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Abstract

We show that there exists an uncountably generated algebra every non-
zero element of which is an everywhere surjective function on C, that is, a
function f : C — C such that, for every non void openset U C C, f(U) = C.

1 Preliminaries and Main Result

This note contributes to the search for what are often large algebraic structures
(infinite dimensional spaces, infinitely generated algebras, among others) of func-
tions on R or C having certain pathological properties. The search for large alge-
braic structures of functions with pathological properties has lately attracted the
attention of many authors.

Let us recall that a set M of functions satisfying some special property is called
lineable if M U {0} contains an infinite dimensional vector space and spaceable if
M U {0} contains a closed infinite dimensional vector space. More specifically,
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we will say that M is u-lineable if MU {0} contains a vector space of dimension j,
where 1 is a cardinal number. Similarly, we can also define the notion of algebra-
bility [5]. Here we will consider a slightly simplified definition:

Definition 1.1. Let £ be an algebra. A set A C L is said to be B-algebrable if there exists
an algebra B so that B C AU {0} and card(Z) = B, where B is a cardinal number and Z
is a minimal system of generators of 3. Here, by Z = {z, : « € A} is a minimal system
of generators of B, we mean that B = A(Z) is the algebra generated by Z, and for every
ag € A, zoy & A(Z\ {24, }). We also say that A is algebrable if A is B-algebrable for p
infinite.

Remark 1.2. Observe that, if Z is a minimal infinite system of generators of BB, then
A(Z") # B for any Z' C B such that card(Z') < card(Z). The result is not true for
finite systems of generators: Take X = C? with coordinate-wise multiplication. X is a
Banach algebra with unit (1,1). Theset {(1,0), (0, 1)} is a minimal system of generators
of X. However, X is also single generated by u = (1,1): Consider P : X — X, P(s,t) =
(s?,1?). Note that P(u) = (1, —1) and so we get

1
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(u—P(u)) =(0,1) € X.

Similarly, we also have (1,0) € X.

This terminology of lineability and spaceability was first introduced by Enflo
and Gurariy in [8] (see also [3]) while the term algebrability did not appear until
recently in [5]. Lebesgue [9, 15] was the first to give an example of a function f :
R — R such that for every non-trivial interval I, f(I) = RR. Let S denote the set of
everywhere surjective functions on C, that is, functions f : C — C with the property
that for every openset U C C, f(U) = C. Such functions can be found in a similar
way as the example of Lebesgue in R. It was shown in [3] that S is 2°-lineable,
where ¢ denotes the continuum. Usually, obtaining algebrability is more complex
than obtaining lineability. Several results in this direction have been achieved
lately. In [10] the authors proved the c-algebrability of the set of C* functions
with constant Taylor expansion on R. Several different directions in this topic
have also been considered by Bayart and Quarta in [7]. They proved, among other
things, that the set of continuous nowhere differentiable functions is algebrable.
Besides, in [12] Bandyopadhyay and Godefroy studied the algebraic structure of
the set of norm attaining functionals on a Banach space. The interested reader
can refer to [1, 2, 4, 5, 6, 11, 13, 14] for further results in this topic. Our present
contribution to this area is an improvement of a result appearing in [5], where the
authors showed that there exists an infinitely (and countably) generated algebra
every non-zero element of which is an everywhere surjective function on C. Here,
we take that result to a next step:

Theorem 1.3. S contains an uncountably generated algebra A. That is, there is an
algebra A C S U {0} such that the subalgebra generated by any countable set A C A is
strictly contained in A. In other words, S is c-algebrable.
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Proof. Let (Qj)]?"’:1 be a countable basis of open sets of C, of the form
Qi:={z=x+iy : q; <x<bjandc; <y <dj},

for some aj, b]', Cj, dj € R, for every j € IN. Inductively, we select copies of the

Cantor set C; Claj, bj[, such that C; 1 N (U{c:le) = @, j € IN. Then, for every
j € N we can choose /; :]cj,di[— C and ¢; : C — C; bijections, where C C [0, 1] is
the ternary Cantor set. For each « € C, let us define f, : C — C by

fulz) = { hj(%1<z)) if R(z) = ¢;(a) and S(z) €]c;, dj[ for some j,

otherwise,

where R(z) and (z) denote, respectively, the real part and the imaginary part
of z. Clearly, all these functions are everywhere surjective. We fix ayp € C and
consider the algebra A generated by the family {fy,fa : a0 # a € C}. If f €
AN\ {0}, we write f = p(fayfays- -+ fagfa) forsomen € Nand p € Clzy, ..., z,]
with p(0) = 0. In order to prove that f € S, let us define g(z) := p(z,...,z). Thus
two cases can occur:

Case 1: ¢(z) is non-constant.
In this case, given any z € C, we find Z € C so that gq(Z) = z. For any non-
empty and open set U C C, we select j € IN with Q; C U. If we fix t €]c;, d;]
satisfying h;(t) = Z, then for 2’ := ¢;(ag) + it € U, we have fy,(z’) = Z and
fa(z') = 1if w # ap. Therefore

f@) =p(faofarr s faofun) (&) = P2, 2) = q(2) = =

Case 2: g(z) is constant.

This necessarily implies g = 0. For each k = 1,...,n, we can decompose p
as zxpx + qx, where py € Clzy,...,z,], and gy is a (n — 1)-variable polyno-
mial depending on z;, j # k. If we fix all variables in p and py as 1, except
the k-th variable, equal to z, we obtain polynomials r(z) and sx(z), respec-
tively. Easily, rx(z) is constant if and only if sg(z) = 0. If for some k the
corresponding r(z) is non-constant, we proceed as in case 1, with r(z) and
ay, to get that, given arbitrary z € C and U C C open, there are Z € C and
z' € U with r(Z) = z and f, (2') = Z. Therefore f(z') = r(2) = z and
f € S. If this is not the case, then si(z) = 0, k = 1,...,n. We will show
that this yields a contradiction. Indeed, given any z € C, we either have
fa(z) =1,k = 1,...,n, which implies f(z) = g(fa(z)) = 0, or there is
some j so that z' := fy;(z) # 1. Thus fy (z) = 1fork # jand

f(z) =) =2'(2) +¢;(1,...,1) =
= 5i(1) +4;(1,. 1)—?;() q(1

Thatis, f = 0, which is a contradiction.

q( 1)
)
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Therefore we have shown that A C S U {0}. To see that .A is uncountably
generated, we just have to show that fu,fx # pP(fagfays-- s faofa,) for any n €
N,p € Clzy,...,za) if & # ag, k=0, ..., n. Proceeding by contradiction, letz € C
be such that f,(z) € {1,4(1)}. Then R(z) = ¢;(a) for some j € IN. This implies
R(z) # ¢j(a;), i =0,...,n,j € N, which gives f,,(z) = 1,i = 0,...,n. Thatis,
Fo2) 2 P01 1) = PlFaofarr oo faofon) ). .
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