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Abstract

In this paper we study analytic sets extending the graph of proper holo-
morphic mappings. As applications, we present some results on the local
holomorphic extension of proper holomorphic mappings between certain al-
gebraic domains in Cn, not necessarily bounded. Further supplementary re-
sults are obtained.

1 Introduction and results

The boundary regularity of proper holomorphic maps between smooth domains
in Cn is still an open problem in full generality. However, positive answers have
been obtained in many special cases. For domains in Cn with real-analytic smooth
boundaries, the recent progress is related to the geometric reflection principle
in Cn, based on the method of Segre varieties. For related results and without
mentioning the entire list, we refer the reader to [24], [15], [17] with references
included. Our first purpose in this paper is to prove a local holomorphic exten-
sion of proper holomorphic mappings under the assumption that the graph of the
mapping extends as an analytic set (see Definition 1). More precisely, we prove
the following

Theorem 1. Let D, D′ be arbitrary domains in Cn, n > 1, and f : D → D′ be a
proper holomorphic mapping. Let M ⊂ ∂D, M′ ⊂ ∂D′ be open pieces of the boundaries.
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Suppose that ∂D is smooth real-analytic and nondegenerate in an open neighborhood of
M̄ and ∂D′ is smooth real-algebraic and nondegenerate in an open neighborhood of M̄′.
If the cluster set cl f (p) of a point p ∈ M contains a point q ∈ M′ and the graph of f
extends as an analytic set to a neighborhood of (p, q) ∈ Cn × Cn (see Definition 1), then
f extends holomorphically to a neighborhood of p.

Note that we do not require pseudoconvexity of M or M′, and we do not
assume that cl f (M) ⊂ M′. Therefore, a priori cl f (p) may contain the point at
infinity or boundary points which do not lie in M′. Moreover, the following ex-
ample (appeared in [15]) shows that the extension of the graph of f as an analytic
set to a neighborhood of (p, q) does not imply in general that cl f (M) ⊂ M′ near
p.

Example 1. Let D = {(z1, z2) ∈ C2 : Re(z2)+ |z1|
2
< 0} and D′ = {(z′1, z′2) ∈ C2 :

Re(z′2) + |z′1|
2|z′2|

2
< 0}. The map f : (z1, z2) 7→ (z1/z2, z2) is a biholomorphism

from D to D′. The graph of f is contained in {(z1, z2, z′1, z′2) ∈ C2 × C2 : z′1z′2 −
z1 = 0, z′2 = z2}, then f extends as an analytic set to a neighborhood of (0, 0′).
But 0′ ∈ cl f (0) and ∞ ∈ cl f (0). Note that in this example the boundary of D′ is
degenerate (since it contains the complex line z′2 = 0).

Theorem 1 is already known if M and M′ are smooth, real-analytic hypersur-
faces of finite type and additionally cl f (M) ⊂ M′ (see Theorem 1.1 in [15]), or f
is continuous on D ∪ M (see [19]), or the graph of the mapping extends as a holo-
morphic correspondence (see [14]). The proof of all these results uses the method
of analytic continuation along Segre varieties.

As an application of Theorem 1, we prove the following

Corollary 1. Let D and D′ be smooth algebraic domains in Cn, n > 1, with nondegen-
erate boundaries and f : D → D′ be a proper holomorphic mapping.

a) If the cluster set cl f (p) of a point p ∈ ∂D contains a point q ∈ ∂D′, then f extends
holomorphically to a neighborhood of p and the set of holomorphic extendability of f is an
open dense subset of ∂D.

b) If either D or D′ has a global holomorphic peak function at infinity, then the set of
holomorphic extendability of f is an open dense subset of ∂D.

By a smooth algebraic domain D in Cn we mean a domain defined globally as
{z ∈ Cn : P(z, z̄) < 0}, where P is a real polynomial in Cn with dP 6= 0 on ∂D.
We say that its boundary is nondegenerate if {z ∈ C

n : P(z, z̄) = 0} contains no
complex-analytic set with positive dimension. Note that these domains are not
necessarily bounded. Recall that a function ϕ : D → C is a global holomorphic
peak function at infinity on D if ϕ is holomorphic in D, |ϕ(z)| < 1 for all z ∈ D
and ϕ(z) → 1 as |z| → ∞.

Remark 1. The existence of global holomorphic peak functions at infinity is
due to Bedford-Fornaess in the case of rigid polynomial domains in C2 (see [5]).
These functions exist also in the case of unbounded convex domains in Cn, which
does not contain complex affine lines. Indeed, if D is such a domain, there exist
H1, · · · , Hn linearly independent hyperplanes such that D̄ is on one side of each
of these hyperplanes. Up to a linear change of coordinates z̃ = (z̃1, · · · , z̃n), we
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may assume that Hj = {z̃ ∈ C
n : Rez̃j = 0} and D is contained in {z̃ ∈ C

n :
Rez̃1 < 0, · · · , Rez̃n < 0} (for details, see Proposition 3.5 in [6]). The image of
infinity by the associated Cayley transform is contained in the zero of the func-
tion ∏1≤j≤n(z̃j − 1). According to [26] (Theorem 6.1.2 page 132), this is the peak
set of a holomorphic function. This proves the existence of a global holomorphic
peak function at infinity on D. Recall that if Ω is a domain in C

n and E ⊂ ∂Ω is
a compact subset, we say that E is a peak set for a holomorphic function f if f is
holomorphic in Ω, continuous on Ω̄, | f (ξ)| < 1 for every ξ ∈ Ω̄\E and f (ξ) = 1
for every ξ ∈ E.

In Corollary 1, the function f is not assumed to possess any a priori regularity
near p. If D or D′ is pseudoconvex, then the holomorphic extendability of f
near p will be a consequence of [25] and [17]. If D is a rigid polynomial domain
in Cn (n > 1), namely, D = {(z1, ′z) ∈ C × Cn−1 : 2Re(z1) + P(′z) < 0}, we
can follow the proof of Coupet-Pinchuk [8], based on the construction of analytic
discs attached to the boundary, to prove the existence of a point p ∈ ∂D satisfying
cl f (p) ∩ ∂D′ 6= ∅ (see Lemma 1.3 in [8]). The proof of Corollary 1 shows the
existence of an algebraic set S∞ ⊂ ∂D such that f extends holomorphically to
a neighborhood of any point from ∂D\S∞ and for all t ∈ S∞, lim

z→t
| f (z)| = ∞.

Therefore, we get the following decomposition of the boundary ∂D = Sh ∪ S∞,
where Sh is the set of holomorphic extendability of the mapping f .

Next, we propose a local version of Corollary 1.

Corollary 2. Let D, D′ be arbitrary domains in Cn, n > 1, and M ⊂ ∂D, M′ ⊂ ∂D′ be
open pieces of the boundaries. Suppose that ∂D (resp. ∂D′) is smooth real-algebraic and
nondegenerate in an open neighborhood of M̄ (resp. M̄′). Let f : D → D′ be a proper
holomorphic map such that the cluster set cl f (M) ⊂ M′.

a) For n = 2, f extends across each point of M as a holomorphic map.

b) For n ≥ 2, suppose that there exist a point p ∈ M and a neighborhood U of p
such that f extends to a uniformly continuous mapping on a dense subset B of M ∩ U,
possibly with empty interior (see Definition 3). Then f extends across each point of M as
a holomorphic map.

Corollary 2 was proved in [24] for proper holomorphic maps between bounded
real-analytic domains in C

2. When f is continuous on M, this result is due to
Diederich-Pinchuk ([17]). The proof is based on the algebraicity of the mapping
with a careful study of cl f (M), which is the crucial point of the proof. The diffi-
culty is to show that cl f (M) 6⊆ M′

0, where M′
0 denotes the set of points of M′ with

degenerate Levi-form. Notice that there is no assumption on the cluster set of M′

under f−1.

If D = {ρ < 0} is a domain in Cn and c is a real number, we denote by ∂Dc

the set defined by {ρ = c}. Based on the algebraicity result and by analyzing the
order of vanishing of the Levi-determinant of the domain, we show the following
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Theorem 2. Let D = {P(z, z̄) < 0} and D′ = {Q(z′ , z̄′) < 0} be smooth algebraic
domains in Cn, n > 1, with nondegenerate boundaries. Suppose that either D or D′ has
a global holomorphic peak function at infinity. Suppose further that one of the following
conditions is satisfied :

(A) P is plurisubharmonic on D and ∂Dc is nondegenerate for all c < 0.

(B) Q is plurisubharmonic on D′ and ∂D′
c is nondegenerate for all c < 0.

Then there exists a finite number of irreducible complex-algebraic sets Â1, · · · , ÂN in C
n

of dimension n − 1 such that the branch locus Vf of any proper holomorphic mapping
f : D → D′ satisfies :

Vf ⊂
N
⋃

k=1

Âk.

For rigid polynomial domains, similar results were proved in [9] and [20].
The integer N is bounded by the degree of the polynomial P. The assumption
on the existence of a global holomorphic peak function at infinity on D or D′

assures that cl f (∂D)∩ ∂D′ is non-empty for any proper holomorphic mapping f :
D → D′, and this leads to prove the algebraicity of the mapping (see the proof of
Corollary 1, second part). The plurisubharmonicity of P and the nondegeneracy
of the sets ∂Dc (also the plurisubharmonicity Q and the nondegeneracy of ∂D′

c)
are important here to prove that the branch locus extends across the boundary of
the domain. We are not able to prove this fact without these assumptions. If D
is a bounded pseudoconvex smooth algebraic domain, then conditions (A) and
(B) can be dropped; since the branch locus cannot be relatively compact in the
domain. Moreover, the proof of Lemma 8 can be adapted in this case (in view
of the existence of bounded negative plurisubharmonic exhaustion functions, see
for example [13]) to prove that the branch locus extends across the boundary
of the domain. Finally, note that for smooth bounded domains, we can give a
nice description of the branch locus if the set of weakly pseudoconvex boundary
points admits a nice stratification, as it was observed in [3] in the real-analytic
case.

As examples of smooth algebraic domains in Cn (possibly unbounded) de-
fined by {P(z, z̄) < 0} and verifying the property : ∂Dc is nondegenerate for all
c ≤ 0, we propose :

1- D = {z ∈ Cn : P(z, z̄) + 1 < 0}, where P is a homogeneous polynomial such
that {P = −1} is nondegenerate. Set for example, P(z, z̄) = Re(z2

1) + |z2|
2, with

z = (z1, z2) ∈ C2.

2- D = {(z1, ′z) ∈ C × Cn−1 : Re(z1) + φ(′z, ¯′z, Imz1) < 0} (called semi-rigid
domain), where φ is a polynomial such that {Re(z1) + φ(′z, ¯′z, Imz1) = 0} is
nondegenerate .

The following example shows that the nondegeneracy of ∂D does not imply
in general the nondegeneracy of ∂Dc for all c < 0.

Example 2. Let D = {(z1, z2) ∈ C
2 : P(z1, z2) < 0}, where P(z1, z2) = 2Re(z2) +

|z1|
2|z2|

2 − 1. The set {P(z1, z2) = −1} contains the complex line z2 = 0 and the
boundary of D is nondegenerate; since D is strictly pseudoconvex.
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Remark 2. Note that any convex domain D in C
n, which does not contain com-

plex affine lines is biholomorphic to a bounded domain in Cn. Indeed, there exist
H1, · · · , Hn linearly independent hyperplanes such that D̄ is on one side of each
of these hyperplanes. Up to a linear change of coordinates z̃ = (z̃1, · · · , z̃n), we
can assume that Hj = {z̃ ∈ Cn : Rez̃j = 0} and D is contained in {z̃ ∈ Cn : Rez̃1 <

0, · · · , Rez̃n < 0}. Then the map

g : (z̃1, · · · , z̃n) 7→ (
z̃1 + 1

z̃1 − 1
, · · · ,

z̃n + 1

z̃n − 1
)

maps D biholomorphically onto a bounded domain Ω in Cn. Moreover, if in
addition, D is algebraic, then Ω is also algebraic. In this case, Theorem 2 can be
reformulated as follows

Theorem 2-bis. Let D be a convex smooth algebraic domain in Cn (possibly unbounded),
which does not contain complex affine lines and D′ be a smooth algebraic domain in Cn

with nondegenerate boundary. Then there exists a finite number of irreducible complex-
algebraic sets Â1, · · · , ÂN in Cn of dimension n− 1 such that the branch locus Vf of any
proper holomorphic mapping f : D → D′ satisfies :

Vf ⊂
N
⋃

k=1

Âk.

As a conclusion from the proof of Theorem 2, one has the following

Corollary 3. Let D = {P(z, z̄) < 0} be a simply connected, smooth algebraic domain
in Cn, n > 1, with nondegenerate boundary, where P is a plurisubharmonic polynomial
on D and f : D → D be a proper holomorphic self-mapping. Suppose that ∂Dc is
nondegenerate for all c < 0 and cl f (∂D) intersects the boundary of D. Then f is a
biholomorphism.

Corollary 3 generalizes Corollary 1 in [9] for semi-rigid polynomial domains
in Cn. It can be also observed as a generalization of the well known result of
Alexander [1], stating that any proper holomorphic self-map of the unit ball in
Cn is biholomorphic. A similar result was proved in [23] for bounded smooth
algebraic domains in Cn without the pseudoconvexity assumption.

Remark 3. Since any convex smooth algebraic domain D in C
n, which does not

contain complex affine lines is biholomorphic to a bounded smooth algebraic do-
main, then according to [23], any proper holomorphic self-mapping of D is a
biholomorphism.

Acknowledgements. The authors are very grateful for the referee’s comments
and suggestions which improves the paper greatly.
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2 Notations, definitions and preliminaries

Definition 1. ([15]) Let f : D → D′ be a holomorphic map between domains in Cn

and 0 ∈ ∂D, 0′ ∈ ∂D′ such that 0′ ∈ cl f (0). If U and U′ are small neighborhoods
of 0 and 0′, we say that the graph Γ f of f extends as an analytic set to U × U′ if there
exist an irreducible (closed) complex-analytic set A ⊂ U × U′ of pure dimension n and
a sequence aν → 0 in D ∩ U with neighborhoods Vν ∋ aν such that f (aν) → 0′ and
A ⊃ Γ f ∩ (Vν × U′) for all ν.

In Definition 1, note that A does not necessarily contain the whole graph of f
over D ∩ U (since f is not necessarily continuous at 0).
Now, we recall the definition of a holomorphic correspondence. Let D, D′ be
domains in Cn and A be a complex purely n-dimensional subvariety contained
in D × D′. We denote by π1 : A → D and π2 : A → D′ the natural projections.

When π1 is proper, (π2 ◦ π−1
1 )(z) is a non-empty finite subset of D′ for any z ∈ D

and one may therefore consider the multi-valued mapping f = π2 ◦ π−1
1 . Such a

map is called a holomorphic correspondence between D and D′; A is said to be
the graph of f . Since π1 is proper, in particular it is a branched analytic covering.
Then there exist an (n − 1)-dimensional complex-analytic subset Vf of the graph
of f and an integer m such that π1 is an m-sheeted covering map from the set

A\π−1
1 (π1(Vf )) onto D\π1(Vf ). Hence, f (z) = { f 1(z), · · · , f m(z)} for all z ∈

D\π1(Vf ) and the f j’s are distinct holomorphic functions in a neighborhood of
z ∈ D\π1(Vf ). The integer m is called the multiplicity of f and π1(Vf ) is its
branch locus. One says that f is irreducible if A is irreducible as an analytic set
and proper if both π1 and π2 are proper.

Definition 2. Let f : D → D′ be a holomorphic mapping between domains in Cn,
Γ f be the graph of f and zo be a point in ∂D. We say that f extends as a holomorphic
correspondence to a neighborhood U of zo if there exist an open set U′ ⊂ Cn and a closed
complex-analytic set A ⊂ U × U′ of pure dimension n, which may possibly be reducible,
such that,

i) Γ f ∩ {(D ∩ U)× D′} ⊂ A
ii) the natural projection π : A → U is proper.

We will write z = (z1, ′z) ∈ C × Cn−1 for a point z ∈ Cn. Let M be a smooth
real-analytic hypersurface that contains the origin. By ρ(z, z̄) we denote a real-
analytic defining function of M near 0. In a small neighborhood U of the origin,
the complexification ρ(z, w̄) of ρ is well-defined by means of a convergent power
series in U × U. For w ∈ U, the associated Segre variety is defined as

Qw = {z ∈ U : ρ(z, w̄) = 0}.

By the implicit function theorem, it is possible to choose neighborhoods
U1 ⊂⊂ U2 of the origin such that for any w ∈ U1, Qw is a closed, complex hyper-
surface in U2 and

Qw = {(z1, ′z) ∈ U2 : z1 = h(′z, w̄)}, (2.1)

where h(′z, w̄) is holomorphic in ′z and antiholomorphic in w. Following the ter-
minology of [16], U1 and U2 are usually called a standard pair of neighborhoods
of 0. It can be shown that Qw is independent of the choice of the defining function.



A Local extension of proper holomorphic maps 519

We denote by S = S(U) the set of Segre varieties {Qw, w ∈ U} and λ the so-called
Segre map defined by

λ : U → S
w 7→ Qw.

Let Iw := {z ∈ U : Qw = Qz} be the fiber of λ over Qw. For any w ∈ M, the set Iw

is a complex variety of M. If the hypersurface M is nondegenerate (it contains no
complex-analytic set with positive dimension), then for any w ∈ M there exists a
neighborhood Uw of w such that Iw ∩ Uw is finite. The set S admits the structure
of a complex-analytic variety of finite dimension such that the map λ is a finite
antiholomorphic branched covering. The set Iw contains at most as many points
as the sheet number of λ. We next list some important properties of Qw and Iw

(see e.g. [10] and [18]).

(a) z ∈ Qw ⇐⇒ w ∈ Qz.

(b) z ∈ Qz ⇐⇒ z ∈ M.

(c) Iw =
⋂

{Qz : z ∈ Qw}.

(d) The Segre map λ : w 7→ Qw is locally one-to one near strictly pseudocon-
vex points of M.

Let f : D → D′ be a proper holomorphic mapping between domains in Cn

with smooth real-analytic boundaries which extends as a holomorphic correspon-
dence F to a neighborhood of a point p ∈ ∂D. Assume that p = 0, f (p) = 0′ and
choose standard neighborhoods U2 ⊃⊃ U1 ∋ 0 and U′

2 ⊃⊃ U′
1 ∋ 0′. Then we

have the following invariance property for the Segre variety under F (see [16]) :

For all (w, w′) ∈ graph(F) ∩ (U1 × U′
1), F(Qw) ⊂ Q′

w′ . (2.2)

This means that any branch of F maps any point from Qw to Q′
w′ for any point

w′ ∈ F(w).

Definition 3. Under the hypothesis of Corollary 2, we say that f extends to a uniformly
continuous mapping on B ⊂ M ∩ U if for all ǫ > 0, there exists α > 0 such that for all
z ∈ D and w ∈ B,

|z − w| < α ⇒ | f (z) − f (w)| < ǫ.

Finally, recall that if f : D → Cn is a holomorphic mapping and z ∈ ∂D, then
the cluster set cl f (z) is defined as :

cl f (z) = {w ∈ Cn ∪ {∞} : lim
j→∞

f (zj) = w, for zj ∈ D and zj → z}.

3 Proof of theorem 1.

The proof consists of two steps : first, to show that the mapping extends as a holo-
morphic correspondence to a neighborhood of p by using the process of analytic
continuation along paths on the boundary and finally to apply the result of [14],
which shows that all extending correspondences are holomorphic mappings.
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3.1 Extension as a holomorphic correspondence.

Without loss of generality we assume that p = 0, q = 0′ and 0 is not in the en-
velope of holomorphy of D. Let U, U′ be neighborhoods of 0 and 0′ respectively,
and A ⊂ U × U′ be the irreducible, closed, complex-analytic set of dimension n
extending the graph Γ f of f in the sense of Definition 1. Let π1 : A → U be the co-

ordinate projection to the first component and let E = {z ∈ U : dim π−1
1 (z) ≥ 1}.

We denote by F : U\E → Cn the multiple-valued map corresponding to A; that
is,

F(w) = {w′ : (w, w′) ∈ A}.

We denote by SF its branch locus (i.e., for z ∈ U\E, z ∈ SF if the coordinate

projection π1 is not locally biholomorphic near π−1
1 (z)). The crucial point in the

proof is to show that π−1
1 (0) ∩ E = ∅ (i.e., π−1

1 (0) is discrete). We denote U− =
D ∩ U and U+ = U\D̄. We need the following observation.

Lemma 1. A∩ (U+ × U′) 6= ∅.

Proof. We follow the ideas of [19]. By contradiction assume that A∩ (U+ ×U′) =
∅. Let A be the irreducible component of A ∩ (U × U′) which contains Γ f ∩

(U− × U′). It follows that A 6⊂ (M ∩ U) × U′. Let L be a complex line in C
n

which contains 0 and is transverse to M such that Γ f ∩ {(U− ∩ L)×U′} 6= ∅. We

may choose U such that U− ∩ L is connected. Let Ã be the irreducible component
of A ∩ {(U ∩ L)× U′} containing Γ f ∩ {(U− ∩ L)× U′}. The analytic set Ã has

pure complex dimension 1 and it contains (0, 0′). Moreover, Ã 6⊂ (M ∩ U)× U′.
We consider two cases:

- If Ã ∩ {(M ∩ U) × U′} is discrete, then by the continuity principle we deduce
that (0, 0′) is in the envelope of holomorphy of U− × U′.

- If Ã∩{(M ∩U)×U′} is not discrete, then no open subset of Ã can be contained
in Ã∩{(M ∩U)×U′}. Now, the strong disc theorem shows that (0, 0′) is again in
the envelope of holomorphy of U− × U′. Hence, 0 is in the envelope of holomor-
phy of D. Indeed, if g ∈ O(U−), we may regard it as a function g̃ ∈ O(U− ×U′).
Then g̃ extends to a neighborhood of (0, 0′) and the uniqueness theorem shows
that the extension of g̃ is also independent of the variables z′ ∈ U′. Hence, g
extends holomorphically across 0. This is a contradiction; since 0 is not in the
envelope of holomorphy of D.

As a consequence of Lemma 1, we deduce the following result due to Diederich-
Pinchuk [15].

Lemma 2. There exists an open set Γ ⊂ M ∩ U such that

1) f extends holomorphically to a neighborhood of U− ∪ Γ, and the graph of f near any
point (z, f (z)), z ∈ Γ, is contained in A.

2) 0 ∈ Γ̄ and lim
z→0
z∈Γ

f (z) = 0′.

Proof. Let VF = {(z, z′) ∈ A : z ∈ SF}. Since the complex dimension of VF is at
most n − 1 (because A is irreducible and the projection π1 is locally biholomor-
phic in an open set of A), then A\VF is connected by paths. Without loss of gener-
ality we may assume that M∩U = ∂D∩U. Let (a, b) ∈ Γ f ∩ (A\VF)∩ (U− ×U′)
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and (a′ , b′) ∈ (A\VF)∩ (U+ × U′), and connect them by a path γ ⊂ A\VF. It fol-
lows that π1(γ) ∩ M 6= ∅. Let zo be the point where π1(γ) first intersects M.
Then f extends analytically along π1(γ) from a to zo and the graph of f over this
part of π1(γ) is contained in A\VF. It follows that zo is a point of holomorphic
extendability for f . The second part follows from the fact that U and U′ may be
chosen arbitrarily small.

The proof of Theorem 1 uses some ideas of Shafikov developed in [22] to study
the analytic continuation of holomorphic correspondences and equivalence of do-
mains.

Lemma 3. There exists a holomorphic change of variables such that in the new coordi-
nates Q0 6⊂ E.

Proof. The ideas of the proof were given in [22]. Assume that Q0 ⊂ E. From
Proposition 4.1 of [21] there exists a point t ∈ Γ\E such that Q0 ∩ Qt 6= ∅ (Γ is
the set defined in Lemma 2). Let h : Ũ → Cn be the germ of the mapping f
defined in a neighborhood Ũ of t. We shrink Ũ and choose V in such a way that
for any w ∈ V, the set Qw ∩ Ũ is connected. Observe that if V is small enough
then Qw ∩ Ũ 6= ∅ for any w ∈ V, as w ∈ Qt implies t ∈ Qw. Note that V is a
neighborhood of Qt ∩ Ũ; since if w ∈ Qt, then t ∈ Qw and Qw ∩ Ũ 6= ∅. Following
the ideas in [10] and [16], we define

X = {(w, w′) ∈ V × C
n : h(Qw ∩ Ũ) ⊂ Q′

w′}.

We would like to have Qw ∩ Ũ connected for any w ∈ V to avoid ambiguity in
the condition h(Qw ∩ Ũ) ⊂ Q′

w′ ; since different components of Qw ∩ Ũ could be
mapped a priori to different Segre varieties. Let Q(w′, w̄′) be a defining polyno-
mial function of M′. Let z ∈ Ũ and z′ = h(z). The inclusion h(Qw ∩ Ũ) ⊂ Q′

w′

can be expressed as

Q(h(z), w̄′) = 0 for any z ∈ Qw ∩ Ũ. (3.1)

Therefore by property (2.1) of Segre varieties we can choose Ũ in the form Ũ =
Ũ1 ×

′Ũ ⊂ C × Cn−1 such that Qw = {(k(′z, w̄), ′z), ′z ∈ ′Ũ}, and (3.1) is equiva-
lent to

Q(h(k(′z, w̄), ′z) , w̄′) = 0, for any ′z ∈ ′Ũ. (3.2)

Thus, X is defined by an infinite system of holomorphic equations in (w̄, w̄′).
By the Noetherian property of the ring of holomorphic functions, we can choose

finitely many points ′z1, · · · , ′zm so that (3.2) can be written as a finite system

∑
|J|≤d′

αk
J(w)w′ J = 0,

where k = 1, · · · , m, d′ is the degree of Q in w′ and αk
J are holomorphic func-

tions in w. We define the closure of X in V × P
n in the following way. Let

t̃ = (t0, t1, · · · , tn) be homogeneous coordinates in Pn, and let w′
j = tj/t0 and

t = (t1, · · · , tn). Then

∑
|J|≤d′

αk
J(w)(t/t0)

J = 0, k = 1, · · · , m
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is a system of equations homogeneous in t̃ that defines an analytic function in V ×
Pn. We denote this variety by X̄. Clearly, the restriction of X̄ to V × (Pn\H0) =
V × Cn coincides with the set defined by (3.2). Here H0 = {t0 = 0} is the hy-
perplane at infinity. Let π : X̄ → V and π′ : X̄ → Pn be the natural pro-
jections. According to [22] (Lemma 3), h extends as a holomorphic correspon-

dence to V\(Λ1 ∪ Λ2), where Λ1 = π(π′−1(H0)) and Λ2 = π{(w, w′) ∈ X̄ :
dim π−1(w) ≥ 1}. It is easy to see that Λ1 is a complex manifold of dimension
at most n − 1, and according to [21] (Proposition 3.3), Λ2 is a complex-analytic
set of dimension at most n − 2. By considering dimension, we may assume that
Q0 ∩ V 6⊂ Λ2. Also, we may assume that Q0 ∩ V 6⊂ Λ1; since otherwise we
can perform a linear fractional transformation such that H0 is mapped onto an-
other complex hyperplane H ⊂ Pn with H ∩ M′ = ∅. Thus, by the holomorphic
extension along Qt we can find points in Q0 where h extends as a holomorphic
correspondence. This implies that in the new coordinates Q0 6⊂ E.

As a consequence, we deduce the following

Lemma 4. π−1
1 (0) is discrete.

Proof. It suffices to show that 0 6∈ E. In view of Lemma 3, we may assume that
Q0 6⊂ E. By contradiction, suppose that 0 ∈ E. It follows that there exist a point
b ∈ Q0 and a small neighborhood Ub ∋ b such that Ub ∩ E = ∅. As in the proof
of Lemma 3, we may choose U and Ub so small such that for any z ∈ U, the set
Qz ∩ Ub is non-empty and connected. Let Σ = {z ∈ U : Qz ∩ Ub ⊂ SF}. We
define

X = {(w, w′) ∈ (U\Σ) × C
n : F(Qw ∩ Ub) ⊂ Q′

w′}.

We follow the convention of using the right prime to denote the objects in the
target domain. For instance, Q′

w′ will mean the Segre variety of w′ with the respect
to the hypersurface M′.

We prove the following properties of X.

Claim 1.

i) X is not empty;

ii) X is a complex-analytic set in (U\Σ) × Cn;

iii) X is closed in (U\Σ)× Cn;

iv) Σ × Cn is a removable singularity for X.

Proof. i) In view of Lemma 2, there exists a sequence {aj} ⊂ Γ\(E ∪ Σ) such
that aj → 0 as j → ∞, f extends holomorphically across aj and the graph of f
near (aj, f (aj)) is contained in A. It follows by the invariance property of Segre
varieties (see (2.2)) that (aj, f (aj)) ∈ X and so X 6= ∅.

ii) Let (w, w′) ∈ X. Consider an open simply connected set Ω ⊂ Ub\SF such
that Qw ∩ Ω 6= ∅. The branches of F are globally defined in Ω. Since Qw ∩ Ub is
connected, the inclusion F(Qw ∩ Ub) ⊂ Q′

w′ is equivalent to

Fj(Qw ∩ Ω) ⊂ Q′
w′ , j = 1, · · · , m,
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where the Fj denote the branches of F in Ω. Recall that Q(w′, w̄′) denotes a defin-
ing polynomial function of M′. The inclusion Fj(Qw ∩ Ω) ⊂ Q′

w′ , j = 1, · · · , m
can be expressed as

Q(Fj(z), w̄′) = 0 for any z ∈ Qw ∩ Ω, j = 1, · · · , m.

As in the proof of Lemma 3, we can choose Ω in the form Ω = Ω1 ×
′Ω ⊂ C ×

Cn−1 such that Qw = {(k(′z, w̄), ′z), ′z ∈ ′Ω}, and

Q(Fj(k(′z, w̄), ′z) , w̄′) = 0, for any ′z ∈ ′Ω. (3.3)

Thus, X is defined by an infinite system of holomorphic equations in (w̄, w̄′).
By the Noetherian property of the ring of holomorphic functions, we can choose

finitely many points ′z1, · · · , ′zm so that (3.3) can be written as a finite system

∑
|J|≤d′

αk
J(w)w′ J = 0,

where k = 1, · · · , m, d′ is the degree of Q in w′ and αk
J are holomorphic functions

in w. Thus, X is a complex-analytic set in (U\Σ)× Cn.

iii) The set X is closed in (U\Σ) × Cn. Indeed; let (wj, w′ j) be a sequence in X
that converges to (wo, w′

o) ∈ (U\Σ) × Cn, as j → ∞. Since Qwj → Qwo and
Q′

w′ j → Q′
w′

o
, from the inclusion F(Qwj ∩ Ub) ⊂ Q′

w′ j we obtain

F(Qwo ∩ Ub) ⊂ Q′
w′

o
,

which implies that (wo, w′
o) ∈ X and thus, X is a closed set.

iv) Now, let us show that Σ × Cn is a removable singularity for X. Let t ∈ Σ. It
follows that X̄ ∩ ({t} × Cn) ⊂ {t} × {z′ : F(Qt ∩ Ub) ⊂ Q′

z′}. If w′ ∈ F(Qt ∩
Ub) ⊂ Q′

z′ , then z′ ∈ Q′
w′ . Since dimCQ′

w′ = n − 1, then {z′ : F(Qt ∩ Ub) ⊂ Q′
z′}

has dimension at most 2n− 2 and X̄ ∩ (Σ×Cn) has 2n-dimensional measure zero.
Now, Bishop’s theorem can be applied to conclude that Σ × Cn is a removable
singularity for X.

Now, we continue with the proof of Lemma 4. Let {aj} be a sequence in Γ\(E ∪Σ)
such that aj → 0 as j → ∞. Then, f extends holomorphically across aj and the
graph of f near (aj, f (aj)) is contained in A. Moreover, for small neighborhoods
Uj ∋ aj we have :

X|Uj×Cn = A|Uj×Cn . (3.4)

We denote by X̄ the closure of X in U × C
n. Without loss of generality we may

assume that X̄ is irreducible. Then in view of (3.4) and by the uniqueness theorem
(see for instance [7]) we deduce that X̄ = A.
Let F̂ be the multiple-valued mapping corresponding to X̄. By construction, for
any a′ ∈ F̂(0), F̂(0) = I ′a′ . Since 0′ ∈ F̂(0) ∩ M′, it follows that F̂(0) ⊂ M′ and so

F̂(0) is a finite set. Thus, if V is a bounded open neighborhood of F̂(0), we may
choose U such that X̄ ∩ (U × ∂V) = ∅. Otherwise; there exists a sequence (zj, z′j)j

in X such that (zj)j converges to 0 and (z′j)j converges to z′o ∈ ∂V as j → ∞. This

implies that (0, z′o) ∈ X̄ and z′o 6∈ F̂(0): a contradiction. Then F̂ : U → V defines
a holomorphic correspondence extending f . This contradicts the fact that 0 ∈ E
and completes the proof of Lemma 4.
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3.2 Conclusion of the proof of Theorem 1.

In view of Lemma 4, f extends as a holomorphic correspondence to a neighbor-
hood U of 0. Then f extends to U as an algebroid m-valued mapping

f̂ = ( f̂ 1, · · · , f̂ n) whose components wν = f̂ ν(z) satisfy polynomial equations

wm
ν + a1ν(z)wν

m−1 + · · ·+ amν(z) = 0, ν = 1, · · · , n

with holomorphic coefficients aµν ∈ O(U). In particular, the map f extends con-
tinuously to D̄ ∩ U. Then after an appropriate shrinking of U and U′ the map
f : D ∩ U → D′ ∩ U′ defines a proper holomorphic mapping that extends as
a holomorphic correspondence in a neighborhood of 0. According to [14], this
extension is in fact a holomorphic mapping.

4 Proof of corollary 1 and 2

4.1 Proof of Corollary 1.

a) First, we prove that the mapping f is algebraic (i.e., the graph of the mapping
is contained in an irreducible complex n-dimensional algebraic set in C

n × C
n).

If D is not pseudoconvex, there exist p̃ ∈ ∂D and a neighborhood U of p̃ such
that f extends holomorphically to U. By moving slightly p̃, we may assume that
f extends to a biholomorphic mapping in a neighborhood of p̃. The classical
Webster’s theorem ([27]) implies that f extends to an algebraic mapping. Assume
now that D is pseudoconvex, which implies that D′ is also pseudoconvex. In
view of [25] and [17], f extends holomorphically to a neighborhood of p. Then,
as above we can conclude that f is algebraic by using Webster’s theorem. Now, it
follows from Theorem 1 that f extends holomorphically to a neighborhood of p.
To finish the proof, we have to show that the set of holomorphic extendability of
f is an open dense subset of ∂D. Let Sh = {z ∈ ∂D : cl f (z) ∩ ∂D′ 6= ∅} and

S∞ = ∂D\Sh.

Claim 2. Sh is a dense subset of ∂D.

Proof. Since f is algebraic, its components f j, j = 1, · · · , n are also algebraic. Then
there exist polynomials

Pj(z, wj) = a
mj

j (z)wj
mj + · · ·+ a1

j (z)wj + a0
j (z), j = 1, · · · , n

where a
kj

j (.) are holomorphic polynomials for all kj ∈ {0, · · · , mj} such that

Pj(z, f j(z)) = 0, for all z ∈ D and j = 1, · · · , n.

Without loss of generality, we may assume that a
mj

j 6≡ 0 on Cn for all j = 1, · · · , n.

If p̃ ∈ S∞, there exists j ∈ {1, · · · , n} such that a
mj

j (p̃) = 0. It follows that the

polynomial function ã = ∏1≤j≤n a
mj

j vanishes identically on S∞. If S∞ has an

interior point, then by the boundary uniqueness theorem (see for instance [7]) the
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polynomial ã vanishes identically on Cn, which implies that a
mj

j ≡ 0 on Cn for

some j. This contradiction completes the proof of Claim 2.

Now, the assertion follows from Theorem 1, Claim 2 and the algebraicity of
the mapping.

b) First, assume that D′ has a global holomorphic peak function at infinity.
It suffices to prove that S∞ has no interior point. There exists a holomorphic
function ϕ on D′ satisfying |ϕ(w)| < 1 on D′ and ϕ(w) → 1 as |w| → ∞. Set
G(z) = ϕ ◦ f (z)− 1. If S∞ has an interior point p̃ ∈ ∂D, then the function G(z) →
0 as z tends to a boundary point close to p̃. By the boundary uniqueness theorem
we get that f ≡ ∞ on D : a contradiction.

Assume now, that D has a global holomorphic peak function at infinity. Consider
the proper holomorphic correspondence f−1 : D′ → D.

Claim 3. S′∞ = {q ∈ ∂D′ : lim sup
z′→q

| f−1(z′)| = ∞} is nowhere dense.

Proof. Suppose that S′∞ has an interior point q0 ∈ ∂D′. There exists a holomorphic
function φ on D satisfying |φ(w)| < 1 on D and φ(w) → 1 as |w| → ∞. The
function G(z′) = ∏1≤j≤m[φ ◦ gj(z′) − 1] is holomorphic in D′\σ′, σ′ ⊂ D′ is a

complex-analytic set of dimension ≤ n − 1 and g1, · · · , gm are the branches of
f−1. Since G(z′) is bounded (|G(z′)| ≤ 2m), then it extends as a holomorphic
function on D′. The function G(z′) → 0 as z′ tends to a boundary point close to
q0. By the boundary uniqueness theorem, we get that one of the branch gj ≡ ∞

on D′. This contradiction completes the proof of the claim.

Claim 3 shows in particular, that cl f (∂D) ∩ ∂D′ is not empty. Then the assertion
follows from the result of Corollary 1-a).

4.2 Proof of Corollary 2.

The idea of the proof is as in Corollary 1, but the method of proof is different;
since here the domains are only algebraic in a neighborhood of an open piece of
the boundary. In view of Theorem 1, it suffices to prove that f is algebraic. Note
that here cl f (M) ⊂ M′.

a) First, assume that n = 2. Without loss of generality we may assume that
M is connected. Let U ⊂ C2 be an open neighborhood such that M = ∂D ∩ U =
{z ∈ U : P(z, z̄) = 0} with P a real polynomial and dP 6= 0 on M̄. We denote by
M+

s the set of all strictly pseudoconvex points of M and M−
s the set of all strictly

pseudoconcave points of M. Let M+ (resp. M−) denote the interior of M+
s (resp.

M−
s ). The set M+ is the pseudoconvex part of M and M− is the pseudoconcave

part of M. It is known that M− ⊂ D̂, where D̂ denotes always the envelope of
holomorphy of D. Let T = {z ∈ M : LP(z) = 0}, where LP is the Levi-form of
the boundary restricted to Tc

z M, the complex tangent space at z to M. The set T
is a real-algebraic set in M of dimension at most 2. It admits a locally finite semi-
algebraic stratification as, T = T0 ∪ T1 ∪ T2, where Ti for i = 0, 1, 2 are disjoint
union of connected real-algebraic submanifolds of M of real dimension i. The set
Mb := M\{M+ ∪ M−} is called the border set in M. It is a closed semi-algebraic
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subset of M and Mb ⊂ T. Let Me := Mb ∩ (T0 ∪ T1), be called the exceptional set.
The set Me is a pluripolar set. It was shown in [12] that Mb\Me ⊂ D̂.
Let U′ ⊂ C2 be an open neighborhood such that M′ = ∂D′ ∩ U′ = {z ∈ U′ :
Q(z′, z̄′) = 0} with Q a real polynomial and dQ 6= 0 on M̄′. We follow the same
notations as above by using the right prime to denote the objects in the target
domain. Let p ∈ M, then there exists a point q ∈ M′ such q ∈ cl f (p). We consider
several cases :

(1) - If p ∈ M−, then there exists a neighborhood V of p such that f extends
holomorphically to V. Hence, by moving slightly p (if necessary), we may assume
that f extends biholomorphically near p. Now, the classical Webster’s theorem
implies that f extends to an algebraic mapping.

(2) - If p ∈ M+ and q ∈ M′+, then in view of [25] and [17], f extends holomorphi-
cally to a neighborhood of p. Hence, we can conclude as above that f is algebraic.

(3) - If p ∈ M+ and q ∈ M′− ∪ M′
b. Let Υ := {z ∈ M : cl f (z) ⊂ M′

e}. Since M′
e is

pluripolar, there exists φ ∈ PSH(C2), φ 6≡ −∞ such that φ/M′
e
≡ −∞. Then ψ =

φ ◦ f ∈ PSH(D) and ψ(z) → −∞ as z → zo ∈ Υ. The set Υ has no interior point,
as otherwise ψ ≡ −∞ and this is a contradiction. Hence, by moving slightly p,

we may assume that q ∈ M′− ∪ (M′
b\M′

e). We need the following observation
due to Diederich-Pinchuk [16].

Lemma 5. Let f : D → D′ be a proper holomorphic mapping. Assume that there exist
a ∈ ∂D and a′ ∈ ∂D′ such that a′ ∈ cl f (a). Then a ∈ D̂, if a′ ∈ D̂′.

Since M′− ∪ (M′
b\M′

e) ⊂ D̂′, then in view of Lemma 5 we deduce that p ∈ D̂.
Hence, again Webster’s theorem implies that f extends to an algebraic mapping.

b) Next, assume that n ≥ 2. We denote by M+
s the set of strictly pseudoconvex

points of M and M−
s the set of strictly pseudoconcave points of M. The set of

points where the Levi-form LP has eigenvalues of both signs on Tc(M) and no
zero will be denoted by M± and by M0 we mean the set of points of M where LP

has at least one eigenvalue 0 on Tc(M). Note that M0 is a closed real-algebraic
set of dimension at most 2n − 2. We have

M = M+
s ∪ M−

s ∪ M± ∪ M0.

It is well known that M−
s ∪ M± ⊂ D̂. Then if M is not pseudoconvex, the same

argument used in a)-(1) shows that the mapping f is algebraic. For the rest of the
proof we may suppose that M is pseudoconvex. Let p ∈ B ⊂ M ∩ U be a strictly
pseudoconvex boundary point (such a point exists; since M is pseudoconvex and
B is dense). It suffices to prove that f extends holomorphically to a neighborhood
of p. We consider several cases:

- Assume, that q = f (p) ∈ M
′+
s . Then in view of [25], f extends continuously to a

neighborhood of p and in view of [17], f extends holomorphically to a neighbor-
hood of p.

- Assume next, that q = f (p) ∈ M′± ∪ M
′−
s . Then by Lemma 5, we deduce that

p ∈ D̂. Hence, f extends holomorphically to a neighborhood of p.
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- Finally, assume that q = f (p) ∈ M′
0. We need the following lemma (appeared in

[17] in the case of continuous CR-mapping between real-analytic hypersurfaces
in Cn).

Lemma 6. Let N′ ⊂ M′ be a real C2-smooth generic manifold of real dimension at most
2n − 2 that contains q and let V be a neighborhood of p ∈ M+

s . Then cl f (M ∩V) 6⊆ N′.

Proof. We follow the ideas of [17] with some minor modifications. If dimRN′
<

2n − 2, we can always find a generic manifold in M′ of dimension 2n − 2 which
contains N′. Then without loss of generality, we may assume that dimRN′ =
2n − 2 and q = 0′. There exists a complex plane L′ ∋ 0′ such that L′ ∩ N′ is
a totally real-manifold of real dimension 2 near 0′. For a′ ∈ Cn, let La′ be the
complex plane parallel to L′ and passing through a′. For a small neighborhood V ′

of 0′ in Cn the intersection La′ ∩N′ ∩V ′ is a totally real-manifold of real dimension
2. There exists a strictly plurisubharmonic function ϕa′ on V ′ such that:

• ϕa′ ≥ 0
• ϕa′ = 0 on La′ ∩ N′ ∩ V ′.

Since p is a strictly pseudoconvex point, then in a new coordinates we may as-
sume that p = 0 and the defining function r of D can be written near 0 as

r(z, z̄) = 2Re(z1) + |′z|2 + o(|z|2).

Let a ∈ D ∩ V be a point closed to 0 such that f (a) ∈ V ′. Set Ha := {z ∈ D ∩ V :
z1 = a1}. Notice that Ha is a complex-manifold of dimension n− 1 and Ha ⊂⊂ V.
Set Aa := Ha ∩ f−1(L f (a) ∩ V ′), which is a complex-analytic set in D ∩ V. Since
f is proper and dimCL f (a) = 2, the complex dimension of Aa is at least 1. If

cl f (M ∩ V) ⊂ N′, we would have cl f (∂Ha) ⊂ N′. The function ga = ϕ f (a) ◦ f

is plurisubharmonic and positive on Aa and clga(∂Aa) = 0. It follows by the
maximum principle that ga ≡ 0 on Aa. But ϕ f (a) is strictly plurisubharmonic, then

f is constant on Aa with image in N′. This is a contradiction; since f (a) ∈ D′.

Now, we continue with the proof of Corollary 2. We want to show that there
exists an open set U1 ⊂ U such that cl f (M ∩ U1) 6⊆ M′

0.
The set M′

0 can be stratified as M′
0 = ∪kN′

k by smooth generic manifolds N′
k

of dimension k less or equal to 2n − 2. Let jo be the largest index such that
cl f (M ∩ U) ∩ N′

j 6= ∅. Then cl f (M ∩ U) ∩ N′
jo
6= ∅ and cl f (M ∩ U) ∩ N′

j = ∅

for all j > jo. Let b′ ∈ cl f (p) ∩ N′
jo

. Therefore, there exists a sequence {pk} in

D such that pk → p and f (pk) → b′. Let ǫ be a positive real number so that
D(b′, 2ǫ) ∩ N′

j = ∅ for all j < jo and let k1 = k1(ǫ) be an integer such that for all

k > k1, | f (pk)− b′| < ǫ

Claim 4. There exists a point a ∈ M+
s ∩U with the following properties : f is continuous

at a and f (a) ∈ D(b′, 2ǫ).

Proof. Let {ak} be a sequence in B with ak → p. Since f extends to a uniformly
continuous function on B, there exist a real number α > 0 and an integer k2

such for all z ∈ D and k > k2, |z − ak| < α ⇒ | f (z) − f (ak)| < ǫ. Starting
with some integer k3, we have |ak − pk| < α. Hence, for all k ≥ max(k1, k2, k3),
| f (ak)− b′| < 2ǫ.
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By Claim 4, there exists U1 ⊂ U, a neighborhood of a, such that f (D ∩ U1) ⊂
D(b′, 2ǫ). It follows that cl f (M ∩ U1) ⊂ D(b′, 2ǫ). But cl f (M ∩ U1) ∩ N′

j = ∅ for

all j > jo and D(b′, 2ǫ) ∩ N′
j = ∅ for all j < jo. Hence, if cl f (M ∩ U1) ⊆ M′

0, then

cl f (M ∩ U1) ⊆ N′
jo

: a contradiction with Lemma 6. Now, as in the previous cases

we can show that f is algebraic. This finishes the proof of Corollary 2.

5 Proof of theorem 2 and 2-bis, and corollary 3

5.1 Proof of Theorem 2

Let f : D → D′ be a proper holomorphic mapping as in Theorem 2. Following the
proof of Corollary 1-b), it is clear that if D or D′ has a global holomorphic peak
function at infinity, then cl f (∂D) intersects ∂D′. Now, by repeating the argument
used in the proof of Corollary 1-a), we may show that f is algebraic.

(A) First, assume that P is plurisubharmonic on D and ∂Dc is nondegenerate for
all c < 0. We denote by J f the Jacobi determinant of f and by Vf =
{z ∈ D : J f (z) = 0} its branch locus. Following [3] and [4], we consider the
Levi-determinant of D defined by

Λ∂D = −det





















0
∂P

∂z̄1
· · ·

∂P

∂z̄n
∂P

∂z1

∂2P

∂z1∂z̄1
· · ·

∂2P

∂z1∂z̄n
...

...
. . .

...
∂P

∂zn

∂2P

∂zn∂z̄1
· · ·

∂2P

∂zn∂z̄n





















.

Note that Λ∂D(z) ≥ 0 for all z ∈ ∂D and the set

ω(∂D) = {z ∈ ∂D : Λ∂D(z) = 0}

is precisely the set of weakly pseudoconvex boundary points. For any point
p ∈ ∂D we consider also the order of vanishing of the Levi-determinant at p
denoted by τ(p), which is defined as follows: we choose smooth coordinates
x = (x1, · · · , x2n−1) on ∂D such that p corresponds to x = 0, and the formal
power series

Λ∂D(x) =
∞

∑
j=0

∑
|α|=j

aαxα,

where α = (α1, · · · , α2n−1) is a multi-index,

xα = xα1
1 · · · x

α2n−1
2n−1

and |α| = α1 + · · ·+ α2n−1. We set

τ(p) = min{|α| : aα 6= 0}.
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The definition does not depend on the choice of the coordinates. The number
τ(p) can be also defined as the smallest nonnegative integer m such that there is a
tangential differential operator T of order m on ∂D (i.e., T is a differential operator
of order m satisfying TP = 0) such that TΛ∂D(p) 6= 0. The function τ is upper-
semicontinuous. Indeed, for each λ > 0 the set {z ∈ ∂D : τ(z) < λ} is open;
since its complement {z ∈ ∂D : TΛ∂D(z) = 0 for all T, with order < λ} is closed,
being the intersection over all T of closed zero sets of the smooth functions TΛ∂D.
Note that {p ∈ ∂D : τ(p) = 0} is the set of strictly pseudoconvex boundary
points and {p ∈ ∂D : τ(p) ≥ 1} is the set of weakly pseudoconvex boundary
points.

Lemma 7. Let f : D → D′ be a proper holomorphic mapping as in Theorem 2. Then for
all p ∈ Sh, the set of holomorphic extendability of f , τ(p) ≥ τ( f (p)) and the inequality
holds if and only if f is branched at p.

Proof. Let p ∈ Sh ∩ {J f 6= 0}. Since Q is a defining function for D′, ∇(Q◦ f )(p) 6=
0. Then Q ◦ f is a local defining function of D in a neighborhood of p, and by the
chain rule we have:

ΛQ◦ f (p) = |J f (p)|2ΛQ( f (p)).

Hence, we are able to deduce the lemma.

Following [3] (or [9]), there is a semi-algebraic stratification for ω(∂D) given by

ω(∂D) = A1 ∪ A2 ∪ A3 ∪ A4

where A4 is a closed, real-algebraic set of dimension at most 2n− 4 and A2 ∪ A3 ∪
A4 is also a closed, real algebraic set of dimension at most 2n − 3. Further, A1,
A2 and A3 are either empty or smooth, real-algebraic manifolds; A2 and A3 have
dimension 2n− 3, and A1 has dimension 2n− 2. When A2 and A3 are non-empty,
A2 and A3 are CR manifolds with

dimCTc A2 = n − 2 and dimCTc A3 = n − 3.

Recall that dimCTc Aj denotes the complex dimension of the complex tangent
space to Aj (j ∈ {2, 3}). Finally, the function τ is constant on every connected
component of A1.

Lemma 8. Let W be an irreducible component of Vf and EW := W ∩ ∂D.

1) There exists an open dense subset OW of EW such that for all p ∈ OW:

i) W extends across the boundary of D as a pure (n − 1)-dimensional polynomial
variety in Cn and EW is a polynomial submanifold of dimension 2n− 3 in a neighborhood
of p.

ii) f extends holomorphically in a neighborhood of p.

2) W does not intersect the set ∂D\w(∂D) of strictly pseudoconvex boundary points.

Proof. 1) -i) Since W is an irreducible algebraic set in D of dimension n − 1, there
exists an irreducible polynomial h in Cn such that W = {z ∈ D : h(z) = 0}. If W
does not extend across ∂D, the polynomial P will be negative on Ŵ = {z ∈ Cn :
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h(z) = 0}. According to [7] (Proposition 2, page 76), there exists an analytic cover
π : Ŵ → Cn−1. Let g1, · · · , gk be the branches of π−1 which are locally defined
and holomorphic in Cn−1 \ σ, with σ ⊂ Cn−1 a complex-analytic set of dimen-
sion at most n − 2. Consider the function P̂(w) = sup{P ◦ g1(w), · · · , P ◦ gk(w)}.
Since π is an analytic cover, P̂ extends as a plurisubharmonic function to Cn−1.
Then there exists a negative constant c such that P̂ ≡ c; since P̂ is negative. It
follows that for all w0 ∈ Cn−1 \ σ, there exist a neighborhood Uw0 ∋ w0 and an
integer s ∈ {1, · · · , k} such that P ◦ gs ≡ c on Uw0 . This contradicts the nonde-
generacy of ∂Dc.
Let us verify now that there exists an open dense subset OW of EW such that for all
p ∈ OW , EW is a polynomial submanifold of dimension 2n − 3 in a neighborhood

of p. We may choose a multi-index α = (α1, · · · , αn) such that v :=
∂αh

∂zα
vanishes

on W; but ∇v is not identically zero on W. We need the following observation
(appeared in [2] in the strictly pseudoconvex case).

Claim 5. Let Ω be a pseudoconvex domain in Cn with real-analytic and nondegenerate
boundary. For any point p ∈ ∂Ω, there exists ǫ0 > 0 so that for any ǫ ∈ (0, ǫ0), there is
some δ ∈ (0, ǫ) with the following property : for any point q ∈ Ω ∩ B(p, δ), there exists
a plurisubharmonic function ϕq on Ω ∩ B(p, ǫ0), continuous on Ω̄ ∩ B(p, ǫ0) such that

ϕq(q) = 1 and 0 < ϕq(z) <
1

2
for all z ∈ D ∩ ∂B(p, ǫ).

Proof. According to [11], there exists a local plurisubharmonic peak function at p
(i.e., there exist a small ǫ0 > 0 and a function ψp ∈ PSH(Ω ∩ B(p, ǫ0)) ∩ C0(Ω̄ ∩
B(p, ǫ0)) such that ψp(p) = 1 and ψp(z) < 1 on (Ω̄ ∩ B(p, ǫ0)) \ {p}). Set φp =

eψp−1 and for 0 < ǫ < ǫ0, let M = max{φp(z) : z ∈ Ω̄ ∩ ∂B(p, ǫ)}. Note that
0 < M < 1. The set {z ∈ Ω̄ ∩ B(p, ǫ) : φp(z) > M} is an open neighborhood of p
in Ω̄∩B(p, ǫ), so there is some δ > 0 so that 0 < M < φp(z) for all z ∈ Ω∩B(p, δ).
For any q ∈ Ω ∩ B(p, δ), let hq(z) = φp(z)/φp(q). Then hq(q) = 1 and for all
z ∈ Ω̄ ∩ ∂B(p, ǫ), 0 < hq(z) < M/φp(q) < 1. It follows that for N > 0 large

enough, the function ϕq(z) = (hq(z))N has the properties given by the claim.

Let W1 = {z ∈ W : (∂v/∂z1)(z) = 0}. Using the irreducibility assumption, W1 is
a nowhere dense subvariety of W. First, we show that for p ∈ EW , (∂v/∂z1) can
not vanish everywhere on {|z − p| ≤ ǫ0} ∩ EW for any ǫ0 > 0. We may assume
that ǫ0 is the real number given by Claim 5 corresponding to p. Let ǫ ∈ (0, ǫ0)
and a corresponding δ > 0. Let z1 ∈ (W \ W1) ∩ B(p, δ). By Claim 5, there exists
a function ϕ ∈ PSH(D ∩ B(p, ǫ0)) ∩ C0(D̄ ∩ B(p, ǫ0)) such that ϕ(z1) = 1 and

0 < ϕ(z) <
1

2
for all z ∈ D ∩ ∂B(p, ǫ). Note that for any natural number N,

the function ϕN is plurisubharmonic; since by construction, ϕ is the exponential
of a plurisubharmonic function. Assume that (∂v/∂z1) vanishes everywhere on
{|z− p| ≤ ǫ0}∩EW . There exists a constant C > 0 such that |(∂v/∂z1)(z)| < C for
all z ∈ B(p, ǫ0). By the maximum principle, 0 < |(∂v/∂z1)(z)|(ϕN (z)) < C/2N

for all integer N and for all z ∈ W ∩ B(p, ǫ). Letting N → ∞, we conclude that

(∂v/∂z1)(z
1) = 0, which is a contradiction. Then there exists an open dense

subset OW of EW such that for any q ∈ OW, (∂v/∂z1)(q) 6= 0. For a fixed q ∈ OW ,
there exists a neighborhood U of q in Cn such that (∂v/∂z1) vanishes nowhere on
U. Then W̃ = {z ∈ U : v(z) = 0} is a polynomial submanifold of U. Since W
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extends across the boundary of D as a variety, a useful consequence of this fact is
that W̃ has dimension 2n − 3. Otherwise, the Hausdorff dimension of W̃ will be
less than or equal to 2n − 4. Then W̃\(W̃ ∩ ∂D) will be connected (see [7]). This
implies that W̃ cannot be separated by ∂D and contradicts the first statement of
this lemma.

1) -ii) Since f is algebraic, its components f j, j = 1, · · · , n are also algebraic.
Then there exist polynomials

Pj(z, wj) = a
mj

j (z)wj
mj + · · ·+ a1

j (z)wj + a0
j (z), j = 1, · · · , n

where a
kj

j (.) are holomorphic polynomials for all kj ∈ {0, · · · , mj} such that

Pj(z, f j(z)) = 0, ∀z ∈ D and j = 1, · · · , n. (5.1)

Consider (5.1) only for z ∈ W. First, note that we may assume that for all j =

1, · · · , n, there exists kj ∈ {1, · · · , mj} such that a
kj

j 6≡ 0 on W. Without loss of

generality, assume that kj = mj for all j. If p ∈ S∞ ∩ EW (recall that S∞ = ∂D \ Sh),

then there exists j ∈ {1, · · · , n} such that a
mj

j (p) = 0. So the polynomial function

ã = ∏1≤j≤n a
mj

j vanishes identically on S∞ ∩ EW . To Show that Sh ∩OW is dense

in OW , suppose by contradiction that S∞ ∩OW has an interior point. Then by the
boundary uniqueness theorem the polynomial ã vanishes identically on W. As h

is irreducible, h divides a
mj

j for some j, contradicting the fact that a
mj

j 6≡ 0 on W

for all j.
This contradiction shows that OW = Sh ∩OW has the properties claimed by the
lemma.

2) Now, let prove that W does not intersect the set of strictly pseudoconvex
boundary points. Let p ∈ OW. As in the proof of Lemma 7, we have

ΛQ◦ f (p) = |J f (p)|2ΛQ( f (p)).

So OW ⊂ w(∂D), which implies that EW ⊂ w(∂D).

Conclusion of the proof of Theorem 2-(A). The conclusion is similar to [3] and [9].
For completeness we add it here. The algebraic set A2 contains finitely many
components, which we will denote as σ1, · · · , σN. Since dimRσj = dimRTcσj, then

σj is a complex-manifold of dimension n − 1. Let Âj be the complex-algebraic set

in Cn such that Reg(Âj) = σj. By considering dimension and CR dimension, we
see that A3 ∩ OW and A4 ∩ OW are nowhere dense in OW. Next we claim that
A1 ∩ OW cannot contain an open subset of OW. By contradiction, let suppose
p ∈ OW ⊂ A1. We may choose a sequence {qk}k ⊂ A1 ∩ {J f 6= 0} such that
qk → p. The mapping f is a local diffeomorphism in a neighborhood of all points
qk and the function τ is constant on every connected component of A1, then for
all k,

τ(p) = τ(qk) = τ( f (qk)).

On the other hand, by Lemma 7,

τ(p) > τ( f (p)).
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This is a contradiction; since τ is upper-semicontinuous. We conclude that
A2 ∩ OW contains an open subset of A2. Thus, it contains an open subset of σj

for some j. Applying the maximum principle, we conclude that W ⊂ Âj. This
completes the proof of Theorem 2-(A).

(B) In this case, suppose that Q is plurisubharmonic on D′ and for all c < 0,
∂D′

c is nondegenerate. The only crucial point here is to show that the branch locus
of f extends across the boundary of D and the rest of the proof is as in the case
(A). The set W denotes always an irreducible component of Vf . The set f (W) is an
irreducible algebraic set of dimension n − 1 in D′, then there exists an irreducible

polynomial ĥ in Cn such that f (W) = {z′ ∈ D′ : ĥ(z′) = 0}. If W does not extend

across ∂D, then Q(z′) ≤ 0 for all z′ ∈ W ′ = {z′ ∈ Cn : ĥ(z′) = 0}. By repeating
the argument used in the proof of Lemma 8 (first part), we may show that there
exists a negative constant c′ such that {Q = c′} contains a complex-analytic set
with positive dimension. This contradicts the nondegeneracy of ∂D′

c′ .

Proof of Theorem 2-bis. Let f : D → D′ be a proper holomorphic mapping
as in Theorem 2-bis. Then f is algebraic (the proof of this fact can be deduced
easily from the proof of Corollary 1 if D is bounded and from Remark 1 and the
proof of Corollary 1 if D is unbounded). It suffices to show that the branch locus
extends across the boundary of the domain and the rest of the proof is as in the
proof of Theorem 2-(A). According to Remark 2, D is biholomorphic to a bounded
pseudoconvex smooth algebraic domain Ω in Cn. (Recall that the boundary of
any bounded real-analytic domain in C

n is nondegenerate). Let g : D → Ω be
such a biholomorphism. Note that g is an algebraic mapping. Let G = f ◦ g−1 :
Ω → D′, W be an irreducible component of Vf and W = g(W). According to
[13], Ω has a bounded negative plurisubharmonic exhaustion function ρ (i.e., a
continuous real negative plurisubharmonic function on Ω such that {z ∈ Ω :
ρ(z) < c} is a compact subset of Ω for each constant c < 0 and ∂Ω = {ρ = 0}).
It suffices to prove that W extends across the boundary of Ω. Let us assume that
ρ(z) ≤ 0 for all z ∈ W and argue by contradiction. Since W is an algebraic set
of dimension n − 1, then again by repeating the argument used in the proof of
Lemma 8 (first part) we may show that there exists a negative constant c such
that {z ∈ Ω : ρ(z) = c} contains a complex-analytic set with positive dimension
: a contradiction; since {z ∈ Ω : ρ(z) = c} is a compact.

5.2 Proof of Corollary 3

In view of the simple connectedness of D, it suffices to prove that Vf is empty.
Since cl f (∂D) ∩ ∂D 6= ∅, by repeating the arguments used in the proof of Corol-
lary 1, we may show that f is algebraic and S∞ has no interior point in ∂D. Let
z0 ∈ Sh ∩ {J f 6= 0}. There exists a neighborhood U of z0 such that f is a dif-
feomorphism from U ∩ ∂D onto f (U ∩ ∂D). Since S∞ has no interior point and
∂D = Sh ∪ S∞, there exists z̃0 ∈ U ∩ ∂D such that f (z̃0) ∈ Sh. This proves that
cl f 2(∂D) ∩ ∂D 6= ∅. The same argument shows that cl f N(∂D) ∩ ∂D 6= ∅ for all

N, where f N denotes the N-th iteration of f . This leads to prove that f N is alge-
braic for all N (see the proof of Corollary 1). Now, the proof of Theorem 2-(A)
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shows that for all N the variety Vf N has a finite number of irreducible compo-

nents independent of f N . Then there exists an integer s such that Vf s = Vf s+1.

We may assume s = 1, that is Vf = Vf 2 . Since Vf 2 = Vf ∪ f−1(Vf ), it follows

that Vf ⊆ f (Vf ), where f (Vf ) is a complex-analytic variety of D by a theorem
of Remmert (see [7]). Hence, we have Vf = f (Vf ) because Vf has finitely many
components. Assume that Vf is not empty. According to Lemma 8, there exists a

boundary point p ∈ V f ∩ ∂D such that f extends holomorphically in a neighbor-

hood of p. Note that for all N, f N(p) ∈ V f ; since Vf = f (Vf ). The sequence of

numbers τ( f N(p)) is strictly decreasing and τ(p) is a finite integer, so there ex-
ists an integer N0 such that τ( f N0(p)) = 0, which implies that f N0(p) is a strictly
pseudoconvex boundary point, contradicting the fact that f N0(p) ∈ V f ∩ ∂D.
This proves that Vf = ∅ and completes the proof.
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Faculté des Sciences de Monastir, (Monastir),
5019, Tunisia
email:ayed besma@yahoo.fr

King Saud University, Department of mathematic,
P. O. Box 2455, Riyadh 11451,
King Saudi Arabia
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