique solution of Eq. (1.3) satisfying the
initial conditions

u(τ0; τ0, v0) = 0, v(t; τ0, v0) = v0 > 0.

Denote by τ1 is the next zero of u(t; τ0, v0) to τ0, that is ,

τ1 > τ0, u(τ1; τ0, v0) = 0, u(t; τ0, v0) 6= 0, for t ∈ (τ0, τ1).

We also use the notation v1 = v(τ1; τ0, v0). If v1 is finite, then the successor map
can be defined by

S : (τ0, v0) 7→ (τ1, v1).

All along this paper, the iteration of the successor map is defined by Sn(τ0, v0) =
(τn, vn) and denote by

Pn = S2n : (τ0, v0) 7→ (τ2n, v2n).
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Therefore,

∏1
(Sn(τ0, v0)) = τn, ∏2

(Sn(τ0, v0)) = vn.

We also assume that the limits

(H1) : lim
u→+∞

g(u) = g(+∞), lim
u→−∞

g(u) = g(−∞)

exist and are finite.

Lemma 2.1. Every solution (u(t; τ0 , v0), v(t; τ0, v0)) of Eq. (1.3) moves around the ori-
gin on the phase plane and meets v − axis again in a finite time for v0 >> 1. Moreover,
S is well defined and one to one for v0 >> 1.

Proof. Using polar coordinates

u = r cos θ, v = r sin θ, (u, v) 6= (0, 0)

on right-half phase plane, we have the polar form associated to Eq. (1.3)

{
θ′ = −µ cos2 θ + α sin θ cos θ − sin2 θ − 1

r (g(r cos θ)− p(t)) cos θ;
r′ = −αr cos2 θ + r sin θ cos θ(1 − µ)− (g(r cos θ)− p(t)) sin θ

(2.5)

Let (θ(t; τ0, θ0), r(t; τ0, θ0)) be the solution of Eq. (2.5) with the initial conditions

θ0 = θ(τ0; τ0, θ0) =
π

2
, r0 = r(τ0; τ0, θ0).

Using the Gronwall inequality to

| dr

dt
|≤ Mr, where M is a certain positive constant ,

we can prove that for any T > 0, there is v0 > 0, such that

r0e−MT ≤ r(t) ≤ r0eMT, for |t − t0| ≤ T and r0 > v0. (2.6)

From(H0) and inequalities (2.5)-(2.6), we have obtained

dθ

dt
= µ cos2 θ + α sin α sin θ − sin2 θ

+
1

r
(g(r cos θ)− p(t)) cos θ < 0, θ ∈ (−π

2
,

π

2
), r0 >> 1,

because that
∆ = (α sin θ)2 − 4µ sin2 θ < 0, θ ∈ (−π

2
,

π

2
).

Therefore, there is a finite time τ1 such that

θ(τ1; τ0, v0) = −π

2
.

Similar discussion can be got on the left-half phase plane, thus the conclusion
of the first part of the lemma is proved. The uniqueness of the solution for the
initial value problem guarantees that S is continuous and one to one.



Planar Systems with Asymmetric Nonlinearities 581

Moreover, we have

Lemma 2.2. Assume τ1 = ∏1(S(τ0, v0)) and (H0) holds, then

τ1 = τ0 +
π√
A
+ o(

1

v0
), for v0 >> 1,

where o( 1
v0
) → 0 for v0 → +∞ as usual.

Proof. From the first formula of the equality (2.5), we have

τ1 − τ0 =
∫ θ(τ1)

θ(τ0)

dθ

−µ cos2 θ + α sin θ cos θ − sin2 θ + o( 1
v0
)

=
∫ θ(τ1)

θ(τ0)

dθ

−µ cos2 θ + α sin θ cos θ − sin2 θ
+ o(

1

v0
)

=
π√
A

+ o(
1

v0
).

By using some phase plane analysis, we have more delicate estimates via the
following lemma.

Lemma 2.3. Assume (H0) holds,then we have

τ1 = τ0 +
π√
A
+

1

v0
ϕ(τ0)e

−ατ0 + o(
1

v0
2
), (2.7)

|v1| = e
− α

2
√

A
π
(v0 − e−ατ0 ϕ′(τ0)) + o(

1

v0
), (2.8)

where

ϕ(τ0) = −
∫ τ0+

π√
A

τ0

1√
A

sin
√

A(s − τ0)(g(u(s)) − p(s))e
α
2 (s+τ0)ds.

Proof. By using variation of the constant formula , we have , for t ∈ [τ0, τ1], that

u(t) =
v0√

A
e

α
2 (τ0−t) sin

√
A(t − τ0)

+
∫ t

τ0

1√
A

sin
√

A(s − t)(g(u(s)) − p(s))e
α
2 (s−t)ds,

v(t) =
v0√

A
e

α
2 (τ0−t)(

√
A cos

√
A(t − τ0) +

α

2
sin

√
A(t − τ0)

+
∫ t

τ0

(−cos
√

A(s − t) +
α

2
√

A
sin

√
A(s − t))(g(u(s)) − p(s))e

α
2 (s−t)ds.

Note that u(τ1) = 0. It follows that

v0√
A

e
α
2 (τ0−τ1) sin

√
A(τ1 − τ0) = −

∫ τ1

τ0

1√
A

sin
√

A(s − τ1)

(g(u(s)) − p(s))e
α
2 (s−τ1)ds.
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From lemma 2.2, we obtain

1√
A

e
− α

2 (
π√
A
+o( 1

v0
))

sin
√

A(
π√
A

+ o(
1

v0
)) = − 1

v0

∫ τ0+
π√
A
+o( 1

v0
)

τ0

1√
A

sin
√

A(s − τ0)

(g(u(s)) − p(s))e
α
2 (s−τ0)ds.

Therefore, it follows that

o(
1

v0
) = − 1

v0

∫ τ0+
π√
A

τ0

1√
A

sin
√

A(s − τ0)(g(u(s)) − p(s))e
α
2 (s−τ0)ds + o(

1

v0
2
),

which, together with lemma 2.2, yields (2.7). Similarly, note that v(τ1) = v1. It
follows that

v1 =
v0√

A
e

α
2 (τ0−τ1)(

√
A cos

√
A(τ1 − τ0) +

α

2
sin

√
A(τ1 − τ0)

+
∫ τ1

τ0

(− cos
√

A(s − τ1) +
α

2
√

A
sin

√
A(s − τ1))

(g(u(s)) − p(s))e
α
2 (s−τ1)ds.

Since e
α
2 (τ0−τ1), cos

√
A(τ0 − τ1),

α
2 sin

√
A(τ0 − τ1) can be expressed in the form by

(2.7),

e
α
2 (τ0−τ1) = e

− α
2
√

A
π
(1 − 1

2v0
αϕ(τ0)e

−ατ0) + o(
1

v0
2
),

cos
√

A(τ0 − τ1) = − cos(
√

Ae−ατ0 ϕ(τ0)
1

v0
) = −1 + o(

1

v0
2
),

α

2
sin

√
A(τ0 − τ1) = − sin(

√
A

v0
)e−ατ0 ϕ(τ0)

1

v0
) = o(

1

v0
),

we have

|v1| = −v1 = e
− α

2
√

A
π
(v0 +

∫ τ1

τ0

(− cos
√

A(s − τ1)

+
α

2
√

A
sin

√
A(s − τ1))(g(u(s)) − p(s))e

α
2 (s−τ1)ds.

Denote by τ2 is the next zero of u(t; τ0, v0) to τ0, that is,

τ2 > τ1, u(τ2; τ0, v0) = 0, u(t; τ0, v0) 6= 0, for t ∈ (τ1, τ2).

Similarly, we can obtain some delicate estimates for τ2, v2 by the following lemma.

Lemma 2.4. Assume (H0) holds, then we have

τ2 = τ1 +
π√

B
+

1

v1
ψ(τ1)e

−βτ1 + o(
1

v1
2
), (2.9)

|v2| = e
− β

2
√

B
π
(|v1|+ e−βτ1ψ′(τ1)) + o(

1

v1
), (2.10)

where

ψ(τ1) = −
∫ τ1+

π√
B

τ1

1√
B

sin
√

B(s − τ1)(g(u(s)) − p(s))e
β
2 (s+τ1)ds.
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Note that

τ2 = Π1S2(τ0, v0) , v2 = Π2S2(τ0, v0), (τ2, v2) = P(τ0, v0).

Lemma 2.5. Assume that (H0), (H1) holds, the mapping P : (τ0, v0) 7→ (τ2, v2) can be
expressed in the form:






τ2 = τ0 +
π√
A
+ π√

B

+ 1
v0
[(1 + e

α
2
√

A
π
)( 1

γ g(−∞)− 1
γ g(+∞)) + µ1(τ0)] + o( 1

v0
2 ),

v2 = v0 + (1 + e
α

2
√

A
π
)( α

µ g(+∞)− β
γ g(−∞)) + µ2(τ0) + o( 1

v0
).

(2.11)

for v0 >> 1, where

µ1(τ0) =
∫ π√

A

0

1√
A

sin
√

Ate
α
2 t p(t + τ0)dt

+
∫ π√

A
+ π√

B

π√
A

1√
B

sin
√

B(
π√
A
− t)e

β
2 t p(t + τ0)dt,

µ2(τ0) =
∫ π√

A

0
(− α

2
√

A
sin

√
At + cos

√
At)e

α
2 t p(t + τ0)dt

+
∫ π√

A
+ π√

B

π√
A

(− β

2
√

B
sin

√
B(t − π√

A
)

+ cos
√

B(t − π√
A
))e

−(
βπ

2
√

A
+

βπ

2
√

B
)+

β
2 t

p(t + τ0)dt.

Proof. From lemma 2.2 and lemma 2.4, we know that

1

v1
=

1

|v1|
= − 1

e
− απ

2
√

A (v0 − eατ0 ϕ′(τ0)) + o( 1
v0
)

= −e
απ

2
√

A
1

v0
· 1

1 − eατ0 1
v0

ϕ′(τ0) + o( 1
v0

2 )

= − 1

v0
e

απ
2
√

A + o(
1

v0
2
),

e−βτ1 ϕ(τ1) = e
−β(τ0+

π√
A
)
∫ τ0+

π√
A
+ π√

B

τ0+
π√
A

(
1√
B

sin
√

B(s − τ0 −
π√
A
)

(−g(u(s)) + p(s))e
β
2 (s+τ0+

π√
A )ds + (

1

v0
)

= e
− βπ

2
√

A

∫ π√
A
+ π√

B

π√
A

1√
B

sin
√

B(t − π√
A
)

(−g(u(t + τ0)) + p(t + τ0))e
β
2 tdt + (

1

v0
).

Since (H1) holds, by the lebesgue dominated convergence theorem, it is not hard
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to prove that (2.9) becomes

τ2 = τ0 +
π√
A

+
π√

B
+

1

v0

∫ π√
A

0

1√
A

sin
√

At(−g(+∞)

+ p(t + τ0))e
α
2 tdt +

∫ π√
A
+ π√

B

π√
A

1√
B

sin
√

B(t − π√
A
)(−g(−∞)

+ p(t + τ0))e
α−β

2
√

A
+ α

2 t
dt + o(

1

v0
2
),

for v0 >> 1.
Since

α√
A

+
β√
B
= 0,

we calculate

∫ π√
A

0

1√
A

sin
√

Ate
α
2 tdt =

1

µ
(1 + e

α
2
√

A
π
),

∫ π√
A
+ π√

B

π√
A

1√
B

sin
√

B(t − π√
A
)e

α−β

2
√

A
+

β
2 t

dt = − 1

γ
e

α
2
√

A
π
(1 + e

β

2
√

B
π
)

= − 1

γ
(1 + e

α
2
√

A
π
).

Then it follows the first formula of the lemma 2.5.
From (2.10), using the similar method above, we have

v2 = v0 +
∫ τ0+

π√
A

τ0

(− cos
√

A(s − τ0) +
α

2
√

A
sin

√
A(s − τ0))(g(u(s))

−p(s))e
α
2 (s−τ0)ds + e

βπ

2
√

B

∫ τ1+
π√
B

τ1

(− cos
√

B(s − τ1)

+
β

2
√

B
sin

√
B(s − τ1))(g(u(s)) − p(s))e

α
2 (s−τ1)ds + o(

1

v0
)

= v0 +
∫ π√

A

0
(− cos

√
At +

α

2
√

A
sin

√
At)(g(+∞)

−p(t + τ0))e
α
2 tdt + e

−(
β

2
√

A
π+

β

2
√

B
π)

∫ π√
A
+ π√

B

π√
A

(−cos
√

B(t − π√
A
)

+
β

2
√

B
sin

√
B(t − π√

A
))(g(−∞) − p(t + τ0))e

α
2 tds + o(

1

v0
)

= v0 +
α

µ
(1 + e

( α
2
√

A
π
)g(+∞) − β

γ
e
−(

β

2
√

B
π
(1 + e

(
β

2
√

B
π
)g(−∞) + µ2(τ0) + o(

1

v0
)

= v0 + (1 + e
α

2
√

A
π
)(

α

µ
g(+∞)− β

γ
g(−∞)) + µ2(τ0) + o(

1

v0
),

for v0 >> 1. Thus the lemma 2.5 is proved.
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3 Resonance

3.1 Resonance: Periodic and Unbounded Solutions

Assume that
T

2π
=

p

q
∈ Q, p, q ∈ Z+, T =

π√
A

+
π√

B
,

and the fraction
p
q is in the reduced form, that is ,

1√
A

+
1√
B
∈ Q.

J.M.Alonso and R.Qrtega in [2] have studied the dynamics of a class of mappings
defined on the plane, which have an asymptotic expression

{
θ1 = θ + 2π

p
q + 1

r µ̃1(θ) + o( 1
r2 )

r1 = r + µ̃2(θ) + o(1
r ), r → +∞,

(3.12)

where µ̃1(θ), µ̃2(θ) are continuous and 2π-periodic functions. They prove the
existence of orbits that go to infinity in the future provide that there exists ω ∈ R
such that

µ̃2(ω) = 0, µ̃1(ω) < 0, µ̃1(θ)(θ − ω) > 0, f or θ 6= ω and |θ − ω| is small. (3.13)

or in the past provided that there exists ω ∈ R such that

µ̃2(ω) < 0, µ̃1(ω) = 0, µ̃2(θ)(θ − ω) > 0, f or θ 6= ω and |θ − ω| is small. (3.14)

The periodicity of p(t) leads that

S(τ0 + 2π, v0) = S(τ0, v0) + (2π, 0).

Let

µ̃1(θ) = (1 + e
α

2
√

A
π
)(

1

γ
g(−∞)− 1

γ
g(+∞)) + µ1(θ),

µ̃2(θ) = (1 + e
α

2
√

A
π
)(

α

µ
g(+∞)− β

γ
g(−∞)) + µ2(θ)

and we just see v0 as a radius r and τ0 as an angle θ. Then the successor map P
has an asymptotic expression as (3.12).

With the application of the propositions of the planar mapping (3.12) , we can
easily get the conclusion below.

Theorem 3.1. Assume that conditions (H0), (H1) hold and 1√
A
+ 1√

B
∈ Q. If for

some ω ∈ R and the successor map such that (3.13) or (3.14), then there exists a
constant Γ > 0 such that for v0 > Γ, solution (u(t; τ0, v0), v(t; τ0, v0)) of Eq.(1.3) with
u(τ0; τ0, v0) = 0, v(τ0; τ0, v0) = v0 is unbounded either in the future or in the past.

We also can have the existence of periodic solution under some conditions.
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Theorem 3.2. Assume that conditions (H0), (H1) hold and 1√
A
+ 1√

B
∈ Q. Then

Eq. (1.3) possesses at least one 2π-periodic solution provided that either the function

κ(
g(−∞)

γ
− g(+∞)

µ
) + µ1(τ0), τ0 ∈ R

or the function

κ(α
g(+∞)

γ
− β

g(−∞)

µ
) + µ2(τ0), τ0 ∈ R

has a constant sign, where κ = 1 + e
α

2
√

A
π

.

The proof of Theorem 3.2 is similar to that for Theorem 2.3 in [21].

3.2 Twist Map and Periodic Solution

We will use the twist property of the successor map based on the estimates in
section 2. Denote by (τm, vm) = Sm(τ0, v0).Since µ1(τ), µ2(τ) are continuous and
2π−periodic functions, let

P1 = min
τ∈[0,2π]

κ(µ−1g(+∞)− γ−1g(−∞)) − µ1(τ),

P2 = max
τ∈[0,2π]

|κ(µ−1αg(+∞)− γ−1βg(−∞)) − µ2(τ)|.

From lemma 2.5, we know that there is Γ > 0 such that

||v2| − |v0|| < P2,

τ2 − τ0 < 2
q

p
π − P1

v0
, f or |v0| > Γ.

Assume that there exists positive constant α0 > 1 such that

(H2) : 0 < P1 ≤ 2πα0P2.

Taking a large enough integer m such that v0 ∈ [Γ + (mp − 1)P2, (α0mp + 1)P2],
we have

τ2pm − τ0 < 2pm
q

p
π − P1(

1

v0
+

1

v1
+ · · ·+ 1

v2(mp−1)
)

< 2qmπ − P1

P2
(

1

v0P−1
2

+
1

v0P−1
2 + 1

+ · · ·+ 1

v0P−1
2 + mp − 1

)

= 2qmπ − P1

P2

mp−1

∑
j=0

1

v0P−1
2 + j

.

Since

mp−1

∑
j=0

1

v0P−1
2 + j

>

mp−1

∑
j=0

1

α0mp + 1 + j
→ ln(1 +

1

α0
), as m → +∞,



Planar Systems with Asymmetric Nonlinearities 587

we obtain

τ2mp − τ0 < 2mqπ − P1

P2

1

α0
< 2(mq − 1)π.

On the other hand, from Lemma 2.2, for any fixed m ∈ N,we have Γ∗
> 0,

such that
τ2mp − τ0 > 2(mq − 1)π, f or |v0| ≥ Γ∗.

Hence, taking Γ∗ ∈ [Γ + (mp − 1)P2, (α0mp + 1)P2], we have proved that the
successor map S2mp has a twist property on annulus S1 × [Γ∗, Γ∗].

Therefore, we obtained the following theorem.

Theorem 3.3. Assume that (H0), (H2) hold and 1√
A
+ 1√

B
=

q
p , where

q
p is the reduced

form, p, q ∈ Z+. Then Eq. (1.3) has one 2π−periodic solution.

Proof. We meet all the assumptions of the Dingweiyue’s twist theorem(see Theo-
rem 3.1 in [24]).

4 Nonresonance

4.1 Nonresonance: Unbounded Solutions

Assume that
T

2π
∈ R\Q, T =

π√
A

+
π√

B
,

that is ,
1√
A

+
1√
B
∈ R\Q.

Given σ > 0, let us define

Eσ = {(θ, ρ) ∈ R × (0,+∞) : ρ > σ}.

Assume that the mapping P : Eσ → R2 is a one-to-one and continuous mapping,
whose lift (also denoted by P) can be expressed in the form

P :

{
θ1 = θ + 2α̃π + 1

ρ µ̃1(θ) + ρH(θ, ρ);

ρ1 = ρ + µ̃2(θ) + G(θ, ρ), ρ → +∞.
(4.15)

where
α ∈ R+\Q, µ̃1, µ̃2 : S1 7→ S1areLipschitzcontinuous (4.16)

with S1 = R \ 2πZ,H and G are continuous functions,which are 2π-periodic in θ
and satisfy

ρ|H(θ, ρ)|+ |G(θ, ρ)| → 0 (4.17)

uniformly with respect to θ ∈ R as ρ → +∞.
Given a point (θ0, ρ0) ∈ Eσ, denote by {(θj, ρj)} the orbit of the mapping P

through the point (θ0, ρ0). That is to say (θj + 1, ρj + 1) = P((θj, ρj)).
The following abstract propositions taken from [22] will be applied to prove

our theorem.
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Proposition 4.1. Assume that the condition (4.16), (4.17) hold and

∫ 2π

0
µ̃2(θ)dθ > 0.

Then there exists R0 > σ such that if ρ0 ≥ R0, the orbit {(θj, ρj)} exists in the future
and satisfies

lim
j→+∞

ρj = +∞.

Proposition 4.2. Assume that the condition (4.16), (4.17) hold and

∫ 2π

0
µ̃2(θ)dθ < 0.

Then there exists R0 > σ such that if ρ0 ≥ R0, the orbit {(θj, ρj)} exists in the future
and satisfies

lim
j→−∞

ρj = +∞.

Now we are ready to state one of our main results. Denote by

p =
∫ 2π

0
p(t)dt.

Theorem 4.3. Assume that (H0), (H1) hold and 1√
A
+ 1√

B
∈ R\Q.

(i)If

β(g(+∞) − p) < α(g(−∞) − p),

then there exists a constant Γ > 0 such that, for v0 ≥ Γ, the solution (u(t; τ0 , v0),
v(t; τ0, v0)) of Eq. (1.3) with u(τ0; τ0, v0) = 0, v(τ0; τ0, v0) = v0 satisfies

lim
t→+∞

(|u(t; τ0, v0)|2 + |v(t; τ0, v0)|2) = +∞.

(ii)If

β(g(+∞) − p) > α(g(−∞) − p),

then there exists a constant Γ > 0 such that, for v0 ≥ Γ, the solution (u(t; τ0 , v0),
v(t; τ0, v0)) of Eq. (1.3) with u(τ0; τ0, v0) = 0, v(τ0; τ0, v0) = v0 satisfies

lim
t→−∞

(|u(t; τ0, v0)|2 + |v(t; τ0, v0)|2) = +∞.

Moreover, Eq. (1.3) has at least one 2π-periodic solution.

Proof. We prove the result on the unboundedness of solutions with large initial
energy in the first case; the other case can be handled similarly.

Assume β(g(+∞) − p) < α(g(−∞) − p). We can apply Proposition 4.1 to the
successor mapping P = S2, where

µ̃2(τ0) = κ(µ−1αg(+∞)− γ−1βg(−∞)) + µ2(τ0), κ = 1 + e
α

2
√

A
π

.
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We obtain

∫ 2π

0
µ̃2(τ0)dτ0 = 2πκ(µ−1αg(+∞)− γ−1βg(−∞)) + p

∫ π√
A

0
(− α

2
√

A
sin

√
At

+ cos
√

At)e
α
2 tdt + p

∫ π√
A
+ π√

B

π√
A

(− 1

2
√

B
sin

√
B(t − π√

A
) +

cos
√

B(t − π√
A
))e

−(
βπ

2
√

A
+

βπ

2
√

B
)+

β
2 t

dt

= 2πκ(µ−1α(g(+∞)− p)− γ−1β(g(−∞) − p))

= 2πκβα−1γ−1(β(g(+∞) − p)− α(g(−∞) − p)) > 0.

Therefore, there exists Γ > 0 such that, if V0 ≥ Γ, then the orbit (τj, vj) exists in
the future and satisfies lim

j→+∞
vj = +∞. With the lemma 2.5 ,we obtain the proof

of the first part of the theorem.
Since α̃ = 1√

A
+ 1√

B
is irrational and in view of the expression for the successor

mapping P as (2.11), it follows that (τ2, v2) and (τ0, v0) never lie on the ray τ2 = τ0

for v0 large enough. So the successor mapping meets all the assumptions of the
Poincar-Bohl Theorem. Therefore P has at least one fixed point. Consequently,
Eq. (1.3) has at least a 2π-periodic solution. Thus we have finished the proof of
Theorem 4.3.

Corollary 4.4. Assume that (H0), (H1) hold and 1√
A
+ 1√

B
∈ R\Q.

If such that

max{g(+∞), g(−∞)} < p,

or

min{g(+∞), g(−∞)} > p,

then there exists a constant Γ > 0 such that, for v0 ≥ Γ, every solution
(u(t; τ0, v0), v(t; τ0, v0)) of Eq.(1.3) with u(τ0; τ0, v0) = 0, v(τ0; τ0, v0) = v0 is un-
bounded either in the future or in the past.

We consider a particular case for Eq. (1.3). With similar discussion we can
have the theorem below.

Theorem 4.5. Assume that (H0) hold and 1√
A
+ 1√

B
∈ R\Q,

p =
∫ 2π

0
p(t)dt 6= 0

and

lim
u→+∞

g(u) = lim
u→−∞

g(u) = 0,

(i)If α < β, then there existence a constant Γ > 0 such that, for v0 ≥ Γ, the solution
(u(t; τ0, v0), v(t; τ0, v0)) of Eq. (1.3) with u(τ0; τ0, v0) = 0, v(τ0; τ0, v0) = v0 satisfies

lim
t→+∞

(|u(t; τ0 , v0)|2 + |v(t; τ0, v0)|2) = +∞.
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(ii)If α > β, then there existence a constant Γ > 0 such that, for v0 ≥ Γ, the solution
(u(t; τ0 , v0), v(t; τ0, v0)) of Eq.(1.3) with u(τ0; τ0, v0) = 0, v(τ0; τ0, v0) = v0 satisfies

lim
t→−∞

(|u(t; τ0, v0)|2 + |v(t; τ0, v0)|2) = +∞.

Moreover, Eq. (1.3) has at least one 2π-periodic solution.

It is obvious that when g(u) ≡ 0, Eq. (1.3) has become

{
u′ = v − αu+ + βu− ;
v′ = −µu+ + γu− + p(t).

(4.18)

Owing to Theorem 4.5, the following result can be obtained.

Corollary 4.6. Assume that (H0) hold and 1√
A
+ 1√

B
∈ R\Q.

If α 6= 0, p 6= 0, then all solutions of Eq. (4.18) with large initial energy are un-
bounded either in the future or in the past.
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