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Abstract

In this article we prove existence and approximation results for convolu-
tion equations on the spaces of (s; (r, q))-quasi-nuclear mappings of a given
type and order on a Banach space E. As special case this yields results for
partial differential equations with constant coefficients for entire functions
on finite-dimensional complex Banach spaces. We also prove division theo-
rems for (s; m (r, q))-summing functions of a given type and order, that are
essential to prove the existence and approximation results.

1 Introduction

In 1955-1956 Malgrange [14] proved an existence theorem for convolution
equations on the Fréchet space of entire functions H(Cn) with the compact-open
topology. In this case, a convolution equation is an equation of the form O f = g
where O is a convolution operator on H(Cn), that is, a continuous linear operator
on H(Cn) that commutes with all directional derivatives. An illustrative example
is the following differential partial equation with constant coefficients

P (D) f = g,
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where P : C
n −→ C is a polynomial given by

P (z1, . . . , zn) = α0 +
m

∑
k=1

∑
j1+...+jn=k

αj1 ,...,jm z
j1
1 . . . z

jn
n (1)

and P (D) is the linear operator defined on H (E), E a finite-dimensional Banach
space, obtained by replacing in (1) the zh

j by the h-th partial derivative of order h

in the direction of some nonzero vector vj in E.
Malgrange [14] also proved an approximation theorem for solutions of the

associate homogeneous equation by solutions of polynomial-exponential type.
Motivated by these results Martineau [15] in 1967 proved existence and approx-
imation theorems for convolution equations on spaces of entire functions on C

n

of a given type and a given order.
The next natural step in this line of investigation is the consideration of convo-

lution operators in the space H(E) of the entire functions on a Banach space E. So,
[14, 15] can be regarded as starting points of a series of related results for convo-
lution operators on spaces of holomorphic functions on complex Banach spaces
(see Gupta [12] 1969, Dineen [7] 1971, Dwyer III [10] 1971 and [9] 1976, Boland
[1] 1974, Colombeau-Matos [5] 1980, Colombeau-Perrot [6] 1980, Matos-Nachbin
[22] 1981 and Matos [16] 1980, [17] 1984, [18] 1986 and [21] 2007).

In order to describe the aim of this paper, we recall that the usual approach to
prove existence and approximation results for convolution equations on a Fréchet
subspace F of H(E) considers the following three steps:

(A) To characterize the topological dual F ′ of F , through an isomorphism,
called Fourier-Borel transformation, as a subspace S of functions of exponential
type on E′.

(B) To prove a division result on S , that is, if f g = h, g 6= 0, g, h ∈ S , f ∈
H(E′), then it is possible to show that f ∈ S .

(C) To manipulate the results obtained in (A) and (B) in order to show that
each convolution operator O is of the form O f = T ∗ f for some T ∈ F ′ and
all f ∈ F . After that, Functional Analysis methods, including the Hahn-Banach
Theorem, and a Dieudonné-Schwartz Theorem are used in order to prove the
existence and approximation theorems for the convolution equations.

The development of the theory of absolutely summing mappings between Ba-
nach spaces (see, for instance, Diestel-Jarchow-Tonge [8], Piestch [27, 28], Matos
[19, 20] , Botelho [2], Pellegrino [24, 25], Botelho-Pellegrino [3], Pérez-Garcı́a-
Villanueva [26], Cilia-Gutiérrez [4] and references therein) motivated Matos [21]
to consider, in step (A), several Fréchet spaces of quasi-nuclear entire functions
as F and identify the image of the corresponding Fourier-Borel transformations
as spaces of absolutely summing exponential type functions on E′. Then he pro-
ceeds to prove steps (B) and (C) in order to get the existence and approximation
theorems.

Motivated by these procedures we have introduced in [11] the spaces of
(s; (r, q))-quasi-nuclear functions of a given type and order and the spaces of
(s; m (r, q))-summing functions of a given type and order and proved that the
range of the Fourier-Borel transforms of these spaces are algebraically identical
to the spaces of the (s′; m (r′, q′))-summing functions of a given type and order
defined in E′.



Convolution equations on spaces of quasi-nuclear functions 537

The aim of this article is to prove division theorems - step (B) - for (s; m (r, q))-
summing functions of a given type and order. Next, according to step (C) we
indicate that following the arguments of Matos [18], it is possible to get existence
and approximation theorems for convolution operators in the spaces of (s; (r, q))-
quasi-nuclear functions of a given type and order. These results generalize theo-
rems obtained by Gupta [12], Malgrange [14], Martineau [15] and Matos [18, 21].

2 Convolution Operators

To introduce the concept of convolution operators and to prove that it is well-
defined we recall the spaces of (s; (r, q))-quasi-nuclear functions of a given type
and order considered in [11]. Next we show that convolution operators are of the
form O f = T ∗ f as mentioned in step (C).

According to Matos [21], P(s;m(r,q)) (
nE) is the Banach space of all n-homoge-

neous polynomials on E which are (s; m (r, q))-summing at 0, endowed with the
norm ‖·‖(s,m(r;q)) , and PÑ,(s;(r,q)) (

nE) is the Banach space of all (s; (r, q))-quasi-

nuclear n-homogeneous polynomials on E, endowed with the norm ‖·‖Ñ,(s;(r,q)) ,

for all j ∈ N, where N = {0, 1, 2, ...}.
In the definitions involving (s, m (r; q))-summing polynomials we consider

0 < q ≤ r ≤ +∞ and s ∈ [1,+∞] and in the definitions involving (s; (r, q))-quasi-
nuclear polynomials we consider s ≤ q, r ≤ q and s, r, q ∈ [1,+∞] .

Definition 2.1. If ρ > 0 and k ≥ 1, we denote by Bk
(s,m(r;q)),ρ (E) the complex

Banach space of all f ∈ H (E) such that d̂j f (0) ∈ P(s,m(r;q))

(
jE
)

, for all j ∈ N

and

‖ f‖(s,m(r;q)),k,ρ =
∞

∑
j=0

ρ−j

(
j

ke

) j
k
∥∥∥∥

1

j!
d̂j f (0)

∥∥∥∥
(s,m(r;q))

< +∞,

normed by ‖·‖(s,m(r;q)),k,ρ . We denote by Bk
Ñ,(s;(r,q)),ρ

(E) the complex Banach space

of all f ∈ H (E) such that d̂j f (0) ∈ PÑ,(s;(r,q))

(
jE
)

, for all j ∈ N and

‖ f‖Ñ,(s;(r,q)),k,ρ =
∞

∑
j=0

ρ−j

(
j

ke

) j
k
∥∥∥∥

1

j!
d̂j f (0)

∥∥∥∥
Ñ,(s;(r,q))

< +∞,

normed by ‖·‖Ñ,(s;(r,q)),k,ρ .

Definition 2.2. If A ∈ (0,+∞) and k ≥ 1, we denote by Expk
(s,m(r;q)),A (E) and

Expk
Ñ,(s;(r,q)),A

(E) the complex vector spaces
⋃

ρ<A

Bk
(s,m(r;q)),ρ

(E) and

⋃

ρ<A

Bk
Ñ,(s;(r,q)),ρ

(E), respectively, both of them endowed with the corresponding

locally convex inductive limit topologies. We consider the complex vector spaces

Expk
(s,m(r;q)),0,A (E) =

⋂

ρ>A

Bk
(s,m(r;q)),ρ (E) and Expk

Ñ,(s;(r,q)),0,A
(E) =

⋂

ρ>A

Bk
Ñ,(s;(r,q)),ρ

(E) both of them endowed with the projective limit topologies.
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If A = +∞ and k ≥ 1, we consider the complex vector spaces Expk
(s,m(r;q)),∞ (E) =

⋃

ρ>0

Bk
(s,m(r;q)),ρ (E) and Expk

Ñ,(s;(r,q)),∞
(E) =

⋃

ρ>0

Bk
Ñ,(s;(r,q)),ρ

(E) both of them with

the locally convex inductive limit topologies and if A = 0 and k ≥ 1, we consider

the complex vector spaces Expk
(s,m(r;q)),0

(E) =
⋂

ρ>0

Bk
(s,m(r;q)),ρ

(E) and

Expk
Ñ,(s;(r,q)),0

(E) =
⋂

ρ>0

Bk
Ñ,(s;(r,q)),ρ

(E) both of them with the projective limit

topologies.

Definition 2.3. If A ∈ [0,+∞) , we denote by Hb(s,m(r;q))

(
B 1

A
(0)
)

the complex

vector space of all f ∈ H
(

B 1
A
(0)
)

such that d̂j f (0) ∈ P(s,m(r;q))

(
jE
)

, for all

j ∈ N and

lim sup
j→∞

∥∥∥∥
1

j!
d̂j f (0)

∥∥∥∥
1
j

(s,m(r;q))

≤ A,

endowed with the locally convex topology generated by the seminorms(
p∞
(s,m(r;q)),ρ

)
ρ>A

, where

p∞
(s,m(r;q)),ρ ( f ) =

∞

∑
j=0

ρ−j

∥∥∥∥
1

j!
d̂j f (0)

∥∥∥∥
(s,m(r;q))

.

We denote by HÑb,(s;(r,q))

(
B 1

A
(0)
)

the complex vector space of all f ∈ H
(

B 1
A
(0)
)

such that d̂j f (0) ∈ PÑ,(s;(r,q))

(
jE
)

, for all j ∈ N and

lim sup
j→∞

∥∥∥∥
1

j!
d̂j f (0)

∥∥∥∥
1
j

Ñ,(s;(r,q))

≤ A,

endowed with the locally convex topology generated by the seminorms(
p∞

Ñ,(s;(r,q)),ρ

)
ρ>A

, where

p∞
Ñ,(s;(r,q)),ρ ( f ) =

∞

∑
j=0

ρ−j

∥∥∥∥
1

j!
d̂j f (0)

∥∥∥∥
Ñ,(s;(r,q))

.

We denote Hb(s,m(r;q))

(
B 1

A
(0)
)

by Exp∞
(s,m(r;q)),0,A (E) and HÑb,(s;(r,q))

(
B 1

A
(0)
)

by
Exp∞

Ñ,(s;(r,q)),0,A
(E) and we also write Exp∞

(s,m(r;q)),0 (E) = Exp∞
(s,m(r;q)),0,0 (E) and

Exp∞
Ñ,(s;(r,q)),0

(E) = Exp∞
Ñ,(s;(r,q)),0,0

(E) .

New spaces are now constructed as follows:

Let L =
⋃

ρ<A

HÑb,(s;(r,q))

(
B 1

ρ
(0)

)
and define the following relation:

f ∼ g ⇐⇒ there is ρ ∈ (0, A) such that f |B 1
ρ
(0) = g|B 1

ρ
(0).
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It is obvious that ∼ is an equivalence relation. As usual, L /∼ denotes the quo-
tient set and [ f ] stands for the equivalence class of f . Now we define the follow-
ing operations on L /∼ :

[ f ] + [g] =

[
f |B 1

ρ
(0) + g|B 1

ρ
(0)

]
, where ρ ∈ (0, A) is such that

f |B 1
ρ
(0), g|B 1

ρ
(0) ∈ HÑb,(s;(r,q))

(
B 1

ρ
(0)

)
.

λ [ f ] = [λ f ] , λ ∈ C,

which make L /∼ a vector space. The case (s, m (r; q)) is analogous.

For each ρ ∈ (0, A), let iρ : HÑb,(s;(r,q))

(
B 1

ρ
(0)

)
−→ L /∼ be given by iρ ( f ) =

[ f ] .

Definition 2.4. If A ∈ (0,+∞] , we define HÑb,(s;(r,q))

(
B 1

A
(0)
)

= L /∼ en-

dowed with the locally convex inductive limit topology generated by the family(
iρ

)
ρ∈(0,A)

.

In the same way we construct the space Hb(s,m(r;q))

(
B 1

A
(0)
)

.

Now we define the following spaces:

Definition 2.5. If ρ > 0, we define the complex vector space H∞
(s,m(r;q))

(
B 1

ρ
(0)

)

of all f ∈ H

(
B 1

ρ
(0)

)
such that d̂j f (0) ∈ P(s,m(r;q))

(
jE
)

, for all j ∈ N and

∞

∑
j=0

ρ−j

∥∥∥∥
1

j!
d̂j f (0)

∥∥∥∥
(s,m(r;q))

< +∞,

which is a Banach space with the norm p∞
(s,m(r;q)),ρ. We also define the complex

vector space

H∞
Ñ,(s;(r,q))

(
B 1

ρ
(0)

)
of all f ∈ H

(
B 1

ρ
(0)

)
such that d̂j f (0) ∈ PÑ,(s;(r,q))

(
jE
)

, for

all j ∈ N and
∞

∑
j=0

ρ−j

∥∥∥∥
1

j!
d̂j f (0)

∥∥∥∥
Ñ,(s;(r,q))

< +∞,

which is a Banach space with the norm p∞
Ñ,(s;(r,q)),ρ

.

An equivalence relation ∼ is defined on L =
⋃

ρ<A

H∞
(s,m(r;q))

(
B 1

ρ
(0)

)
as in Defini-

tion 2.4. For A ∈ (0,+∞] , we define

Exp∞
(s,m(r;q)),A (E) = L /∼ =

⋃

ρ<A

H∞
(s,m(r;q))

(
B 1

ρ
(0)

)
/∼
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endowed with the locally convex inductive limit topology. We also define

Exp∞
Ñ,(s;(r,q)),A

(E) =
⋃

ρ<A

H∞
Ñb,(s;(r,q))

(
B 1

ρ
(0)

)
/∼

endowed with the locally convex inductive limit topology.

The next result, proved in [11], assures that Definitions 2.4 and 2.5 are equiv-
alent:

Proposition 2.6. The spaces HÑb,(s;(r,q))

(
B 1

A
(0)
)

and Exp∞
Ñ,(s;(r,q)),A

(E) coincide al-

gebraically and are topologically isomorphic, and the same holds for the spaces

Hb(s,m(r;q))

(
B 1

A
(0)
)

and Exp∞
(s,m(r;q)),A (E) .

Now we are in the position to prove a preliminary result that we need to
introduce convolution operators.

Proposition 2.7. (a) If a ∈ E, k ∈ [1,+∞] , A ∈ (0,+∞] and f ∈ Expk
Ñ,(s;(r,q)),A

(E) ,

then d̂n f (·) a ∈ Expk
Ñ,(s;(r,q)),A

(E) and

d̂n f (·) a =
∞

∑
j=0

(j!)−1
(
(
(h

h
h

dj+n f (0) ·j (a) ,

in the sense of the topology of Expk
Ñ,(s;(r,q)),A

(E) .

(b) If a ∈ E, k ∈ [1,+∞] , A ∈ [0,+∞) and f ∈ Expk
Ñ,(s;(r,q)),0,A

(E) , then

d̂n f (·) a ∈ Expk
Ñ,(s;(r,q)),0,A

(E) and

d̂n f (·) a =
∞

∑
j=0

(j!)−1
(
(
(h

h
h

dj+n f (0) ·j (a) ,

in the sense of the topology of Expk
Ñ,(s;(r,q)),0,A

(E) .

Proof. It is known (see Nachbin [23, p. 29]) that

d̂j f (x) a =
∞

∑
n=0

(n!)−1
(
(
(h

h
h

dj+n f (0) xn (a) =
∞

∑
n=0

(n!)−1
(
(
(h

h
h

dj+n f (0) aj (x) , (2)

for all x ∈ E. By Matos [21, pp. 163-164] we have
(
(
(h

h
h

dj+n f (0) aj ∈ PÑ,(s;(r,q)) (
nE)

and ∥∥∥∥∥
(
(
(h

h
h

dj+n f (0) aj

∥∥∥∥∥
Ñ,(s;(r,q))

≤
∥∥∥d̂n+j f (0)

∥∥∥
Ñ,(s;(r,q))

‖a‖ j ,

for all n ∈ N. If k ∈ [1,+∞) , let

L = lim sup
n→∞

(
n + j

ke

) 1
k

∥∥∥∥∥
d̂n+j f (0)

(n + j)!

∥∥∥∥∥

1
n+j

Ñ,(s;(r,q))

.
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In both cases (a) and (b), it follows by [11, Proposition 2.5] that L < +∞. Then for
every ε > 0, there is C (ε) > 0 such that

(
n + j

ke

) n+j
k

∥∥∥∥∥
d̂n+j f (0)

(n + j)!

∥∥∥∥∥
Ñ,(s;(r,q))

≤ C (ε) (L + ε)n+j ,

for all n ∈ N. Hence

( n

ke

) n
k 1

n!

∥∥∥∥∥
(
(
(h

h
h

dj+n f (0) aj

∥∥∥∥∥
Ñ,(s;(r,q))

≤
( n

ke

) n
k 1

n!

∥∥∥d̂n+j f (0)
∥∥∥

Ñ,(s;(r,q))
‖a‖ j

≤
( n

ke

) n
k (n + j)!

n!

(
ke

n + j

) n+j
k

C (ε) (L + ε)n+j ‖a‖ j

=

(
n

n + j

) n
k

(n + 1) ... (n + j)

(
ke

n + j

) j
k

C (ε) (L + ε)n+j ‖a‖ j . (3)

Since

lim
n→∞

(
n

n + j

) 1
k

[(n + 1) ... (n + j)]
1
n

(
ke

n + j

) j
kn

= 1,

there is D (ε) > 0 such that

(
n

n + j

) n
k

(n + 1) ... (n + j)

(
ke

n + j

) j
k

≤ D (ε) (1 + ε)n . (4)

From (3) and (4) we obtain

( n

ke

) n
k 1

n!

∥∥∥∥∥
(
(
(h

h
h

dj+n f (0) aj

∥∥∥∥∥
Ñ,(s;(r,q))

≤ C (ε) D (ε) ‖a‖ j (L + ε)j [(1 + ε) (L + ε)]n ,

for all n ∈ N and ε > 0. Therefore

lim sup
n→∞

( n

ke

) 1
k

∥∥∥∥∥∥∥

(
(
(h

h
h

dj+n f (0) aj

n!

∥∥∥∥∥∥∥

1
n

Ñ,(s;(r,q))

≤ (1 + ε) (L + ε) ,

for all ε > 0, which implies

lim sup
n→∞

( n

ke

) 1
k

∥∥∥∥∥∥∥

(
(
(h

h
h

dj+n f (0) aj

n!

∥∥∥∥∥∥∥

1
n

Ñ,(s;(r,q))

≤ L.

By [11, Proposition 2.5], if f ∈ Expk
Ñ,(s;(r,q)),A

(E) and A ∈ (0,+∞], then

L < A and d̂n f (·) a ∈ Expk
Ñ,(s;(r,q)),A

(E); and if f ∈ Expk
Ñ,(s;(r,q)),0,A

(E) and

A ∈ [0,+∞), then L ≤ A and d̂n f (·) a ∈ Expk
Ñ,(s;(r,q)),0,A

(E).

Now we consider k = +∞. The case HÑb,(s;(r,q)) (E) = Exp∞
Ñ,(s;(r,q)),0

(E) (i.e.
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A = 0) was proved by Matos [21, p. 174]. For f ∈ Exp∞
Ñ,(s;(r,q)),0,A

(E) =

HÑb,(s;(r,q))

(
B 1

A
(0)
)

, we get

lim sup
n→∞

∥∥∥∥∥
d̂n+j f (0)

(n + j)!

∥∥∥∥∥

1
n+j

Ñ,(s;(r,q))

≤ A

and as above we obtain

lim sup
n→∞

∥∥∥∥∥∥∥

(
(
(h

h
h

dj+n f (0) aj

n!

∥∥∥∥∥∥∥

1
n

Ñ,(s;(r,q))

≤ A.

Thus d̂n f (·) a ∈ HÑb,(s;(r,q))

(
B 1

A
(0)
)
= Exp∞

Ñ,(s;(r,q)),0,A
(E) .

For f ∈ Exp∞
Ñ,(s;(r,q)),A

(E), we have f ∈ HÑb,(s;(r,q))

(
B 1

ρ
(0)

)
for some ρ < A.

Thus, d̂n f (·) a ∈ HÑb,(s;(r,q))

(
B 1

ρ
(0)

)
. This implies d̂n f (·) a ∈ Exp∞

Ñ,(s;(r,q)),A
(E) .

We still have to prove the convergence of the series in the respective topologies.

If f ∈ Bk
Ñ,(s;(r,q)),ρ

(E) for some ρ > 0 with k ∈ [1,+∞) , repeating the argument

above with ρ instead of L we get constants C1 (ε) > 0 and D1 (ε) > 0 such that
∥∥∥∥∥d̂j f (·) a −

v

∑
n=0

(n!)−1
(
(
(h

h
h

dj+n f (0) ·n (a)

∥∥∥∥∥
Ñ,(s;(r,q)),k,ρ0

≤
∞

∑
n=v+1

ρ−n
0

( n

ke

) 1
k
∥∥∥(n!)−1 d̂j+n f (0)

∥∥∥
Ñ,(s;(r,q))

‖a‖ j

≤ C1 (ε) D1 (ε) ‖a‖j (ρ + ε)j
∞

∑
n=v+1

[
ρ−1

0 (ρ + ε) (1 + ε)
]n

,

and this tends to zero when v → ∞, for ρ0 > ρ and ε > 0 such that (ρ + ε) (1 + ε)
< ρ0. Now the desired convergence follows from the definiton of the topologies.
The case k = +∞, is analogous.

Definition 2.8. For k ∈ [1,+∞] and A ∈ (0,+∞] , a convolution operator in

Expk
Ñ,(s;(r,q)),A

(E) is a continuous linear mapping

O : Expk
Ñ,(s;(r,q)),A

(E) −→ Expk
Ñ,(s;(r,q)),A

(E)

such that d (O f ) (·) a = O (d f (·) a) for all a ∈ E and f ∈ Expk
Ñ,(s;(r,q)),A

(E) .

For k ∈ [1,+∞] and A ∈ [0,+∞) , a convolution operator in Expk
Ñ,(s;(r,q)),0,A

(E) is a

continuous linear mapping

O : Expk
Ñ,(s;(r,q)),0,A (E) −→ Expk

Ñ,(s;(r,q)),0,A (E)

such that d (O f ) (·) a = O (d f (·) a) for all a ∈ E and f ∈ Expk
Ñ,(s;(r,q)),0,A

(E) .

We denote the set of all convolution operators in Expk
Ñ,(s;(r,q)),A

(E) and in
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Expk
Ñ,(s;(r,q)),0,A

(E) by Ak
Ñ,(s;(r,q)),A

and Ak
Ñ,(s;(r,q)),0,A

, respectively. We also denote

Ak
Ñ,(s;(r,q)),∞

= Ak
Ñ,(s;(r,q))

and Ak
Ñ,(s;(r,q)),0,0

= Ak
Ñ,(s;(r,q)),0

.

Remark 2.9. From Definition 2.8 it follows that a convolution operator O com-
mutes with all the directional derivatives of all orders, that is, for all a ∈ E and

n ∈ N, O
(

d̂n f (·) a
)
= d̂n (O f ) (·) a. Soon we shall prove that convolution oper-

ators could have been defined replacing the condition d (O f ) (·) a = O (d f (·) a)
by τ−a (O ( f )) = O (τ−a f ) for all a ∈ E, where τ−a f (x) = f (x + a) , for all
x ∈ E, whenever the translation τ−a is well defined. This means that, in these
cases, commutativity with the directional derivatives is equivalent to commuta-
tivity with translations.

Proposition 2.10. (a) For k ∈ [1,+∞) , if f ∈ Expk
Ñ,(s;(r,q))

(E) and a ∈ E, then

τ−a f ∈ Expk
Ñ,(s;(r,q))

(E) and

τ−a f =
∞

∑
n=0

1

n!
d̂n f (·) a,

in the sense of the topology of Expk
Ñ,(s;(r,q))

(E) .

(b) For k ∈ [1,+∞] , if f ∈ Expk
Ñ,(s;(r,q)),0

(E) and a ∈ E, then τ−a f ∈ Expk
Ñ,(s;(r,q)),0

(E)

and

τ−a f =
∞

∑
n=0

1

n!
d̂n f (·) a,

in the sense of the topology of Expk
Ñ,(s;(r,q)),0

(E) .

Proof. The case (b), with k = +∞, was proved by Matos in [21, p. 175]. For
k ∈ [1,+∞), we suppose that

lim sup
j→∞

(
j

ke

) 1
k

∥∥∥∥∥
d̂j f (0)

j!

∥∥∥∥∥

1
j

Ñ,(s;(r,q))

= L < +∞. (5)

Then for all ε > 0 there is C (ε) > 0 such that

(
j

ke

) j
k

∥∥∥∥∥
d̂j f (0)

j!

∥∥∥∥∥
Ñ,(s;(r,q))

≤ C (ε) (L + ε)j , (6)

for all j ∈ N. Since d̂n (τ−a f ) (0) = d̂n f (a) , we have
∥∥∥d̂n (τ−a f ) (0)

∥∥∥
Ñ,(s;(r,q))

=
∥∥∥d̂n f (a)

∥∥∥
Ñ,(s;(r,q))

≤
∞

∑
j=0

1

j!

∥∥∥d̂n+j f (0)
∥∥∥

Ñ,(s;(r,q))
‖a‖ j

and
( n

ke

) n
k 1

n!

∥∥∥d̂n (τ−a f ) (0)
∥∥∥

Ñ,(s;(r,q))
≤

∞

∑
j=0

( n

ke

) n
k 1

n!j!

∥∥∥d̂n+j f (0)
∥∥∥

Ñ,(s;(r,q))
‖a‖ j

=
∞

∑
j=0

( n

ke

) n
k

(
ke

n + j

) n+j
k (n + j)!

n!j!

(
n + j

ke

) n+j
k 1

(n + j)!

∥∥∥d̂n+j f (0)
∥∥∥

Ñ,(s;(r,q))
‖a‖ j

≤
∞

∑
j=0

(
ke

j

) j
k

2n+j ‖a‖j

(
n + j

ke

) n+j
k 1

(n + j)!

∥∥∥d̂n+j f (0)
∥∥∥

Ñ,(s;(r,q))
.
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Since lim
j→∞

(
ke
j

) 1
k
= 0, for each ε > 0 there is D (ε) > 0 such that

(
ke

j

) 1
k

≤ D (ε) εj, (7)

for all j ∈ N. Considering ε > 0 such that 2ε ‖a‖ (L + ε) < 1 and using (6), we
obtain

( n

ke

) n
k 1

n!

∥∥∥d̂n (τ−a f ) (0)
∥∥∥

Ñ,(s;(r,q))
≤ C (ε) D (ε) 2n (L + ε)n

∞

∑
j=0

2jεj ‖a‖j (L + ε)j

= C (ε) D (ε) 2n (L + ε)n 1

1 − 2ε ‖a‖ (L + ε)
.

Hence

lim sup
n→∞

( n

ke

) 1
k

∥∥∥∥∥
d̂n (τ−a f ) (0)

n!

∥∥∥∥∥

1
n

Ñ,(s;(r,q))

≤ 2L < +∞. (8)

Thus if f ∈ Expk
Ñ,(s;(r,q))

(E) we have τ−a f ∈ Expk
Ñ,(s;(r,q))

(E) by (8), and if

f ∈ Expk
Ñ,(s;(r,q)),0

(E) we have (5) with L = 0 and τ−a f ∈ Expk
Ñ,(s;(r,q)),0

(E) by

(8).
In order to prove the convergence, let f ∈ Expk

Ñ,(s;(r,q))
(E) .

Then f ∈ Bk
Ñ,(s;(r,q)),L

(E) for some L > 0. Let ε > 0 such that 2ε ‖a‖ (L + ε) < 1.

Then for ρ > 2 (L + ε) we have
∥∥∥∥∥τ−a f −

v

∑
n=0

1

n!
d̂n f (·) a

∥∥∥∥∥
Ñ,(s;(r,q)),k,ρ

≤
∞

∑
j=0

ρ−j

(
j

ke

) j
k ∞

∑
n=v+1

1

j!n!

∥∥∥d̂j
(

d̂n f (·) a
)
(0)
∥∥∥

Ñ,(s;(r,q))

≤
∞

∑
j=0

ρ−j

(
j

ke

) j
k ∞

∑
n=v+1

1

j!n!

∥∥∥d̂n+j f (0)
∥∥∥

Ñ,(s;(r,q))
‖a‖n

≤
∞

∑
j=0

∞

∑
n=v+1

ρ−j

(
ke

n + j

) n
k

2n+j

(
n + j

ke

) n+j
k

∥∥∥∥∥
d̂n+j f (0)

(n + j)!

∥∥∥∥∥
Ñ,(s;(r,q))

‖a‖n

≤ C (ε) D (ε)
∞

∑
j=0

∞

∑
n=v+1

ρ−jεn (L + ε)n+j 2n+j ‖a‖n .

Here we used Proposition 2.7 and the inequalities used in first part of the proof.
By our choice of ε > 0 we get
∥∥∥∥∥τ−a f −

v

∑
n=0

1

n!
d̂n f (·) a

∥∥∥∥∥
Ñ,(s;(r,q)),ρ

≤ C (ε) D (ε)
∞

∑
j=0

ρ−j (L + ε)j 2j
∞

∑
n=v+1

εn (L + ε)n 2n ‖a‖n

= C (ε) D (ε)
1

1 − 2ρ−1 (L + ε)
·

εv+1 (L + ε)v+1 2v+1 ‖a‖v+1

1 − 2ε (L + ε) ‖a‖
.

Therefore

lim
v→∞

∥∥∥∥∥τ−a f −
v

∑
n=0

1

n!
d̂n f (·) a

∥∥∥∥∥
Ñ,(s;(r,q)),ρ

= 0.
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Now, if f ∈ Expk
Ñ,(s;(r,q)),0

(E) , then f ∈ Bk
Ñ,(s;(r,q)),L

(E) for all L > 0. Hence, if

for each δ > 0 we choose ε > 0 and L > 0 such that δ−2ε
2 > 0, L <

δ−2ε
2 and

2ε ‖a‖ (L + ε) < 1, then δ > 2(L + ε) and as before we obtain (with δ instead of ρ)

lim
v→∞

∥∥∥∥∥τ−a f −
v

∑
n=0

1

n!
d̂n f (·) a

∥∥∥∥∥
Ñ,(s;(r,q)),δ

= 0,

for all δ > 0. Again the convergence follows by the definition of the topologies.
Using Proposition 2.10 it is not difficult to show the next result.

Proposition 2.11. (a) For k ∈ [1,+∞) , if f ∈ Expk
Ñ,(s;(r,q))

(E) and a ∈ E, then

lim
λ→0

λ−1 (τ−λa f − f ) = d̂1 f (·) a,

in the sense of the topology of Expk
Ñ,(s;(r,q))

(E) .

(b) For k ∈ [1,+∞] , if f ∈ Expk
Ñ,(s;(r,q)),0

(E) and a ∈ E, then

lim
λ→0

λ−1 (τ−λa f − f ) = d̂1 f (·) a,

in the sense of the topology of Expk
Ñ,(s;(r,q)),0

(E) .

Theorem 2.12. (a) If k ∈ [1,+∞) and O is a continuous linear mapping from
Expk

Ñ,(s;(r,q))
(E) into itself, then O is a convolution operator if, and only if, O (τa f ) =

τa (O f ) for all a ∈ E and f ∈ Expk
Ñ,(s;(r,q))

(E) .

(b) If k ∈ [1,+∞] and O is a continuous linear mapping from Expk
Ñ,(s;(r,q)),0

(E) into

itself, then O is a convolution operator if, and only if, O (τa f ) = τa (O f ) for all a ∈ E
and f ∈ Expk

Ñ,(s;(r,q)),0
(E) .

Proof. We saw that O
(

d̂n f (·) a
)
= d̂n (O f ) (·) a for all n ∈ N and a ∈ E. By

this fact and Proposition 2.10 we have

O (τ−a f ) =
∞

∑
n=0

1

n!
O
(

d̂n f (·) (a)
)
=

∞

∑
n=0

1

n!
d̂n (O f ) (·) a = τ−a (O f ) ,

which implies O (τa f ) = τa (O f ) . Now, if we suppose that O is such that
O (τa f ) = τa (O f ) for all a ∈ E, it follows from Proposition 2.11 that

d̂1 (O f ) (·) a = lim
λ→0

λ−1 (τ−λa (O f )−O f ) = lim
λ→0

λ−1 (O (τ−λa f )−O f )

= lim
λ→0

O
(

λ−1 (τ−λa f − f )
)
= O

(
lim
λ→0

λ−1 (τ−λa f − f )

)
= O

(
d̂1 f (·) a

)
.

Hence O is a convolution operator.

Definition 2.13. For k ∈ [1,+∞) , T ∈
[

Expk
Ñ,(s;(r,q))

(E)
]′

and f ∈ Expk
Ñ,(s;(r,q))

(E) ,

we define the convolution product of T and f by (T ∗ f ) (x) = T (τ−x f ) , for all
x ∈ E.

For k ∈ [1,+∞] , T ∈
[

Expk
Ñ,(s;(r,q)),0

(E)
]′

and f ∈ Expk
Ñ,(s;(r,q)),0

(E) , we define

the convolution product of T and f by (T ∗ f ) (x) = T (τ−x f ) , for all x ∈ E.
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In order to prove that T∗ defines a convolution operator on Expk
Ñ,(s;(r,q))

(E) ,

for k ∈ [1,+∞) , and on Expk
Ñ,(s;(r,q)),0

(E) , for k ∈ [1,+∞] , we need two prelim-

inary results. Moreover, we are going to show that all the convolution operators
on these spaces are of the form T ∗ .

Proposition 2.14. Let k ∈ [1,+∞] and T ∈
[

Expk
Ñ,(s;(r,q)),0

(E)
]′

. Then, for every

P ∈ PÑ,(s;(r,q)) (
nE) with A ∈ LÑs,(s;(r,q)) (

nE) such that P = Â, the polynomial

T
(

Â·m
)

: E −→ C

y 7−→ T
(

A ·m yn−m
)

belongs to PÑ,(s;(r,q)) (
n−mE) for every m ≤ n and

∥∥∥T
(

Â·m
)∥∥∥

Ñ,(s;(r,q))
≤ Cρ−m

(m

ke

) m
k
‖P‖Ñ,(s;(r,q)) , if k ∈ [1,+∞) ,

∥∥∥T
(

Â·m
)∥∥∥

Ñ,(s;(r,q))
≤ Cρ−m ‖P‖Ñ,(s;(r,q)) , if k = +∞,

where C > 0 and ρ > 0 are such that

|T ( f )| ≤ C ‖ f‖Ñ,(s;(r,q)),k,ρ , if k ∈ [1,+∞) ,

|T ( f )| ≤ Cp∞
Ñ,(s;(r,q)),ρ

( f ) , if k = +∞,

for all f ∈ Expk
Ñ,(s;(r,q)),0

(E).

Proof. First we suppose that P ∈ PN,(s;(r,q)) (
nE). Then

P =
∞

∑
j=0

λj ϕ
n
j ,

where
(
λj

)∞

j=1
∈ ℓs (∈ c0, if s = ∞) and

(
ϕj

)∞

j=1
∈ ℓm(r′;q′) (E

′) . Furthermore,

T
(

Â·m
)
(y) = T

(
A ·m yn−m

)
= T

(
∞

∑
j=0

λj ϕj (·)
m ϕj (y)

n−m

)
=

∞

∑
j=0

λjT
(

ϕm
j

)
ϕj (y)

n−m ,

for all y ∈ E, and
∥∥∥∥
(

λjT
(

ϕm
j

))∞

j=1

∥∥∥∥
s

≤
∥∥∥
(
λj

)∞

j=1

∥∥∥
s

∥∥∥∥
(

T
(

ϕm
j

))∞

j=1

∥∥∥∥
∞

≤
∥∥∥
(
λj

)∞

j=1

∥∥∥
s

Cρ−m
(m

ke

) m
k
∥∥∥
(∥∥ϕj

∥∥)∞

j=1

∥∥∥
m

∞

≤
∥∥∥
(
λj

)∞

j=1

∥∥∥
s

Cρ−m
(m

ke

) m
k
∥∥∥
(

ϕj

)∞

j=1

∥∥∥
m

m(r′;q′)
.

if k ∈ [1,+∞) , and
∥∥∥∥
(

λjT
(

ϕm
j

))∞

j=1

∥∥∥∥
s

≤
∥∥∥
(
λj

)∞

j=1

∥∥∥
s

Cρ−m
∥∥∥
(

ϕj

)∞

j=1

∥∥∥
m

m(r′;q′)
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if k = +∞. Therefore T
(

Â·m
)
∈ PN,(s;(r,q)) (

n−mE) and

∥∥∥T
(

Â·m
)∥∥∥

N,(s;(r,q))
≤ Cρ−m

(m

ke

) m
k
∥∥∥
(
λj

)∞

j=1

∥∥∥
s

∥∥∥
(

ϕj

)∞

j=1

∥∥∥
n

m(r′;q′)
,

if k ∈ [1,+∞) , and
∥∥∥T
(

Â·m
)∥∥∥

N,(s;(r,q))
≤ Cρ−m

∥∥∥
(
λj

)∞

j=1

∥∥∥
s

∥∥∥
(

ϕj

)∞

j=1

∥∥∥
n

m(r′;q′)
,

if k = +∞. Thus,
∥∥∥T
(

Â·m
)∥∥∥

Ñ,(s;(r,q))
≤ Cρ−m

(m

ke

) m
k
‖P‖N,(s;(r,q)) ,

if k ∈ [1,+∞) , and
∥∥∥T
(

Â·m
)∥∥∥

Ñ,(s;(r,q))
≤ Cρ−m ‖P‖N,(s;(r,q)) ,

if k = +∞. Now, if U denotes the closed unit ball of (PN,(s;(r,q)) (
nE) , ‖·‖N,(s;(r,q))),

we can act as Matos [21, Chapter 8] to obtain
∥∥∥T
(

Â·m
)∥∥∥

Ñ,(s;(r,q))
≤ Cρ−m

(m

ke

) m
k

,

if k ∈ [1,+∞) , and ∥∥∥T
(

Â·m
)∥∥∥

Ñ,(s;(r,q))
≤ Cρ−m,

if k = +∞, first by considering P in the absolutely convex hull V of U and then P
in the weak closure Uoo of V. From these inequalities, we get

∥∥∥T
(

Â·m
)∥∥∥

Ñ,(s;(r,q))
≤ Cρ−m

(m

ke

) m
k
‖P‖Ñ,(s;(r,q)) ,

if k ∈ [1,+∞) , and
∥∥∥T
(

Â·m
)∥∥∥

Ñ,(s;(r,q))
≤ Cρ−m ‖P‖Ñ,(s;(r,q)) ,

if k = +∞, for all P ∈ PN,(s;(r,q)) (
nE) . Now the result follows by completion.

Proposition 2.15. If k ∈ [1,+∞) and T ∈
[

Expk
Ñ,(s;(r,q))

(E)
]′

. Then, for every

P ∈ PÑ,(s;(r,q)) (
nE) with A ∈ LÑs,(s;(r,q)) (

nE) such that P = Â, the polynomial

T
(

Â·m
)

: E −→ C

y 7−→ T
(

A ·m yn−m
)

belongs to PÑ,(s;(r,q)) (
n−mE) , for every m ≤ n and

∥∥∥T
(

Â·m
)∥∥∥

Ñ,(s;(r,q))
≤ C (ρ) ρ−m

(m

ke

) m
k
‖P‖Ñ,(s;(r,q)) ,

where the constant C (ρ) > 0, ρ > 0, is such that

|T ( f )| ≤ C (ρ) ‖ f‖Ñ,(s;(r,q)),k,ρ ,

for all f ∈ Expk
Ñ,(s;(r,q))

(E).



548 V. V. Fávaro

Proof. It is similar to the proof of Proposition 2.14.

Theorem 2.16. (a) If k ∈ [1,+∞] , T ∈
[

Expk
Ñ,(s;(r,q)),0

(E)
]′

and f ∈ Expk
Ñ,(s;(r,q)),0

(E) ,

then T ∗ f ∈ Expk
Ñ,(s;(r,q)),0

(E) and T∗ ∈ Ak
Ñ,(s;(r,q)),0

.

(b) If k ∈ [1,+∞) , T ∈
[

Expk
Ñ,(s;(r,q))

(E)
]′

and f ∈ Expk
Ñ,(s;(r,q))

(E) , then T ∗ f ∈

Expk
Ñ,(s;(r,q))

(E) and T∗ ∈ Ak
Ñ,(s;(r,q))

.

Proof. The linearity of T∗ is clear. By Propositions 2.7 and 2.10 we have in
either case that

(T ∗ f ) (x) = T (τ−x f ) =
∞

∑
n=0

1

n!
T
(

d̂n f (·) (x)
)
=

∞

∑
n=0

1

n!

∞

∑
j=0

1

j!
T

(
(
(
(h

h
h

dj+n f (0) ·j (x)

)
.

(a) By Proposition 2.14 we have that T

(
(
(
(h

h
h

dj+n f (0) ·j

)
∈ PÑ,(s;(r,q)) (

nE) and

∥∥∥∥∥T

(
(
(
(h

h
h

dj+n f (0) ·j
)∥∥∥∥∥

Ñ,(s;(r,q))

≤ Cρ−j

(
j

ke

) j
k ∥∥∥d̂j+n f (0)

∥∥∥
Ñ,(s;(r,q))

,

for k ∈ [1,+∞) , and
∥∥∥∥∥T

(
(
(
(h

h
h

dj+n f (0) ·j
)∥∥∥∥∥

Ñ,(s;(r,q))

≤ Cρ−j
∥∥∥d̂j+n f (0)

∥∥∥
Ñ,(s;(r,q))

,

for k = +∞, where C and ρ are as in 2.14. If k ∈ [1,+∞) and 0 < ρ′ < ρ, then

∞

∑
j=0

1

j!

∥∥∥∥∥T

(
(
(
(h

h
h

dj+n f (0) ·j
)∥∥∥∥∥

Ñ,(s;(r,q))

≤ C
∞

∑
j=0

1

j!

(
ρ′
)−j
(

j

ke

) j
k ∥∥∥d̂j+n f (0)

∥∥∥
Ñ,(s;(r,q))

≤
(
ρ′
)n

Cn!

(
ke

n

) n
k ∞

∑
j=0

2j+n
(
ρ′
)−(j+n)

(
j + n

ke

) j+n
k

∥∥∥∥∥
d̂j+n f (0)

(j + n)!

∥∥∥∥∥
Ñ,(s;(r,q))

≤
(
ρ′
)n

Cn!

(
ke

n

) n
k

‖ f‖
Ñ,(s;(r,q)),k,

ρ′

2

,

and this implies

Pn =
∞

∑
j=0

1

j!
T

(
(
(
(h

h
h

dj+n f (0) ·j
)

∈ PÑ,(s;(r,q)) (
nE) ,

for each n ∈ N and

‖Pn‖Ñ,(s;(r,q)) ≤
(
ρ′
)n

Cn!

(
ke

n

) n
k

‖ f‖
Ñ,(s;(r,q)),k,

ρ′

2

.

Hence

lim sup
n→∞

( n

ke

) 1
k

∥∥∥∥
Pn

n!

∥∥∥∥
1
n

Ñ,(s;(r,q))

≤ lim sup
n→∞

C
1
n ρ′ ‖ f‖

1
n

Ñ,(s;(r,q)),k,
ρ′

2

= ρ′,
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for all 0 < ρ′ < ρ. Thus T ∗ f ∈ Expk
Ñ,(s;(r,q)),0

(E) . If ρ1 > 0, for 0 < ρ′ < ρ and

ρ′ < ρ1, we have

‖T ∗ f‖Ñ,(s;(r,q)),k,ρ1
=

∞

∑
n=0

1

n!

( n

ke

) 1
k

ρ−n
1 ‖Pn‖Ñ,(s;(r,q))

≤ C ‖ f‖
Ñ,(s;(r,q)),k,

ρ′

2

∞

∑
n=0

(
ρ′

ρ1

)n

= C

(
1 −

ρ′

ρ1

)−1

‖ f‖
Ñ,(s;(r,q)),k,

ρ′

2

.

Therefore T∗ is continuous. The case k = +∞ is done in the same way with

simpler calculations, since the terms
(

n
ke

) n
k , n ∈ N, do not appear.

(b) By Proposition 2.15 we obtain that for every ρ > 0, there is C (ρ) > 0 such that

∞

∑
j=0

1

j!

∥∥∥∥∥T

(
(
(
(h

h
h

dj+n f (0) ·j
)∥∥∥∥∥

Ñ,(s;(r,q))

≤ C (ρ)
∞

∑
j=0

1

j!
ρ−j

(
j

ke

) j
k ∥∥∥d̂j+n f (0)

∥∥∥
Ñ,(s;(r,q))

= ρnC (ρ) n!
∞

∑
j=0

(j + n)!

j!n!

(
j

j + n

) j
k
(

ke

j + n

) n
k
(

j + n

ke

) j+n
k

ρ−(j+n)

∥∥∥∥∥
d̂j+n f (0)

(j + n)!

∥∥∥∥∥
Ñ,(s;(r,q))

.

(9)

Since

lim sup
j→∞

(
j + n

n

) 1
j+n

= lim sup
j→∞

(
1

n!

) 1
j+n

(j + n)
1

j+n . . . (j + 1)
1

j+n = 1,

it follows that for every ε > 0 there is D (ε) > 0 such that

(
j + n

n

)
≤ D (ε) (1 + ε)j+n ,

for all j ∈ N. Hence

∞

∑
j=0

1

j!

∥∥∥∥∥T

(
(
(
(h

h
h

dj+n f (0) ·j
)∥∥∥∥∥

Ñ,(s;(r,q))

≤ C (ρ) D (ε) ρnn!

(
ke

n

) n
k

‖ f‖Ñ,(s;(r,q)),k,
ρ

1+ε

and

‖Pn‖Ñ,(s;(r,q)) ≤ C (ρ) D (ε) ρnn!

(
ke

n

) n
k

‖ f‖Ñ,(s;(r,q)),k,
ρ

1+ε
,

for all ρ > 0 and ε > 0, where

Pn =
∞

∑
j=0

1

j!
T

(
(
(
(h

h
h

dj+n f (0) ·j
)

.

Consequently

lim sup
n→∞

( n

ke

) 1
k

∥∥∥∥
Pn

n!

∥∥∥∥
1
n

Ñ,(s;(r,q))

≤ lim sup
n→∞

(C (ρ))
1
n ρ ‖ f‖

1
n

Ñ,(s;(r,q)),k,
ρ

1+ε

= ρ,
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if ρ and ε are chosen so that ‖ f‖Ñ,(s;(r,q)),k,
ρ

1+ε
< +∞. Hence T ∗ f ∈ Expk

Ñ,(s;(r,q))
(E) .

For ρ1 > 0, we get

‖T ∗ f‖Ñ,(s;(r,q)),k,ρ1
=

∞

∑
n=0

1

n!

( n

ke

) 1
k

ρ−n
1 ‖Pn‖Ñ,(s;(r,q))

≤
∞

∑
n=0

C (ρ) D (ε) ρnn!

(
ke

n

) n
k 1

n!

( n

ke

) n
k

ρ−n
1 ‖ f‖Ñ,(s;(r,q)),k,

ρ
1+ε

= C (ρ) D (ε)
∞

∑
n=0

(
ρ

ρ1

)n

‖ f‖Ñ,(s;(r,q)),k,
ρ

1+ε
= C (ρ) D (ε)

(
1 −

ρ

ρ1

)−1

‖ f‖Ñ,(s;(r,q)),k,
ρ

1+ε
,

(10)

if ρ and ε are chosen so that ‖ f‖Ñ,(s;(r,q)),k,
ρ

1+ε
< +∞. This gives the continuity of

T ∗ . The fact that T∗ commutes with translations is clear.

Definition 2.17. (a) For k ∈ [1,+∞] , we define

γk
Ñ,(s;(r,q)),0

: Ak
Ñ,(s;(r,q)),0

−→
[

Expk
Ñ,(s;(r,q)),0

(E)
]′

by γk
Ñ,(s;(r,q)),0

(O) ( f ) = (O f ) (0) , for f ∈ Expk
Ñ,(s;(r,q)),0

(E) and O ∈ Ak
Ñ,(s;(r,q)),0

.

(b) For k ∈ [1,+∞) , we define

γk
Ñ,(s;(r,q))

: Ak
Ñ,(s;(r,q))

−→
[

Expk
Ñ,(s;(r,q))

(E)
]′

by γk
Ñ,(s;(r,q))

(O) ( f ) = (O f ) (0) , for f ∈ Expk
Ñ,(s;(r,q))

(E) and O ∈ Ak
Ñ,(s;(r,q))

.

Theorem 2.18. The mappings γk
Ñ,(s;(r,q)),0

(for k ∈ [1,+∞]) and γk
Ñ,(s;(r,q))

(for k ∈

[1,+∞)) are linear bijections.

Proof. It is enough to notice that the mappings

Γk
Ñ,(s;(r,q)),0

:
[

Expk
Ñ,(s;(r,q)),0 (E)

]′
−→ Ak

Ñ,(s;(r,q)),0

given by Γk
Ñ,(s;(r,q)),0

(T) ( f ) = T ∗ f , for T ∈
[

Expk
Ñ,(s;(r,q)),0

(E)
]′

,

f ∈ Expk
Ñ,(s;(r,q)),0

(E) and k ∈ [1,+∞] , and

Γk
Ñ,(s;(r,q))

:
[

Expk
Ñ,(s;(r,q))

(E)
]′

−→ Ak
Ñ,(s;(r,q))

given by Γk
Ñ,(s;(r,q))

(T) ( f ) = T ∗ f , for T ∈
[

Expk
Ñ,(s;(r,q))

(E)
]′

,

f ∈ Expk
Ñ,(s;(r,q))

(E) and k ∈ [1,+∞) , are the inverse mappings of γk
Ñ,(s;(r,q)),0

and γk
Ñ,(s;(r,q))

, respectively.

Definition 2.19. For k ∈ [1,+∞] and T1, T2 ∈
[

Expk
Ñ,(s;(r,q)),0

(E)
]′

we define the

convolution product T1 ∗ T2 ∈
[

Expk
Ñ,(s;(r,q)),0

(E)
]′

by

T1 ∗ T2 = γk
Ñ,(s;(r,q)),0

(O1 ◦ O2) ∈
[

Expk
Ñ,(s;(r,q)),0

(E)
]′

,
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where O1 = T1∗ and O2 = T2 ∗ .

For k ∈ [1,+∞) and T1, T2 ∈
[

Expk
Ñ,(s;(r,q))

(E)
]′

we define the convolution product

T1 ∗ T2 ∈
[

Expk
Ñ,(s;(r,q))

(E)
]′

by

T1 ∗ T2 = γk
Ñ,(s;(r,q))

(O1 ◦ O2) ∈
[

Expk
Ñ,(s;(r,q))

(E)
]′

,

where O1 = T1∗ and O2 = T2 ∗ .

It is easy to see that γk
Ñ,(s;(r,q)),0

and γk
Ñ,(s;(r,q))

preserve these products, that is,

γk
Ñ,(s;(r,q)),0

(O1 ◦ O2) =
(

γk
Ñ,(s;(r,q)),0

O1

)
∗
(

γk
Ñ,(s;(r,q)),0

O2

)
and

γk
Ñ,(s;(r,q))

(O1 ◦ O2) =
(

γk
Ñ,(s;(r,q))

O1

)
∗
(

γk
Ñ,(s;(r,q))

O2

)
, and δ ( f ) = f (0) is a

unit element.

Proposition 2.20. The spaces
[

Expk
Ñ,(s;(r,q)),0

(E)
]′

and
[

Expk
Ñ,(s;(r,q))

(E)
]′

are alge-

bras with unit element δ.

Proposition 2.21. (a) For k ∈ [1,+∞] , the Fourier-Borel transform F is an algebra

isomorphism between
[

Expk
Ñ,(s;(r,q)),0

(E)
]′

and Expk′

(s′,m(r′;q′)) (E
′) .

(b) For k ∈ [1,+∞) , the Fourier-Borel transform F is an algebra isomorphism between[
Expk

Ñ,(s;(r,q))
(E)
]′

and Expk′

(s′,m(r′;q′)),0 (E
′) .

Proof. It was proved in [11] that F is an algebraic isomorphism between these
spaces. Since it is easy to show that F (T1 ∗ T2) = (FT1) (FT2) , in both cases, the
result follows.

Remark 2.22. It is not difficult to prove that the following inclusions are continu-
ous for k ∈ [1,+∞] and 0 < A < B < +∞ :

Expk
(s,m(r;q)),0 (E) ⊂ Expk

(s,m(r;q)),A (E) ⊂ Expk
(s,m(r;q)),0,A (E)

⊂ Expk
(s,m(r;q)),B (E) ⊂ Expk

(s,m(r;q)) (E)

and

Expk
Ñ,(s;(r,q)),0 (E) ⊂ Expk

Ñ,(s;(r,q)),A (E) ⊂ Expk
Ñ,(s;(r,q)),0,A (E)

⊂ Expk
Ñ,(s;(r,q)),B

(E) ⊂ Expk
Ñ,(s;(r,q))

(E) .

Thus if T ∈
[

Expk
Ñ,(s;(r,q))

(E)
]′

, then T ∈
[

Expk
Ñ,(s;(r,q)),A

(E)
]′

and

T ∈
[

Expk
Ñ,(s;(r,q)),0,B

(E)
]′

, for every A ∈ (0,+∞] and B ∈ [0,+∞) (we are con-

sidering the restriction of T to the corresponding space). Hence, if

T ∈
[

Exp∞
Ñ,(s;(r,q))

(E)
]′

we may consider T ∗ P ∈
[

Exp∞
Ñ,(s;(r,q)),0

(E)
]′

for every

P ∈ PÑ,(s;(r,q)) (
nE) (see Theorem 2.16 (a))
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Definition 2.23. The functional T ∈
[

Expk
Ñ,(s;(r,q)),A

(E)
]′

, with A ∈ (0,+∞] and

k ∈ [1,+∞] , is said to be of type zero if it is also in
[

Expk
Ñ,(s;(r,q))

(E)
]′

or, equiva-

lently, if FT ∈ Expk′

(s′,m(r′;q′)),0 (E
′) .

The functional T ∈
[

Expk
Ñ,(s;(r,q)),0,B

(E)
]′

, with B ∈ [0,+∞) and k ∈ [1,+∞] ,

is said to be of type zero if it is also in
[

Expk
Ñ,(s;(r,q))

(E)
]′

or, equivalently, if

FT ∈ Expk′

(s′,m(r′;q′)),0
(E′) .

Proposition 2.24. If P ∈ PÑ,(s;(r,q)) (
nE) and T ∈

[
Exp∞

Ñ,(s;(r,q))
(E)
]′

, then for every

ε > 0 and ρ > 0, with ρ > ε, there is a constant C (ρ, ε) ≥ 0, independent of n, such
that

p∞
Ñ,(s;(r,q)),ρ (T ∗ P) ≤ C (ρ, ε) (ρ − ε)−n ‖P‖Ñ,(s;(r,q)) .

Proof. First we consider P = ϕn, with ϕ ∈ E′. Thus we have

T ∗ P =
n

∑
j=0

(
n

j

)
T
(

ϕ (·)n−j
)

ϕj

and

p∞
Ñ,(s;(r,q)),ρ

(T ∗ P) =
n

∑
j=0

(
n

j

) ∣∣∣T
(

ϕ (·)n−j
)∣∣∣ ‖ϕ‖j ρ−j. (11)

Since T ∈
[

Exp∞
Ñ,(s;(r,q))

(E)
]′

, it follows that FT ∈ Exp1
(s′,m(r′;q′)),0 (E

′) and

lim sup
j→∞

∥∥∥d̂jFT (0)
∥∥∥

1
j

(s′,m(r′;q′))
= 0.

Since

sup
φ 6=0

∣∣T
(
φj
)∣∣

‖φ‖j
=
∥∥∥d̂jFT (0)

∥∥∥ ≤
∥∥∥d̂jFT (0)

∥∥∥
(s′,m(r′;q′))

,

for each δ > 0, there is α (δ) > 0 such that

∣∣T
(

ϕj
)∣∣

‖ϕ‖j
≤
∥∥∥d̂jFT (0)

∥∥∥
(s′,m(r′;q′))

≤ α (δ) δj,

for all j ∈ N, then ∣∣∣T
(

ϕj
)∣∣∣ ≤ α (δ) δj ‖ϕ‖j , (12)

for all j ∈ N. Now from (11) and (12) (using δ = ε) we get

p∞
Ñ,(s;(r,q)),ρ (T ∗ P) ≤

n

∑
j=0

(
n

j

)
α (ε) εn−j ‖ϕ‖n−j ‖ϕ‖j ρ−j

= α (ε) ‖ϕ‖n
n

∑
j=0

(
n

j

)
εn−jρ−j = α (ε) ‖ϕ‖n

(
ρ−1 + ε

)n
. (13)
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Let 0 < ε′ < min
(

ρ, ε
ρ(ρ−ε)

)
. Then ε′ < ρ, ε′ <

ε
ρ(ρ−ε)

and
(
ρ−1 + ε′

)n
<

(ρ − ε)−n . Therefore, from (13) (using δ = ε′) we get

p∞
Ñ,(s;(r,q)),ρ (T ∗ P) ≤ α

(
ε′
)
‖ϕ‖n

(
ρ−1 + ε′

)n
≤ α

(
ε′
)
(ρ − ε)−n ‖ϕ‖n ,

and since ε′ depends only on ρ and ε, we may write α (ε′) = C (ρ, ε) . Therefore
the result holds for P ∈ P f (

nE). Since P f (
nE) is dense in PÑ,(s;(r,q)) (

nE) , the

result holds true for P ∈ PÑ,(s;(r,q)) (
nE) .

Theorem 2.25. Let k ∈ [1,+∞] , T ∈
[

Expk
Ñ,(s;(r,q))

(E)
]′

and f in either

Expk
Ñ,(s;(r,q)),A

(E) or Expk
Ñ,(s;(r,q)),0,B

(E) , with A ∈ (0,+∞] and B ∈ [0,+∞). If

T ∗ f =
∞

∑
n=0

T ∗

(
1

n!
d̂n f (0)

)
,

then we get

T ∗ f ∈ Expk
Ñ,(s;(r,q)),A

(E) if f ∈ Expk
Ñ,(s;(r,q)),A

(E)

and
T ∗ f ∈ Expk

Ñ,(s;(r,q)),0,B
(E) if f ∈ Expk

Ñ,(s;(r,q)),0,B
(E) .

Moreover T∗ defines a convolution operator on Expk
Ñ,(s;(r,q)),A

(E) and

Expk
Ñ,(s;(r,q)),0,B

(E) , respectively.

Proof. First we suppose that k ∈ [1,+∞) . If f ∈ Expk
Ñ,(s;(r,q)),A

(E) , then

there is ρ < A such that ‖ f‖Ñ,(s;(r,q)),k,ρ < +∞ and by Remark 2.22 we have

f ∈ Expk
Ñ,(s;(r,q))

(E) . Let ε > 0 be such that ρ (1 + ε) < A and ρ (1 + ε) < ρ1 < A.

Then it follows as in (10) (see the proof of Theorem 2.16(b)) that

‖T ∗ f‖Ñ,(s;(r,q)),k,ρ1
≤ C (ρ (1 + ε)) D (ε)

(
1 −

ρ (1 + ε)

ρ1

)−1

‖ f‖
Ñ,(s;(r,q)),k,

ρ(1+ε)
1+ε

= C (ρ (1 + ε)) D (ε)

(
1 −

ρ (1 + ε)

ρ1

)−1

‖ f‖Ñ,(s;(r,q)),k,ρ < +∞. (14)

Then we get T ∗ f ∈ Expk
Ñ,(s;(r,q)),A

(E) .

If f ∈ Expk
Ñ,(s;(r,q)),0,B

(E) , then ‖ f‖Ñ,(s;(r,q)),k,ρ < +∞, for every ρ > B. For ρ > B,

let ε > 0 such that
ρ

(1+ε)2 > B, then ρ >
ρ

1+ε >
ρ

(1+ε)2 and we obtain

‖T ∗ f‖Ñ,(s;(r,q)),k,ρ ≤ C

(
ρ

1 + ε

)
D (ε)

(
1 −

ρ

ρ (1 + ε)

)−1

‖ f‖Ñ,(s;(r,q)),k,
ρ

(1+ε)2
< +∞ (15)

as before. Hence T ∗ f ∈ Expk
Ñ,(s;(r,q)),0,B

(E) .

Now we have to prove that T∗ is a convolution operator on Expk
Ñ,(s;(r,q)),A

(E)
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and Expk
Ñ,(s;(r,q)),0,B

(E) . The linearity is clear. For T∗ on Expk
Ñ,(s;(r,q)),A

(E) , from

the properties of the inductive limit topology it follows that T∗ is continuous if,
and only if, (T∗) ◦ iρ is continuous for all ρ ∈ (0, A) .

Let p : Expk
Ñ,(s;(r,q)),A

(E) −→ R be a continuous seminorm. Then there is α (ρ1) >

0 such that p ( f ) ≤ α (ρ1) ‖ f‖Ñ,(s;(r,q)),k,ρ1
for all f ∈ Bk

Ñ,(s;(r,q)),ρ1
(E) (ρ1 as in (14)).

Thus

p (T ∗ f ) ≤ α (ρ1) ‖T ∗ f‖Ñ,(s;(r,q)),k,ρ1
≤ α (ρ1)K (ρ, ρ1, ε) ‖ f‖Ñ,(s;(r,q)),k,ρ ,

for all f ∈ Bk
Ñ,(s;(r,q)),ρ

(E) ⊂ Bk
Ñ,(s;(r,q)),ρ1

(E) , where

K (ρ, ρ1, ε) = C (ρ (1 + ε)) D (ε)

(
1 −

ρ (1 + ε)

ρ1

)−1

.

Therefore T∗ is continuous.
On the other hand, let T∗ on Expk

Ñ,(s;(r,q)),0,B
(E) . Then the continuity of T∗ fol-

lows from (15), since the topology of Expk
Ñ,(s;(r,q)),0,B

(E) is defined by the family

‖·‖Ñ,(s;(r,q)),k,ρ , ρ > B.

Now, in any of the cases above it is possible to show that the mapping f 7−→
d1 f (·) x is continuous for any x ∈ E, and d1 (T ∗ P) (·) x = T ∗

(
d1P (·) x

)
for all

P ∈ PÑ,(s;(r,q)) (
nE) , n ∈ N. Thus these two facts imply that d1 (T ∗ f ) (·) x =

T ∗
(
d1 f (·) x

)
for all f ∈ Expk

Ñ,(s;(r,q)),A
(E) in the first case and for all f ∈

Expk
Ñ,(s;(r,q)),0,B

(E) in the second case.

Now we suppose that k = +∞. From Proposition 2.24 we get

∞

∑
n=0

p∞
Ñ,(s;(r,q)),ρ

(
T ∗

(
1

n!
d̂n f (0)

))
≤ C (ρ, ε)

∞

∑
n=0

(ρ − ε)−n

∥∥∥∥
1

n!
d̂n f (0)

∥∥∥∥
Ñ,(s;(r,q))

,

for each ε > 0 and ρ > ε. If f ∈ Exp∞
Ñ,(s;(r,q)),0,B

(E) , let ρ > B and ε > 0 be such

that ρ − ε > B. Thus,

∞

∑
n=0

p∞
Ñ,(s;(r,q)),ρ

(
T ∗

(
1

n!
d̂n f (0)

))
≤ C (ρ, ε) p∞

Ñ,(s;(r,q)),ρ−ε
( f ) < +∞,

and since for each ρ > B we have p∞
Ñ,(s;(r,q)),ρ

(T ∗ f ) < +∞, it follows that

T ∗ f =
∞

∑
n=0

T ∗

(
1

n!
d̂n f (0)

)

converges in the topology of Exp∞
Ñ,(s;(r,q)),0,B

(E) . The continuity of T∗ follows

from
p∞

Ñ,(s;(r,q)),ρ (T ∗ f ) ≤ C (ρ, ε) p∞
Ñ,(s;(r,q)),ρ−ε

( f )

and the linearity is obvious.

If f ∈ Exp∞
Ñ,(s;(r,q)),A

(E), then there is ρ < A such that f ∈ H∞
Ñ,(s;(r,q))

(
B 1

ρ
(0)

)
.
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Let ε > 0 be such that ρ + 2ε < A, then ρ + ε < A and

∞

∑
n=0

p∞
Ñ,(s;(r,q)),ρ+ε

(
T ∗

(
1

n!
d̂n f (0)

))
≤ C′ (ρ, ε)

∞

∑
n=0

ρ−n

∥∥∥∥
1

n!
d̂n f (0)

∥∥∥∥
Ñ,(s;(r,q))

= C′ (ρ, ε) p∞
Ñ,(s;(r,q)),ρ ( f ) < +∞.

By C′ (ρ, ε) we mean C (ρ + ε, ε). Therefore T ∗ f ∈ Exp∞
Ñ,(s;(r,q)),ρ+ε

(E) and this

implies that T ∗ f ∈ Exp∞
Ñ,(s;(r,q)),A

(E) .

Now we have to prove that T∗ is continuous. Let q : Exp∞
Ñ,(s;(r,q)),A

(E) −→ R be

a continuous seminorm. Then there is M > 0 such that

q (g) ≤ Mp∞
Ñ,(s;(r,q)),ρ+2ε

(g) for all g ∈ H∞
Ñ,(s;(r,q))

(
B 1

ρ+2ε
(0)
)

.

Consequently

q (T ∗ f ) ≤ Mp∞
Ñ,(s;(r,q)),ρ+2ε

(T ∗ f ) ≤ C′ (ρ, ε) Mp∞
Ñ,(s;(r,q)),ρ ( f ) ,

for every f ∈ H∞
Ñ,(s;(r,q))

(
B 1

ρ
(0)

)
⊂ H∞

Ñ,(s;(r,q))

(
B 1

ρ+2ε
(0)

)
. Thus T∗ is conti-

nuous. That T∗ commutes with the directional derivatives follows as in the case
k ∈ [1,+∞) .

Remark 2.26. The proofs of Theorems 2.16 and 2.25 correct the proof of the 1-
nuclear case of [18, Theorem 3.20] (note that [18, Proposition 3.17], which is used
in the proof of [18, Theorem 3.20], is false).

Definition 2.27. For O ∈ Ak
Ñ,(s;(r,q)),A

, k ∈ [1,+∞] and A ∈ (0,+∞] , we say that

O is of type zero if F
(

γk
Ñ,(s;(r,q)),A

O
)
∈ Expk′

(s′,m(r′;q′)),0
(E′) , where

(
γk

Ñ,(s;(r,q)),A
O
)

( f ) = O f (0) for all f ∈ Expk
Ñ,(s;(r,q)),A

(E) .

For O ∈ Ak
Ñ,(s;(r,q)),0,B

, k ∈ [1,+∞] and B ∈ [0,+∞) , we say that O is of type zero if

F
(

γk
Ñ,(s;(r,q)),0,B

O
)
∈ Expk′

(s′,m(r′;q′)),0
(E′) , where

(
γk

Ñ,(s;(r,q)),0,B
O
)
( f ) = O f (0)

for all f ∈ Expk
Ñ,(s;(r,q)),0,B

(E) .

Theorem 2.28. If k ∈ [1,+∞] and A ∈ (0,+∞] , then γk
Ñ,(s;(r,q)),A

is a linear bijection

between the space of convolution operators of type zero on Expk
Ñ,(s;(r,q)),A

(E) and the

space of continuous linear functionals of type zero on Expk
Ñ,(s;(r,q)),A

(E) .

If k ∈ [1,+∞] and B ∈ [0,+∞) , then γk
Ñ,(s;(r,q)),0,B

is a linear bijection between the

space of convolution operators of type zero on Expk
Ñ,(s;(r,q)),0,B

(E) and the space of con-

tinuous linear functionals of type zero on Expk
Ñ,(s;(r,q)),0,B

(E) .

Proof. We define
(

Γk
Ñ,(s;(r,q)),A

(T)
)
( f ) = T ∗ f for T ∈

[
Expk

Ñ,(s;(r,q)),A
(E)
]′

of type zero and f ∈ Expk
Ñ,(s;(r,q)),A

(E). Then T ∈
[

Expk
Ñ,(s;(r,q))

(E)
]′

and by
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Theorem 2.25 we have

γk
Ñ,(s;(r,q)),A

(
Γk

Ñ,(s;(r,q)),A
(T)
)
( f ) =

(
Γk

Ñ,(s;(r,q)),A
(T)
)
( f ) (0) = (T ∗ f ) (0)

=
∞

∑
n=0

(
T ∗

(
1

n!
d̂n f (0)

))
(0) =

∞

∑
n=0

T

(
1

n!
d̂n f (0)

)
= T ( f ) .

Hence γk
Ñ,(s;(r,q)),A

◦ Γk
Ñ,(s;(r,q)),A

is the identity mapping on the subspace of
[

Expk
Ñ,(s;(r,q)),A

(E)
]′

of all functionals of type zero.

On the other hand, if O is of type zero we get γk
Ñ,(s;(r,q)),A

(O) ∈
[

Expk
Ñ,(s;(r,q))

(E)
]′

and by Theorem 2.25 we have

Γk
Ñ,(s;(r,q)),A

(
γk

Ñ,(s;(r,q)),A
(O)

)
( f ) (x) =

((
γk

Ñ,(s;(r,q)),A
(O)

)
∗ f
)
(x)

=
∞

∑
n=0

((
γk

Ñ,(s;(r,q)),A
(O)

)
∗

(
1

n!
d̂n f (0)

))
(x) =

∞

∑
n=0

O

(
τ−x

(
1

n!
d̂n f (0)

))
(0)

=
∞

∑
n=0

τ−x

(
O

(
1

n!
d̂n f (0)

))
(0) =

∞

∑
n=0

O

(
1

n!
d̂n f (0)

)
(x) =

∞

∑
n=0

1

n!
d̂n (O f ) (0) (x) = O f (x) .

Hence Γk
Ñ,(s;(r,q)),A

◦ γk
Ñ,(s;(r,q)),A

is the identity mapping on the subspace of

Ak
Ñ,(s;(r,q)),A

of all operators of type zero.

Now, if we define
(

Γk
Ñ,(s;(r,q)),0,B

(T)
)
( f ) = T ∗ f for T ∈

[
Expk

Ñ,(s;(r,q)),0,B
(E)
]′

of

type zero and f ∈ Expk
Ñ,(s;(r,q)),0,B

(E) , then we prove that Γk
Ñ,(s;(r,q)),0,B

(T) is the

inverse of γk
Ñ,(s;(r,q)),0,B

by an argument similar to the one used in the first part.

Remark 2.29. (1) Since the elements of
[

Exp∞
Ñ,(s;(r,q))

(E)
]′

are of type zero, then

γ∞
Ñ,(s;(r,q))

is a linear bijection between
[

Exp∞
Ñ,(s;(r,q))

(E)
]′

and A∞
Ñ,(s;(r,q))

.

(2) For k ∈ [1,+∞] , B ∈ [0,+∞) and T1, T2 ∈
[

Expk
Ñ,(s;(r,q)),0,B

(E)
]′

, with T2 of

type zero, we may define T1 ∗ T2 ∈
[

Expk
Ñ,(s;(r,q)),0,B

(E)
]′

in the following way:

If f ∈ Expk
Ñ,(s;(r,q)),0,B

(E) , let

Pn =
n

∑
j=0

1

j!
d̂j f (0) ,

for each n ∈ N. By Remark 2.22 we have T1, T2 ∈
[

Expk
Ñ,(s;(r,q)),0

(E)
]′

and from

Definition 2.19 we have T1 ∗ T2 ∈
[

Expk
Ñ,(s;(r,q)),0

(E)
]′

. Thus we set

(T1 ∗ T2) ( f ) = lim
n→∞

(T1 ∗ T2) (Pn) = lim
n→∞

γk
Ñ,(s;(r,q)),0

((T1∗) ◦ (T2∗)) (Pn) =

= lim
n→∞

(T1 ∗ (T2 ∗ Pn)) (0) = lim
n→∞

T1 (T2 ∗ Pn) = T1

(
lim
n→∞

T2 ∗ Pn

)
= T1 (T2 ∗ f )



Convolution equations on spaces of quasi-nuclear functions 557

and the last equality is valid since Pn converges to f in Expk
Ñ,(s;(r,q))

(E) and

T2 ∈
[

Expk
Ñ,(s;(r,q))

(E)
]′

.

Moreover, from Theorem 2.25 we get T2 ∗ f ∈ Expk
Ñ,(s;(r,q)),0,B

(E) and T2∗ is a

convolution operator on Expk
Ñ,(s;(r,q)),0,B

(E) .

Since T1 ∈
[

Expk
Ñ,(s;(r,q)),0,B

(E)
]′

, we have that T1 ◦ (T2∗) is continuous on

Expk
Ñ,(s;(r,q)),0,B

(E). Hence T1 ∗ T2 is continuous on Expk
Ñ,(s;(r,q)),0,B

(E) and

F (T1 ∗ T2) = F (T1) F (T2) as in Proposition 2.21.

(3) As in (2) , if k ∈ [1,+∞] , A ∈ (0,+∞] and T1, T2 ∈
[

Expk
Ñ,(s;(r,q)),A

(E)
]′

, with

T2 of type zero, we define T1 ∗ T2 ( f ) = T1 (T2 ∗ f ) for all f ∈ Expk
Ñ,(s;(r,q)),A

(E)

and we obtain T1 ∗T2 ∈
[

Expk
Ñ,(s;(r,q)),A

(E)
]′

satisfying F (T1 ∗ T2) = F (T1) F (T2) .

Definition 2.30. The product ∗ defined in (2) and (3) is called the convolution prod-

uct of T1 and T2 on
[

Expk
Ñ,(s;(r,q)),0,B

(E)
]′

and
[

Expk
Ñ,(s;(r,q)),A

(E)
]′

, respectively.

3 Division Theorems

In order to prove division theorems we need the following two division re-
sults obtained by Matos [18]:

Proposition 3.1. For k ∈ [1,+∞) , f ∈ Expk
0,A (E) and g ∈ Expk

0,B (E) , with A, B ∈

[0,+∞) and g 6= 0, if f /g is entire on E, then f /g ∈ Expk
0,L (E) , where

L = inf
λ>0

(
(A (1 + λ))k + (B (1 + λ))k

((
1 + λ

λ

)2

− 1

))k−1

.

Proposition 3.2. Let f ∈ Exp∞
0,A (E) and g ∈ Exp∞

0,B (E) , with A ≥ B ≥ 0 and

g 6= 0. If f /g is holomorphic on BA−1 (0) ⊂ E, then f /g ∈ Exp∞
0,A (E) .

Remark 3.3. The spaces Expk
0,A (E) are the analogues of the spaces

Expk
(s,m(r;q)),0,A (E) with the usual norm of polynomials being replaced by the

norm (s, m (r; q)) . For further details, see [17, 18].

A technical result is also needed to prove a division theorem for
k ∈ [1,+∞) .

Lemma 3.4. For each ε > 0 there is a constant D (ε) > 0 such that

j

j − l

(
j

j − l

)j−l ( j

l

)l l! (j − l)!

j!
≤ D (ε) (1 + ε)l ,

for all j, l ∈ N, with 1 ≤ l ≤ j − 1.
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Proof. First of all, for each l ∈ N it is not difficult to see that the sequence(
aj

)
j>l

is increasing, where

aj =

(
j

j − l

)j−l ( j

l

)l l! (j − l)!

j!
.

Since

aj =
1

(
1 − l

j

)j
·

l!

ll
·

(j − l)l

j (j − 1) · · · (j − (l − 1))
,

lim
j→∞

(j − l)l

j (j − 1) · · · (j − (l − 1))
= lim

j→∞

(
1 − l

j

)l

1
(

1 − 1
j

)
· · ·
(

1 − (l−1)
j

) = 1

and

lim
j→∞

(
1 −

l

j

)j

= e−l,

we get

lim
j→∞

(
j

j − l

)j−l ( j

l

)l l! (j − l)!

j!
=

l!

ll
lim
j→∞

1
(

1 − l
j

)j
·

(j − l)l

j (j − 1) · · · (j − (l − 1))
=

l!

ll
el .

Hence (
j

j − l

)j−l ( j

l

)l l! (j − l)!

j!
≤

l!

ll
el ,

for all j > l, j ∈ N. Multiplying both sides by
j

j−l we get

j

j − l

(
j

j − l

)j−l ( j

l

)l l! (j − l)!

j!
≤

j

j − l
·

l!

ll
el .

Furthermore
j

j − l
≤ l + 1 ⇐⇒ j ≥ l + 1 ⇐⇒ j > l,

then we obtain

j

j − l

(
j

j − l

)j−l ( j

l

)l l! (j − l)!

j!
≤ (l + 1)

l!

ll
el . (16)

Now the two limits

lim
l→∞

(
l!

ll
el

) 1
l

= lim
l→∞

e (l!)
1
l

l
= 1

and
lim
l→∞

(l + 1)
1
l = 1

assure that

lim
l→∞

(
(l + 1)

l!

ll
el

) 1
l

= 1.

So there is D (ε) > 0 such that

(l + 1)
l!

ll
el ≤ D (ε) (1 + ε)l , (17)

for all l ∈ N. Now the result follows from (16) and (17).
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Theorem 3.5. Let k ∈ [1,+∞) , A, B ∈ [0,+∞) , f ∈ Expk
(s,m(r;q)),0,A (E) and

g ∈ Expk
(s,m(r;q)),0,B (E) , with g 6= 0.

If f /g is entire on E, then f /g ∈ Expk
(s,m(r;q)),0,(L+B) (E) , where

L = inf
λ>0

(
(A (1 + λ))k + (B (1 + λ))k

((
1 + λ

λ

)2

− 1

))k−1

.

Proof. Since ‖·‖ ≤ ‖·‖(s,m(r;q)) and P(s,m(r;q))

(
jE
)
⊂ P

(
jE
)

, we get

Expk
(s,m(r;q)),0,A (E) ⊂ Expk

0,A (E) and Expk
(s,m(r;q)),0,B (E) ⊂ Expk

0,B (E) . By Propo-

sition 3.1 we get h = f /g ∈ Expk
0,L (E) . Thus for each ε > 0, there is C (ε) > 0

such that
∥∥∥d̂jh (0)

∥∥∥ ≤ C (ε)

(
ke

j

) j
k

j! (L + ε)j ,

for all j ∈ N. Let (xm)
∞
m=1 ∈ ℓm(r;q) (E) with

∥∥(xm)
∞
m=1

∥∥
m(r;q)

≤ 1. Then ‖xm‖ ≤ 1

for all m ∈ N. So we have

∣∣∣d̂jh (0) (xm)
∣∣∣ ≤ C (ε)

(
ke

j

) j
k

j! (L + ε)j ,

for all j, m ∈ N. Suppose first that g (0) 6= 0. Since f = g · h, it follows by the
uniqueness of the power series of a holomorphic function around a point of its
domain that

d̂j f (0) (x)

j!
= g (0)

d̂jh (0) (x)

j!
+

j

∑
l=1

d̂l g (0) (x)

l!

d̂j−lh (0) (x)

(j − l)!
,

for all x ∈ E. Then

d̂jh (0) (xm) =
1

g (0)
d̂j f (0) (xm)−

j!

g (0)

j

∑
l=1

d̂l g (0) (xm)

l!

d̂j−lh (0) (xm)

(j − l)!

and
∣∣∣d̂jh (0) (xm)

∣∣∣ ≤ 1

|g (0)|

∣∣∣d̂j f (0) (xm)
∣∣∣+ |h (0)|

|g (0)|

∣∣∣d̂jg (0) (xm)
∣∣∣

+
C (ε)

|g (0)|

j−1

∑
l=1

(
j

l

)(
ke

j − l

) j−l
k

(j − l)! (L + ε)j−l
∣∣∣d̂l g (0) (xm)

∣∣∣ .

Thus
∥∥∥
(

d̂jh (0) (xm)
)∞

m=1

∥∥∥
s
≤

1

|g (0)|

∥∥∥
(

d̂j f (0) (xm)
)∞

m=1

∥∥∥
s
+

|h (0)|

|g (0)|

∥∥∥
(

d̂jg (0) (xm)
)∞

m=1

∥∥∥
s

+
C (ε)

|g (0)|

j−1

∑
l=1

(
j

l

)(
ke

j − l

) j−l
k

(j − l)! (L + ε)j−l
∥∥∥
(

d̂l g (0) (xm)
)∞

m=1

∥∥∥
s
.

By the definition of ‖·‖(s,m(r;q))(see Matos [21, pp. 97-98]), we have

∥∥∥
(

d̂n f (0) (xm)
)∞

m=1

∥∥∥
s
≤
∥∥∥d̂n f (0)

∥∥∥
(s,m(r;q))

(∥∥(xm)
∞
m=1

∥∥
m(r;q)

)n
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and ∥∥∥
(

d̂ng (0) (xm)
)∞

m=1

∥∥∥
s
≤
∥∥∥d̂ng (0)

∥∥∥
(s,m(r;q))

(∥∥(xm)
∞
m=1

∥∥
m(r;q)

)n
,

for all n ∈ N. Since
∥∥(xm)

∞
m=1

∥∥
m(r;q)

≤ 1, we get

∥∥∥
(

d̂jh (0) (xm)
)∞

m=1

∥∥∥
s
≤

1

|g (0)|

∥∥∥d̂j f (0)
∥∥∥
(s,m(r;q))

+
|h (0)|

|g (0)|

∥∥∥d̂jg (0)
∥∥∥
(s,m(r;q))

+
C (ε)

|g (0)|

j−1

∑
l=1

(
j

l

)(
ke

j − l

) j−l
k

(j − l)! (L + ε)j−l
∥∥∥d̂l g (0)

∥∥∥
(s,m(r;q))

.

and consequently we obtain

∥∥∥d̂jh (0)
∥∥∥
(s,m(r;q))

≤
1

|g (0)|

∥∥∥d̂j f (0)
∥∥∥
(s,m(r;q))

+
|h (0)|

|g (0)|

∥∥∥d̂jg (0)
∥∥∥
(s,m(r;q))

+
C (ε)

|g (0)|

j−1

∑
l=1

(
j

l

)(
ke

j − l

) j−l
k

(j − l)! (L + ε)j−l
∥∥∥d̂l g (0)

∥∥∥
(s,m(r;q))

.

Now since f ∈ Expk
(s,m(r;q)),0,A (E) and g ∈ Expk

(s,m(r;q)),0,B (E) we have that for

each ε > 0, there are α (ε) > 0 and β (ε) > 0 such that

∥∥∥d̂n f (0)
∥∥∥
(s,m(r;q))

≤ α (ε) n!

(
ke

n

) n
k

(A + ε)n

and ∥∥∥d̂ng (0)
∥∥∥
(s,m(r;q))

≤ β (ε) n!

(
ke

n

) n
k

(B + ε)n ,

for all n ∈ N. Therefore

∥∥∥d̂jh (0)
∥∥∥
(s,m(r;q))

≤
α (ε)

|g (0)|
j!

(
ke

j

) j
k

(A + ε)j +
|h (0)| β (ε)

|g (0)|
j!

(
ke

j

) j
k

(B + ε)j

+
C (ε) β (ε)

|g (0)|

j−1

∑
l=1

(
j

l

)(
ke

j − l

) j−l
k
(

ke

l

) l
k

l! (j − l)! (L + ε)j−l (B + ε)l .

Note that

(
j

ke

) j
k 1

j!

(
j

l

)(
ke

j − l

) j−l
k
(

ke

l

) l
k

l! (j − l)! =

(
j − 1

l

)
j

j − l

(
j

j − l

) j−l
k
(

j

l

) l
k l! (j − l)!

j!
.

Then

j−1

∑
l=1

(
j

l

)(
ke

j − l

) j−l
k
(

ke

l

) l
k

l! (j − l)! (L + ε)j−l (B + ε)l =

=

(
ke

j

) j
k

j!
j−1

∑
l=1

(
j − 1

l

)
j

j − l

(
j

j − l

) j−l
k
(

j

l

) l
k l! (j − l)!

j!
(L + ε)j−l (B + ε)l

≤

(
ke

j

) j
k

j!
j−1

∑
l=1

(
j − 1

l

)
j

j − l

(
j

j − l

)j−l ( j

l

)l l! (j − l)!

j!
(L + ε)j−l (B + ε)l ,
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and by Lemma 3.4 we obtain

j−1

∑
l=1

(
j

l

)(
ke

j − l

) j−l
k
(

ke

l

) l
k

l! (j − l)! (L + ε)j−l (B + ε)l

≤

(
ke

j

) j
k

j!D (ε)
j−1

∑
l=1

(
j − 1

l

)
(L + ε)j−l [(1 + ε) (B + ε)]l .

Hence

∥∥∥d̂jh (0)
∥∥∥
(s,m(r;q))

≤
α (ε)

|g (0)|
j!

(
ke

j

) j
k

(A + ε)j +
|h (0)| β (ε)

|g (0)|
j!

(
ke

j

) j
k

(B + ε)j

+
C (ε) β (ε) D (ε)

|g (0)|

(
ke

j

) j
k

j! [L + ε + (1 + ε) (B + ε)]j .

Since A ≤ L, it follows that

∥∥∥d̂jh (0)
∥∥∥
(s,m(r;q))

≤
α (ε)

|g (0)|
j!

(
ke

j

) j
k

(L + ε)j +
|h (0)| β (ε)

|g (0)|
j!

(
ke

j

) j
k

(B + ε)j

+
C (ε) β (ε) D (ε)

|g (0)|

(
ke

j

) j
k

j!
[
L + ε + B + ε + εB + ε2

]j

≤

(
α (ε)

|g (0)|
+

|h (0)| β (ε)

|g (0)|
+

C (ε) β (ε) D (ε)

|g (0)|

)
j!

(
ke

j

) j
k

(L + B + ε(2 + B + ε))j
.

Since ε > 0 was chosen arbitrarily we have

lim sup
j→∞

(
j

ke

) 1
k
∥∥∥∥

1

j!
d̂jh (0)

∥∥∥∥
1
j

(s,m(r;q))

≤ L + B.

Hence h ∈ Expk
(s,m(r;q)),0,(L+B)

(E) .

If g (0) = 0 we consider f0 (x) = f (x) + ψ (x) h (x) and g0 (x) = g (x) + ψ (x) for

all x ∈ E, where ψ ∈ Expk
(s,m(r;q)),0 (E) , ψ (0) 6= 0 and ψ is non constant. Then

f0 = g0h and g0 (0) 6= 0. By Remark 2.22 we get ψ ∈ Expk
(s,m(r;q)),0,B

(E) which

implies g0 ∈ Expk
(s,m(r;q)),0,B (E) . If f0 ∈ Expk

(s,m(r;q)),0,L (E) , we apply the result

we just proved and obtain h ∈ Expk
(s,m(r;q)),0,(L+B) (E) .

In order to prove that f0 ∈ Expk
(s,m(r;q)),0,L

(E) it is enough to show that

ψh ∈ Expk
(s,m(r;q)),0,L (E) . Since

d̂j (ψh) (0) (xm) = j!
j

∑
l=0

d̂lψ (0) (xm)

l!

d̂j−lh (0) (xm)

(j − l)!

=
j−1

∑
l=0

(
j

l

)
d̂lψ (0) (xm) d̂j−lh (0) (xm) + d̂jψ (0) (xm) h (0) ,

and h ∈ Expk
0,L (E) , we get

∣∣∣d̂j−lh (0) (xm)
∣∣∣ ≤ C (ε)

(
ke

j − l

) j−l
k

(j − l)! (L + ε)j−l ,
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if
∥∥(xm)

∞
m=1

∥∥
m(r;q)

≤ 1. Thus

∣∣∣d̂j (ψh) (0) (xm)
∣∣∣ ≤ |h (0)|

∣∣∣d̂jψ (0) (xm)
∣∣∣

+C (ε)
j−1

∑
l=0

(
j

l

) ∣∣∣d̂lψ (0) (xm)
∣∣∣
(

ke

j − l

) j−l
k

(j − l)! (L + ε)j−l .

Since ψ ∈ Expk
(s,m(r;q)),0

(E) , there is N (ε) > 0 such that

∥∥∥d̂jψ (0)
∥∥∥
(s,m(r;q))

≤ N (ε)

(
ke

j

) j
k

j!εj,

for all j ∈ N. Using the same arguments of the result we just proved, we get
∥∥∥d̂j (ψh) (0)

∥∥∥
(s,m(r;q))

≤

|h (0)|
∥∥∥d̂jψ (0)

∥∥∥
(s,m(r;q))

+ C (ε)
j−1

∑
l=0

(
j

l

)∥∥∥d̂lψ (0)
∥∥∥
(s,m(r;q))

(
ke

j − l

) j−l
k

(j − l)! (L + ε)j−l .

Since P(s,m(r;q))

(
0E
)
= C, we have that

∥∥∥d̂0ψ (0)
∥∥∥
(s,m(r;q))

= |ψ (0)| and

∥∥∥d̂j (ψh) (0)
∥∥∥
(s,m(r;q))

≤ |h (0)| N (ε)

(
ke

j

) j
k

j!εj + C (ε) |ψ (0)|

(
ke

j

) j
k

j! (L + ε)j +

+C (ε) N (ε)
j−1

∑
l=1

(
j

l

)(
ke

l

) l
k

l!

(
ke

j − l

) j−l
k

(j − l)!εl (L + ε)j−l .

From Lemma 3.4 and the previous arguments, we get

j−1

∑
l=1

(
j

l

)(
ke

j − l

) j−l
k
(

ke

l

) l
k

l! (j − l)! (L + ε)j−l
εl

≤

(
ke

j

) j
k

j!D (ε)
j−1

∑
l=1

(
j − 1

l

)
(L + ε)j−l [(1 + ε) ε]l .

Therefore

∥∥∥d̂j (ψh) (0)
∥∥∥
(s,m(r;q))

≤ C (ε) |ψ (0)|

(
ke

j

) j
k

j! (L + ε)j + |h (0)| N (ε)

(
ke

j

) j
k

j!εj

+C (ε) N (ε) D (ε)

(
ke

j

) j
k

j!
j−1

∑
l=1

(
j − 1

l

)
(L + ε)j−l [(1 + ε) ε]l

≤ C (ε) |ψ (0)|

(
ke

j

) j
k

j! (L + ε)j + |h (0)| N (ε)

(
ke

j

) j
k

j!εj

+C (ε) N (ε) D (ε)

(
ke

j

) j
k

j! (L + ε + (1 + ε) ε)j−1

≤

(
C (ε) |ψ (0)|+ |h (0)| N (ε) +

C (ε) N (ε) D (ε)

(L + ε + (1 + ε) ε)

)(
ke

j

) j
k

j! (L + ε + (1 + ε) ε)j .
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Since ε > 0 was chosen arbitrarily we have

lim sup
j→∞

(
j

ke

) 1
k
∥∥∥∥

1

j!
d̂j (ψh) (0)

∥∥∥∥
1
j

(s,m(r;q))

≤ L.

Hence ψh ∈ Expk
(s,m(r;q)),0,L (E) .

Remark 3.6. Note that if B = 0, then L = A and f /g ∈ Expk
(s,m(r;q)),0,A

(E) .

Example 3.7. Now we give some examples of ψ ∈ Expk
(s,m(r;q)),0

(E) , with ψ (0) 6=

0 and ψ non constant.
If k 6= 1, then ψ = eϕ with 0 6= ϕ ∈ E′, is such that eϕ ∈ Expk

(s,m(r;q)),0
(E) ,

eϕ(0) = 1 (see [11, Proposition 2.15]).
For k ∈ [1,+∞) , ψ (x) = 1 + P (x) with P ∈ P(s,m(r;q)) (

nE) for some 0 6= n ∈ N,

is such that ψ ∈ Expk
(s,m(r;q)),0 (E) , ψ (0) = 1 and ψ is non constant.

Theorem 3.8. Let f ∈ Exp∞
(s,m(r;q)),0,A (E) and g ∈ Exp∞

(s,m(r;q)),0,B (E) , with A ≥

B ≥ 0 and g 6= 0. If f /g is holomorphic on BA−1 (0) ⊂ E, then

f /g ∈ Exp∞
(s,m(r;q)),0,(A+B) (E) .

Proof. Since ‖·‖ ≤ ‖·‖(s,m(r;q)) and P(s,m(r;q))

(
jE
)
⊂ P

(
jE
)

for all j ∈ N, we

get f ∈ Exp∞
0,A (E) and g ∈ Exp∞

0,B (E) . By Proposition 3.2 we have h = f /g ∈
Exp∞

0,A (E), and for each ε > 0, there is C (ε) > 0 such that
∥∥∥d̂jh (0)

∥∥∥ ≤ C (ε) j! (A + ε)j ,

for all j ∈ N. Let (xm)
∞
m=1 ∈ ℓm(r;q) (E) with

∥∥(xm)
∞
m=1

∥∥
m(r;q)

≤ min
{

1, A−1
}

.

Then ‖xm‖ ≤ min
{

1, A−1
}

for all m ∈ N. Then
∣∣∣d̂jh (0) (xm)

∣∣∣ ≤ C (ε) j! (A + ε)j ,

for all j ∈ N. First we suppose that g (0) 6= 0. Thus

d̂j f (0) (x) = g (0) d̂jh (0) (x) + j!
j

∑
l=1

d̂l g (0) (x)

l!

d̂j−lh (0) (x)

(j − l)!
,

for all x ∈ BA−1 (0) and

∣∣∣d̂jh (0) (xm)
∣∣∣ ≤ 1

|g (0)|

∣∣∣d̂j f (0) (xm)
∣∣∣+ 1

|g (0)|

j

∑
l=1

(
j

l

) ∣∣∣d̂l g (0) (xm)
∣∣∣
∣∣∣d̂j−lh (0) (xm)

∣∣∣

≤
1

|g (0)|

∣∣∣d̂j f (0) (xm)
∣∣∣+ C (ε)

|g (0)|

j

∑
l=1

(
j

l

)
(j − l)! (A + ε)j−l

∣∣∣d̂l g (0) (xm)
∣∣∣ .

Therefore
∥∥∥d̂jh (0)

∥∥∥
(s,m(r;q))

≤
1

|g (0)|

∥∥∥d̂j f (0)
∥∥∥
(s,m(r;q))

+
C (ε)

|g (0)|

j

∑
l=1

(
j

l

)
(j − l)! (A + ε)j−l

∥∥∥d̂l g (0)
∥∥∥
(s,m(r;q))

,
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and since for each ε > 0 there is α (ε) > 0 and β (ε) > 0 such that
∥∥∥d̂j f (0)

∥∥∥
(s,m(r;q))

≤ α (ε) j! (A + ε)j

and ∥∥∥d̂l g (0)
∥∥∥
(s,m(r;q))

≤ β (ε) l! (B + ε)l ,

we get

∥∥∥d̂jh (0)
∥∥∥
(s,m(r;q))

≤
α (ε)

|g (0)|
j! (A + ε)j +

C (ε) β (ε)

|g (0)|

j

∑
l=1

(
j

l

)
l! (j − l)! (A + ε)j−l (B + ε)l

≤
α (ε)

|g (0)|
j! (A + ε)j +

C (ε) β (ε)

|g (0)|
j!

j

∑
l=1

(
j

l

)
(A + ε)j−l (B + ε)l

≤
α (ε)

|g (0)|
j! (A + ε)j +

C (ε) β (ε)

|g (0)|
j! (A + B + 2ε)j

≤

(
α (ε)

|g (0)|
+

C (ε) β (ε)

|g (0)|

)
j! (A + B + 2ε)j .

Since ε > 0 was chosen arbitrarily we have

lim sup
j→∞

∥∥∥∥
1

j!
d̂jh (0)

∥∥∥∥
1
j

(s,m(r;q))

≤ A + B,

and since B
(A+B)−1 (0) ⊂ BA−1 (0) it follows that h is holomorphic on B

(A+B)−1 (0) .

Hence h ∈ Exp∞
(s,m(r;q)),0,(A+B) (E) .

If g (0) = 0 we consider f0 (x) = f (x) + eϕ(x)h (x) and g0 (x) = g (x) + eϕ(x)

for all x ∈ E, where ϕ ∈ E′, ϕ 6= 0. Then f0 = g0h, g0 (0) 6= 0 and since
eϕ ∈ Exp∞

(s,m(r;q)),0,B (E) we get g0 ∈ Exp∞
(s,m(r;q)),0,B (E) . If f0 ∈ Exp∞

(s,m(r;q)),0,A (E)

we apply the result we just proved to obtain h ∈ Exp∞
(s,m(r;q)),0,(A+B) (E) .

In order to prove that f0 ∈ Exp∞
(s,m(r;q)),0,A (E) it is enough to show that

eϕh ∈ Exp∞
(s,m(r;q)),0,A (E) , but this follows analogously.

The proofs of the following three division theorems involving the Fourier-
Borel transform are similar to the proofs of Theorems 4.9, 4.10 and 4.11 obtained
by Matos [18]. Just use our results 3.5 and 3.8 where Matos uses his results 4.5
and 4.7.

Theorem 3.9. If k ∈ [1,+∞] and T1, T2 ∈
[

Expk
Ñ,(s;(r,q)),0

(E)
]′

are such that T2 6= 0

and T1 (P exp ϕ) = 0 whenever T2 ∗P exp ϕ = 0 with ϕ ∈ E′ and P ∈ PÑ,(s;(r,q)) (
nE) ,

n ∈ N, then FT1 is divisible by FT2 with the quotient being an element of

Expk′

(s′,m(r′;q′)) (E
′) .

Theorem 3.10. If k ∈ [1,+∞] and T1, T2 ∈
[

Expk
Ñ,(s;(r,q))

(E)
]′

are such that T2 6= 0

and T1 (P exp ϕ) = 0 whenever T2 ∗P exp ϕ = 0 with ϕ ∈ E′ and P ∈ PÑ,(s;(r,q)) (
nE) ,

n ∈ N, then FT1 is divisible by FT2 with the quotient being an element of

Expk′

(s′,m(r′;q′)),0 (E
′) .
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Theorem 3.11. (a) For k ∈ [1,+∞] and A ∈ (0,+∞) , if T1, T2 ∈
[

Expk
Ñ,(s;(r,q)),A

(E)
]′

are such that T2 is of type zero, T2 6= 0 and T1 (P exp ϕ) = 0 whenever T2 ∗P exp ϕ = 0,
with ϕ ∈ E′ and P ∈ PÑ,(s;(r,q)) (

nE) , n ∈ N, then FT1 is divisible by FT2 with the

quotient being an element of Expk′

(s′,m(r′;q′)),0,(θ(k)A)−1 (E
′) .

(b) For k ∈ [1,+∞] and B ∈ (0,+∞) , if T1, T2 ∈
[

Expk
Ñ,(s;(r,q)),0,B

(E)
]′

are such

that T2 is of type zero, T2 6= 0 and T1 (P exp ϕ) = 0 whenever T2 ∗ P exp ϕ = 0, with
ϕ ∈ E′ and P ∈ PÑ,(s;(r,q)) (

nE) , n ∈ N, then FT1 is divisible by FT2 with the quotient

being an element of Expk′

(s′,m(r′;q′)),(θ(k)B)−1 (E
′) .

4 Existence and Approximation Theorems for Convolution Equa-

tions

This section is devoted to results concerning approximation and existence
of solutions of convolution equations. The three next results are consequences
of Theorems 3.9, 3.10 and 3.11. It is enough to follow the arguments of Matos
[18, 5.1, 5.2, 5.3 and 5.4].

Theorem 4.1. (a) If k ∈ [1,+∞] and O ∈ Ak
Ñ,(s;(r,q)),0

, then the vector subspace of

Expk
Ñ,(s;(r,q)),0

(E) generated by the exponential polynomial solutions of the homogeneous

equation O =0 is dense in the closed subspace of all solutions of the homogeneous equa-

tion. That is, the vector subspace of Expk
Ñ,(s;(r,q)),0

(E) generated by

L =
{

P exp ϕ; P ∈ PÑ,(s;(r,q)) (
nE) , n ∈ N, ϕ ∈ E′,O (P exp ϕ) = 0

}

is dense in
kerO =

{
f ∈ Expk

Ñ,(s;(r,q)),0
(E) ;O f = 0

}
.

(b) If k ∈ [1,+∞] and O ∈ Ak
Ñ,(s;(r,q))

, then the vector subspace of Expk
Ñ,(s;(r,q))

(E)

generated by

L =
{

P exp ϕ; P ∈ PÑ,(s;(r,q)) (
nE) , n ∈ N, ϕ ∈ E′,O (P exp ϕ) = 0

}

is dense in
kerO =

{
f ∈ Expk

Ñ,(s;(r,q))
(E) ;O f = 0

}
.

Theorem 4.2. (a) If k ∈ [1,+∞] , A ∈ (0,+∞) and O ∈ Ak
Ñ,(s;(r,q)),0,A

is of type zero,

then the vector subspace of Expk
Ñ,(s;(r,q)),0,A

(E) generated by

L =
{

P exp ϕ; P ∈ PÑ,(s;(r,q)) (
nE) , n ∈ N, ϕ ∈ E′,O (P exp ϕ) = 0

}

is dense in
kerO =

{
f ∈ Expk

Ñ,(s;(r,q)),0,A
(E) ;O f = 0

}
.
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(b) If k ∈ [1,+∞] , B ∈ (0,+∞) and O ∈ Ak
Ñ,(s;(r,q)),B

is of type zero, then the vector

subspace of Expk
Ñ,(s;(r,q)),B

(E) generated by

L =
{

P exp ϕ; P ∈ PÑ,(s;(r,q)) (
nE) , n ∈ N, ϕ ∈ E′,O (P exp ϕ) = 0

}

is dense in
kerO =

{
f ∈ Expk

Ñ,(s;(r,q)),B
(E) ;O f = 0

}
.

Theorem 4.3. (a) For k ∈ [1,+∞] , if O ∈ Ak
Ñ,(s;(r,q)),0

, O 6=0, then its transpose

tO :
[

Expk
Ñ,(s;(r,q)),0

(E)
]′

−→
[

Expk
Ñ,(s;(r,q)),0

(E)
]′

is such that

(a.1) tO

([
Expk

Ñ,(s;(r,q)),0
(E)
]′)

is the orthogonal of kerO in
[

Expk
Ñ,(s;(r,q)),0

(E)
]′

.

(a.2) tO

([
Expk

Ñ,(s;(r,q)),0
(E)
]′)

is closed for the weak-star topology in
[

Expk
Ñ,(s;(r,q)),0

(E)
]′

defined by Expk
Ñ,(s;(r,q)),0

(E) .

(b) For k ∈ [1,+∞] and A ∈ (0,+∞) , if O ∈ Ak
Ñ,(s;(r,q)),0,A

is of type zero and O 6=0,

then its transpose tO :
[

Expk
Ñ,(s;(r,q)),0,A

(E)
]′

−→
[

Expk
Ñ,(s;(r,q)),0,A

(E)
]′

is such that

(b.1) tO

([
Expk

Ñ,(s;(r,q)),0,A
(E)
]′)

is the orthogonal of kerO in
[

Expk
Ñ,(s;(r,q)),0,A

(E)
]′

.

(b.2) tO

([
Expk

Ñ,(s;(r,q)),0,A
(E)
]′)

is closed for the weak-star topology in
[

Expk
Ñ,(s;(r,q)),0,A

(E)
]′

defined by Expk
Ñ,(s;(r,q)),0,A

(E) .

An analogous result is valid for O ∈ Ak
Ñ,(s;(r,q))

, O 6=0 and for O ∈

Ak
Ñ,(s;(r,q)),B

, O 6=0 of type zero, with B ∈ (0,+∞) .

The last result of this article is a theorem about existence of solution
of convolution equations. In order to prove this result we need the following
Dieudonné-Schwartz result (see [13, p. 308]).

Lemma 4.4. If E and F are Fréchet spaces and u : E −→ F is a linear continuous
mapping, then the following conditions are equivalent:
(a) u (E) = F;
(b) tu : F′ −→ E′ is injective and tu (F′) is closed for the weak-star topology of E′ defined
by E.

Theorem 4.5. (a) For k ∈ [1,+∞] , if O ∈ Ak
Ñ,(s;(r,q)),0

, O 6=0, then

O
(

Expk
Ñ,(s;(r,q)),0

(E)
)
= Expk

Ñ,(s;(r,q)),0
(E) .

(b) For k ∈ [1,+∞] and A ∈ (0,+∞) , if O ∈ Ak
Ñ,(s;(r,q)),0,A

is of type zero and O 6=0,

then O
(

Expk
Ñ,(s;(r,q)),0,A

(E)
)
= Expk

Ñ,(s;(r,q)),0,A
(E) .

Proof. By [11, Propositions 2.6 and 2.12], Expk
Ñ,(s;(r,q)),0

(E) and

Expk
Ñ,(s;(r,q)),0,A

(E) are Fréchet spaces. By Lemma 4.4(b) and by Theorem 4.3
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items (a.2) and (c.2), it is enough to show that tO is injective. Since O =T∗ for
some T in the domain of tO, then for all S in the domain of tO and f in the domain
of O we have

(
tOS

)
( f ) = S (O f ) = S (T ∗ f ) = (S ∗ T) ( f ) . Thus tOS = S ∗ T

and if tOS = 0, then S ∗ T = 0 and F (S ∗ T) = 0. Since O 6=0, it follows that
T 6= 0 and FT 6= 0 and since F (S ∗ T) = FS.FT, we get FS = 0. Hence S = 0 and
tO is injective.
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