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Abstract

We show that there exists an uncountably generated algebra every non-
zero element of which is an everywhere surjective function on C, that is, a
function f : C → C such that, for every non void open set U ⊂ C, f (U) = C.

1 Preliminaries and Main Result

This note contributes to the search for what are often large algebraic structures
(infinite dimensional spaces, infinitely generated algebras, among others) of func-
tions on R or C having certain pathological properties. The search for large alge-
braic structures of functions with pathological properties has lately attracted the
attention of many authors.

Let us recall that a set M of functions satisfying some special property is called
lineable if M ∪ {0} contains an infinite dimensional vector space and spaceable if
M ∪ {0} contains a closed infinite dimensional vector space. More specifically,
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we will say that M is µ-lineable if M ∪ {0} contains a vector space of dimension µ,
where µ is a cardinal number. Similarly, we can also define the notion of algebra-
bility [5]. Here we will consider a slightly simplified definition:

Definition 1.1. Let L be an algebra. A set A ⊂ L is said to be β-algebrable if there exists
an algebra B so that B ⊂ A∪{0} and card(Z) = β, where β is a cardinal number and Z
is a minimal system of generators of B. Here, by Z = {zα : α ∈ Λ} is a minimal system
of generators of B, we mean that B = A(Z) is the algebra generated by Z, and for every
α0 ∈ Λ, zα0 /∈ A(Z \ {zα0}). We also say that A is algebrable if A is β-algebrable for β
infinite.

Remark 1.2. Observe that, if Z is a minimal infinite system of generators of B, then
A(Z′) 6= B for any Z′ ⊂ B such that card(Z′) < card(Z). The result is not true for
finite systems of generators: Take X = C2 with coordinate-wise multiplication. X is a
Banach algebra with unit (1, 1). The set {(1, 0), (0, 1)} is a minimal system of generators
of X. However, X is also single generated by u = (1, i): Consider P : X → X, P(s, t) =
(s2, t2). Note that P(u) = (1,−1) and so we get

1

1 + i
(u − P(u)) = (0, 1) ∈ X.

Similarly, we also have (1, 0) ∈ X.

This terminology of lineability and spaceability was first introduced by Enflo
and Gurariy in [8] (see also [3]) while the term algebrability did not appear until
recently in [5]. Lebesgue [9, 15] was the first to give an example of a function f :
R → R such that for every non-trivial interval I, f (I) = R. Let S denote the set of
everywhere surjective functions on C, that is, functions f : C → C with the property
that for every open set U ⊂ C, f (U) = C. Such functions can be found in a similar
way as the example of Lebesgue in R. It was shown in [3] that S is 2c-lineable,
where c denotes the continuum. Usually, obtaining algebrability is more complex
than obtaining lineability. Several results in this direction have been achieved
lately. In [10] the authors proved the c-algebrability of the set of C∞ functions
with constant Taylor expansion on R. Several different directions in this topic
have also been considered by Bayart and Quarta in [7]. They proved, among other
things, that the set of continuous nowhere differentiable functions is algebrable.
Besides, in [12] Bandyopadhyay and Godefroy studied the algebraic structure of
the set of norm attaining functionals on a Banach space. The interested reader
can refer to [1, 2, 4, 5, 6, 11, 13, 14] for further results in this topic. Our present
contribution to this area is an improvement of a result appearing in [5], where the
authors showed that there exists an infinitely (and countably) generated algebra
every non-zero element of which is an everywhere surjective function on C. Here,
we take that result to a next step:

Theorem 1.3. S contains an uncountably generated algebra A. That is, there is an
algebra A ⊂ S ∪ {0} such that the subalgebra generated by any countable set A ⊂ A is
strictly contained in A. In other words, S is c-algebrable.
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Proof. Let (Qj)
∞

j=1 be a countable basis of open sets of C, of the form

Qj := {z = x + iy : aj < x < bj and cj < y < dj},

for some aj, bj, cj, dj ∈ R, for every j ∈ N. Inductively, we select copies of the

Cantor set Cj ⊂]aj, bj[, such that Cj+1 ∩ (∪
j
k=1Ck) = ∅, j ∈ N. Then, for every

j ∈ N we can choose hj :]cj, dj[→ C and φj : C → Cj bijections, where C ⊂ [0, 1] is
the ternary Cantor set. For each α ∈ C, let us define fα : C → C by

fα(z) :=

{

hj(ℑ(z)) if ℜ(z) = φj(α) and ℑ(z) ∈]cj, dj[ for some j,
1 otherwise,

where ℜ(z) and ℑ(z) denote, respectively, the real part and the imaginary part
of z. Clearly, all these functions are everywhere surjective. We fix α0 ∈ C and
consider the algebra A generated by the family { fα0 fα : α0 6= α ∈ C}. If f ∈
A \ {0}, we write f = p( fα0 fα1

, . . . , fα0 fαn) for some n ∈ N and p ∈ C[z1, . . . , zn]
with p(0) = 0. In order to prove that f ∈ S , let us define q(z) := p(z, . . . , z). Thus
two cases can occur:

Case 1: q(z) is non-constant.
In this case, given any z ∈ C, we find z̃ ∈ C so that q(z̃) = z. For any non-
empty and open set U ⊂ C, we select j ∈ N with Qj ⊂ U. If we fix t ∈]cj, dj[
satisfying hj(t) = z̃, then for z′ := φj(α0) + it ∈ U, we have fα0(z

′) = z̃ and
fα(z′) = 1 if α 6= α0. Therefore

f (z′) = p( fα0 fα1
, . . . , fα0 fαn)(z

′) = p(z̃, . . . , z̃) = q(z̃) = z.

Case 2: q(z) is constant.
This necessarily implies q = 0. For each k = 1, . . . , n, we can decompose p
as zk pk + qk, where pk ∈ C[z1, . . . , zn], and qk is a (n − 1)-variable polyno-
mial depending on zj, j 6= k. If we fix all variables in p and pk as 1, except
the k-th variable, equal to z, we obtain polynomials rk(z) and sk(z), respec-
tively. Easily, rk(z) is constant if and only if sk(z) = 0. If for some k the
corresponding rk(z) is non-constant, we proceed as in case 1, with rk(z) and
αk, to get that, given arbitrary z ∈ C and U ⊂ C open, there are z̃ ∈ C and
z′ ∈ U with rk(z̃) = z and fαk

(z′) = z̃. Therefore f (z′) = rk(z̃) = z and
f ∈ S . If this is not the case, then sk(z) = 0, k = 1, . . . , n. We will show
that this yields a contradiction. Indeed, given any z ∈ C, we either have
fαk

(z) = 1, k = 1, . . . , n, which implies f (z) = q( fα0(z)) = 0, or there is
some j so that z′ := fαj

(z) 6= 1. Thus fαk
(z) = 1 for k 6= j and

f (z) = rj(z
′) = z′sj(z

′) + qj(1, . . . , 1) = qj(1, . . . , 1)
= sj(1) + qj(1, . . . , 1) = rj(1) = q(1) = 0.

That is, f = 0, which is a contradiction.
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Therefore we have shown that A ⊂ S ∪ {0}. To see that A is uncountably
generated, we just have to show that fα0 fα 6= p( fα0 fα1

, . . . , fα0 fαn) for any n ∈
N, p ∈ C[z1, . . . , zn] if α 6= αk, k = 0, . . . , n. Proceeding by contradiction, let z ∈ C

be such that fα(z) 6∈ {1, q(1)}. Then ℜ(z) = φj(α) for some j ∈ N. This implies
ℜ(z) 6= φj(αi), i = 0, . . . , n, j ∈ N, which gives fαi

(z) = 1, i = 0, . . . , n. That is,
fα(z) 6= p(1, . . . , 1) = p( fα0 fα1

, . . . , fα0 fαn)(z).
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Facultad de Ciencias Matemáticas,
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