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Abstract

In this note we consider homomorphisms between differentiable Lips-
chitz algebras Lipn(X, α) (0 < α ≤ 1) and lipn(X, α) (0 < α < 1), where X is
a perfect compact plane set. We give sufficient conditions implying the com-
pactness and power compactness of these homomorphisms. Moreover, we
investigate under what conditions a quasicompact homomorphism between
these algebras is power compact. We also give a necessary condition for a
homomorphism between these algebras to be quasicompact and in certain
cases to be power compact. Finally, using these results, by giving an exam-
ple we show that there exists a quasicompact homomorphism between these
algebras which is not power compact.

1 Introduction

Let X be a compact plane set and 0 < α ≤ 1. The Lipschitz algebra Lip(X, α), of
order α, is the algebra of all complex-valued functions f on X for which

pα( f ) = sup

{
| f (z) − f (w)|

|z − w|α
: z, w ∈ X and z 6= w

}
< ∞.

The subalgebra of those functions f ∈ Lip(X, α) for which | f (z) − f (w)|/
|z − w|α → 0 as |z − w| → 0 is denoted by lip(X, α). These Lipschitz algebras
were first studied by Sherbert ([17], [18]). The algebras Lip(X, α) for 0 < α ≤ 1
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and lip(X, α) for 0 < α < 1 are Banach function algebras on X if equipped with
the norm ‖ f‖α = ‖ f‖X + pα( f ), where ‖ f‖X = sup

z∈X

| f (z)|. Moreover, for every

α, β with 0 < α < β ≤ 1 we have

pα( f ) ≤ pβ( f )(diamX)β−α, ( f ∈ Lip(X, β))

and Lip(X, β) ⊆ lip(X, α) ⊆ Lip(X, α). These inclusions are proper when X
contains infinitely many points (see [2], [11]).

In this paper we consider certain subalgebras of Lipschitz algebras, namely
differentiable Lipschitz algebras. A complex-valued function f on a perfect plane
set X is called differentiable on X if at each point z0 ∈ X the following limit exists

f ′(z0) = lim
z→z0

z∈X

f (z)− f (z0)

z − z0
.

Let X be a perfect compact plane set, 0 < α ≤ 1, and n ∈ N. The algebra of
all complex-valued functions f on X whose derivatives up to order n exist and

f (k) ∈ Lip(X, α) for each k (0 ≤ k ≤ n), is denoted by Lipn(X, α). Similarly
the algebras lipn(X, α) are defined for 0 < α < 1. These differentiable Lipschitz
algebras were first studied in [10] and [14]. The algebras Lipn(X, α) and lipn(X, α)
with the norm

‖ f‖n,α =
n

∑
k=0

‖ f (k)‖α

k!
=

n

∑
k=0

‖ f (k)‖X + pα( f (k))

k!
, ( f ∈ Lipn(X, α))

are normed function algebras on X. In fact, lipn(X, α) is a closed subalgebra of
Lipn(X, α). It is also obvious that Lipm(X, α) ⊆ Lipn(X, α) and lipm(X, α) ⊆
lipn(X, α) for each m, n ∈ N with n ≤ m. These differentiable Lipschitz algebras
are not necessarily complete. To investigate the completeness of these algebras
we introduce Dales-Davie algebras.

Let X be a perfect compact plane set and n ∈ N. The algebra of n-times
continuously differentiable functions on X is denoted by Dn(X). These algebras
were originally studied by Dales and Davie in [7]. The algebra Dn(X) with the
norm

‖ f‖n =
n

∑
k=0

‖ f (k)‖X

k!
, ( f ∈ Dn(X))

is a normed function algebra on X. As it was shown in [14] the completeness of
D1(X) implies that all algebras Dn(X), Lipn(X, α) and lipn(X, α) are complete.
There are some examples of X such that D1(X) is incomplete ([4], [5], [8]). As
proved in [5] and [10], D1(X) is complete if and only if for every z ∈ X there
exists a constant cz such that for every f ∈ D1(X) and every w ∈ X,

| f (z)− f (w)| ≤ cz|z − w|(‖ f‖X + ‖ f ′‖X).

Moreover, we recall the definition of regularity to give a sufficient condition for
the completeness of D1(X).
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Definition 1.1. Let X be a compact plane set which is connected by rectifiable
arcs. Let δ(z, w) be the geodesic metric on X, the infimum of the lengths of the
arcs joining z and w.

(i) X is pointwise regular if for each z ∈ X there exists a constant cz > 0 such
that for every w ∈ X, δ(z, w) ≤ cz|z − w|.

(ii) X is uniformly regular if there exists a constant c > 0 such that for every
z, w ∈ X, δ(z, w) ≤ c|z − w|.

Note that every convex compact plane set is obviously uniformly regular.
There are also non-convex uniformly regular sets, like the Swiss cheese defined
in [13]. Dales and Davie in [7] showed that D1(X) is complete whenever X is a
finite union of uniformly regular sets. The proof given in [7] is also valid when
X is a finite union of pointwise regular sets [10]. The following condition which
will be used in the sequel, is also a sufficient condition for the completeness of
D1(X) (see [3]).

Definition 1.2. A perfect compact plane set X is said to satisfy the (∗)-condition if
there exists a constant c > 0 such that for every z, w ∈ X and f ∈ D1(X),

| f (z)− f (w)| ≤ c|z − w|(‖ f‖X + ‖ f ′‖X).

It is known that every uniformly regular set satisfies the (∗)-condition (see
[7]). Note that if X satisfies the (∗)-condition, then D1(X) is a proper subalgebra
of Lip(X, 1) and the norms of D1(X) and Lip(X, 1) are equivalent on D1(X). In
other words, D1(X) is a closed subalgebra of Lip(X, 1) [14, Theorem 2.2.22]. For
any such X we therefore have

Dn+1(X) ⊆ Lipn(X, 1) ⊆ lipn(X, α) ⊆ Lipn(X, α) ⊆ Dn(X).

Also, the norms of Dn+1(X) and Lipn(X, 1) are equivalent on Dn+1(X). For fur-
ther results about these algebras we refer the reader to [3], [4], [5], [7], [8], [10],
[11], [14], and [15].

We recall that a function algebra A on a compact Hausdorff space X is natural
if every nonzero complex homomorphism on A is an evaluation homomorphism
at some point of X [6, 4.1.3]. In the case where A is a Banach function algebra on
X, it is natural if its maximal ideal space MA coincides with X. As proved in [10],
the algebras Lipn(X, α) and lipn(X, α) are natural, when X is uniformly regular.
However, applying the same method used by Jarosz in [12], one can show that
the algebras Lipn(X, α) and lipn(X, α) are natural for every perfect compact plane
set X (see also [8]).

Let A and B be Banach function algebras on compact plane sets X and Y, re-
spectively. Then a homomorphism T : A → B is said to be induced by a map
ϕ : Y → X if T f = f ◦ ϕ for every f ∈ A. It is known that if A and B are
natural, then every unital homomorphism T : A → B is induced by a continu-
ous map ϕ : Y → X. If A contains the coordinate function Z, then obviously
ϕ ∈ B. It is interesting to know under what conditions a map ϕ : Y → X in-
duces a homomorphism T : A → B. In other words, under what conditions
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f ◦ ϕ ∈ B whenever f ∈ A. In this paper, we consider homomorphisms between
differentiable Lipschitz algebras. In Section 2, we investigate when a selfmap
ϕ : X → X in Lipℓ(X, α) induces a (compact) homomorphism T : Lipm(X, α) →
Lipℓ(X, α). In Section 3, we study power compact and quasicompact homomor-
phisms between these algebras.

2 Compact homomorphisms between differentiable Lipschitz al-

gebras

Let X be a perfect compact plane set satisfying the (∗)-condition and m, ℓ be two
positive integers with m ≥ ℓ. Since Lipm(X, α) contains the coordinate function Z,
if a selfmap ϕ : X → X induces a homomorphism T : Lipm(X, α) → Lipℓ(X, α),
then ϕ ∈ Lipℓ(X, α). Conversely, we show that every selfmap ϕ : X → X
in Lipℓ(X, α) induces a homomorphism T : Lipm(X, α) → Lipℓ(X, α), i.e., if
ϕ ∈ Lipℓ(X, α) then f ◦ ϕ ∈ Lipℓ(X, α) for every f ∈ Lipm(X, α). To do this,
let f ∈ Lipm(X, α) and ϕ ∈ Lipℓ(X, α). Since m ≥ ℓ, using Faà di Bruno’s formula
[1, page 823], for each k (0 ≤ k ≤ ℓ) we have

( f ◦ ϕ)(k) =
k

∑
j=0

( f (j) ◦ ϕ) · hj,k, (2.1)

where

hj,k = ∑
a

(
k!

a1!a2! · · · ak!

k

∏
i=1

(
ϕ(i)

i!

)ai
)

,

the sum ∑a is taken over all non-negative integers a1, a2, . . . , ak satisfying
a1 + a2 + · · · + ak = j and a1 + 2a2 + · · · + kak = k. Note that hj,k ∈ Lip(X, α)

for every k = 1, 2, ..., ℓ and j = 1, 2, ..., k, since ϕ ∈ Lipℓ(X, α) and hj,k is a combi-
nation of the derivatives of ϕ up to order k. On the other hand, since X satisfies
the (∗)-condition and ϕ is continuously differentiable we have

pα( f ◦ ϕ) ≤ cαpα( f )
(
‖ϕ‖X + ‖ϕ′‖X

)α
, ( f ∈ Lip(X, α)) .

Hence, f (j) ◦ ϕ ∈ Lip(X, α) for each 0 ≤ j ≤ k. Therefore, according to (2.1),

( f ◦ ϕ)(k) ∈ Lip(X, α) for each k = 0, 1, ..., ℓ and hence f ◦ ϕ ∈ Lipℓ(X, α).
We now show that such a homomorphism is compact when m > ℓ.

Theorem 2.1. Let X be a perfect compact plane set satisfying the (∗)-condition and
m, ℓ be two positive integers with m > ℓ. Let T : Lipm(X, α) → Lipℓ(X, α) be a
homomorphism induced by the selfmap ϕ : X → X. Then T is compact.

Proof. For the compactness of T let ( fn) be a bounded sequence in Lipm(X, α)

with ‖ fn‖m,α = ∑
m
k=0

‖ f
(k)
n ‖α

k! ≤ 1. Since ‖ f
(k)
n ‖X + pα( f

(k)
n ) = ‖ f

(k)
n ‖α ≤ k!, the

sequence ( f
(k)
n ) is bounded and equicontinuous in C(X) for each k = 0, 1, ..., m.

So by the Arzela-Ascoli Theorem, ( fn) has a subsequence ( fnj
) such that ( f

(k)
nj

) is
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uniformly convergent on X for all k (0 ≤ k ≤ m). Then by using the (∗)-condition,
one can find an m-times continuously differentiable function f on X such that

‖ f
(k)
nj

− f (k)‖X → 0 as j → ∞,

for each k = 0, 1, ..., m. We show that (T fnj
) is convergent in Lipℓ(X, α).

In general, when X satisfies the (∗)-condition for every continuously differen-
tiable function g on X, we have

pα(g) ≤ c(diamX)1−α(‖g‖X + ‖g′‖X),

which implies that

‖ fnj
− f‖ℓ,α =

ℓ

∑
k=0

‖ f
(k)
nj

− f (k)‖α

k!

≤
(

1 + c(diamX)1−α
) ℓ

∑
k=0

‖ f
(k)
nj

− f (k)‖X + ‖ f
(k+1)
nj

− f (k+1)‖X

k!
.

Therefore ( fnj
) converges in Lipℓ(X, α), since m > ℓ. On the other hand, by the

discussion before this theorem, ϕ induces an endomorphism of Lipℓ(X, α) which
is automatically continuous since Lipℓ(X, α) is semisimple. So, the convergence
of ( fnj

) in Lipℓ(X, α) implies that (T fnj
) = ( fnj

◦ ϕ) is convergent in Lipℓ(X, α).

It is interesting to see that when X is a perfect compact plane set with nonempty
interior, every selfmap ϕ : X → X in Lipℓ(X, α) with ϕ(X) ⊆ intX induces a ho-
momorphism T : Lipm(X, α) → Lipℓ(X, α) for every m, ℓ ∈ N. If Lipℓ(X, α) is
complete, this is an immediate consequence of the holomorphic functional cal-
culus. Otherwise, by [3, Lemma 1.5] one can obtain a compact set Y ⊆ intX
containing ϕ(X) and a constant c0 > 0 such that for every analytic function f in
intX and every z, w ∈ X,

| f (ϕ(z)) − f (ϕ(w))| ≤ c0|ϕ(z)− ϕ(w)|(‖ f‖Y + ‖ f ′‖Y).

Consequently, for every analytic function f in intX, we have

pα( f ◦ ϕ) ≤ c0pα(ϕ)(‖ f‖Y + ‖ f ′‖Y). (2.2)

Now let f ∈ Lipm(X, α). Then f is analytic in intX, so f is infinitely differentiable
in intX and its all derivatives are analytic in intX. Hence (2.2) yields

pα( f (k) ◦ ϕ) ≤ c0pα(ϕ)(‖ f (k)‖Y + ‖ f (k+1)‖Y), (k = 0, 1, 2, ...). (2.3)

Therefore,

‖ f (k) ◦ ϕ‖α =‖ f (k) ◦ ϕ‖X + pα( f (k) ◦ ϕ)

≤‖ f (k)‖Y + c0pα(ϕ)(‖ f (k)‖Y + ‖ f (k+1)‖Y)

≤c1(‖ f (k)‖Y + ‖ f (k+1)‖Y), (k = 0, 1, 2, ...) (2.4)
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where c1 = 1 + c0pα(ϕ). Using Faà di Bruno’s formula (2.1) and (2.3), for every
z, w ∈ X with ϕ(z) 6= ϕ(w) we have

|( f ◦ ϕ)(k)(z)− ( f ◦ ϕ)(k)(w)|

|z − w|α
≤

1

|z − w|α

k

∑
j=0

| f (j)(ϕ(z))hj,k(z)− f (j)(ϕ(w))hj,k(w)|

≤
k

∑
j=0

| f (j)(ϕ(z)) − f (j)(ϕ(w))|

|z − w|α
|hj,k(z)|

+
k

∑
j=0

| f (j)(ϕ(w))|
|hj,k(z)− hj,k(w)|

|z − w|α

≤c0pα(ϕ)
k

∑
j=0

(‖ f (j)‖Y + ‖ f (j+1)‖Y)‖hj,k‖X

+
k

∑
j=0

‖ f (j)‖Y pα(hj,k),

for all k = 0, 1, 2, . . . ℓ. Therefore ( f ◦ ϕ)(k) ∈ Lip(X, α) for all k = 0, 1, 2, . . . ℓ. It
follows that ϕ induces a homomorphism T : Lipm(X, α) → Lipℓ(X, α), for every
m, ℓ ∈ N.

We next show that for every two positive integers m, ℓ, a selfmap ϕ of X with
ϕ(X) ⊆ intX induces a compact homomorphism T : Lipm(X, α) → Lipℓ(X, α)
(see Theorem 3.1 and Remark 3.2 in [3]). To prove this, we need the complete-
ness of algebras of the type Lipn(X, α), and for this we can assume that D1(X) is
complete.

Theorem 2.2. Let X be a perfect compact plane set with nonempty interior such that
D1(X) is complete. Let m and ℓ be two positive integers. Assume that ϕ in Lipℓ(X, α)
is a selfmap of X with ϕ(X) ⊆ intX and T : Lipm(X, α) → Lipℓ(X, α) is the homomor-
phism induced by ϕ. Then T is compact.

Proof. Let ( fn) be a bounded sequence in Lipm(X, α) with ‖ fn‖m,α = ∑
m
k=0

‖ f
(k)
n ‖α

k!
≤ 1. Then ‖ fn‖X + pα( fn) = ‖ fn‖α ≤ 1. Hence by the Arzela-Ascoli Theorem
( fn) has a uniformly convergent subsequence ( fnj

) in C(X). So it is uniformly

Cauchy on X, that is, ‖ fni
− fnj

‖X → 0 as i, j → ∞. We show that (T fni
) =

( fni
◦ ϕ) is ‖.‖ℓ,α-Cauchy. By the completeness of Lipℓ(X, α), this implies that

(T fni
) is convergent in Lipℓ(X, α).

Let Y ⊆ intX be the compact set containing ϕ(X) obtained from [3, Lemma
1.5]. Then there exists a positive number d such that Yd = {z ∈ C :dist(z, Y) ≤ d}
is in intX. Since every f ∈ Lipm(X, α) is analytic in intX, it follows from Cauchy’s

Estimate that ‖ f (k)‖Y ≤ k!
dk ‖ f‖X for all k = 0, 1, 2, . . . . Therefore, using this esti-
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mate, Faà di Bruno’s formula (2.1) and (2.4), we have

‖T fni
− T fnj

‖ℓ,α =
ℓ

∑
k=0

1

k!
‖(( fni

− fnj
) ◦ ϕ)(k)‖α

≤
ℓ

∑
k=0

1

k!

k

∑
q=0

‖( fni
− fnj

)(q) ◦ ϕ‖α‖hq,k‖α

≤
ℓ

∑
k=0

1

k!

k

∑
q=0

c1(‖( f
(q)
ni

− f
(q)
nj

‖Y + ‖( f
(q+1)
ni

− f
(q+1)
nj

‖Y)‖hq,k‖α

≤
ℓ

∑
k=0

c1

k!

k

∑
q=0

(
q!

dq +
(q + 1)!

dq+1
)‖ fni

− fnj
‖X‖hq,k‖α

= c1

(
ℓ

∑
k=0

1

k!

k

∑
q=0

q!

dq (1 +
q + 1

d
)‖hq,k‖α

)
‖ fni

− fnj
‖X.

Whence, ‖T fni
− T fnj

‖ℓ,α → 0 as i, j → ∞ and this ends the proof.

Remark 2.3. Using the same arguments as in the proof of theorems 2.1 and 2.2,
one can show that the results of these theorems also hold true by replacing the
big Lipschitz Lipn(X, α) with the little Lipschitz lipn(X, α), when 0 < α < 1.

3 Quasicompact homomorphisms between differentiable Lips-

chitz algebras

We begin this section by stating some facts about quasicompact homomorphisms.
Let E and F be Banach spaces. The Banach space of all bounded linear operators
T : E → F is denoted by B(E, F) and we denote by K(E, F) the Banach space of
all compact operators T : E → F. Note that K(E, F) ⊆ B(E, F). For simplicity,
B(E, E) and K(E, E) are abbreviated to B(E) and K(E), respectively.

Definition 3.1. Let (E, ‖.‖E) and (F, ‖.‖F) be Banach spaces such that F ⊆ E and
‖.‖E ≤ ‖.‖F on F. Then B(E, F) is an algebra with the composition as multipli-
cation. For every T ∈ B(E, F) we denote by ‖T‖e the norm of T +K(E, F) in the
Calkin algebra B(E, F)/K(E, F), i.e., ‖T‖e = dist(T,K(E, F)). The essential ra-

dius of T is defined as re(T) = limn→∞ ‖Tn‖
1
n
e . We say that T ∈ B(E, F) is Riesz or

quasicompact if re(T) = 0 or re(T) < 1, respectively. Also T is called power compact,
if TN is compact for some positive integer N.

For considering the concept of quasicompact homomorphisms between alge-
bras of the type Lipn(X, α) we note that Lipℓ(X, α) ⊆ Lipm(X, α) and ‖.‖m,α ≤
‖.‖ℓ,α, if m ≤ ℓ. Consequently, B(Lipm(X, α), Lipℓ(X, α)) is an algebra and by

Definition 3.1, quasicompact homomorphisms T : Lipm(X, α) → Lipℓ(X, α) make
sense when m ≤ ℓ. We note that if T : Lipm(X, α) → Lipℓ(X, α) (m ≤ ℓ) is a ho-
momorphism induced by the selfmap ϕ : X → X, then for each positive integer
n the homomorphism Tn : Lipm(X, α) → Lipℓ(X, α) is induced by the selfmap
ϕn : X → X, where ϕn denotes the n-th iterate of ϕ.
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We give some notations and a theorem due to Feinstein and Kamowitz [9]
that we need in the sequel. Let A be a unital commutative semi-simple Banach

algebra. For each a, b in MA we set ‖a− b‖ = sup{| f̂ (a)− f̂ (b)| : f ∈ A, ‖ f‖ ≤ 1}
(the norm of a− b in the dual space A∗ of A). Furthermore, we set B∗(a, ε) = {b ∈
MA : ‖a − b‖ < ε} for ε > 0 and a ∈ MA.

Theorem 3.2. [9, Theorem 1.2] Let A be a unital commutative semi-simple Banach al-
gebra with connected maximal ideal space MA. Suppose that T is a unital quasicompact
endomorphism of A induced by the selfmap ϕ of MA. Then the following hold:

(i) The operators Tn converge in operator norm to a rank-one unital endomorphism S

of A, and there exists a ∈ MA such that S f = f̂ (a)1 for all f ∈ A. This point a is
the unique fixed point of ϕ.

(ii) For each ε > 0, there exists a positive integer N such that ϕN(MA) ⊆ B∗(a, ε).

(iii)
⋂

ϕn(MA) = {a}.

In the remainder of this section, all the differentiable Lipschitz algebras of
the type Lipn(X, α) and lipn(X, α) are assumed to be complete. In fact, they are
assumed to be natural Banach function algebras on a perfect compact plane set
X.

Let T : Lipm(X, α) → Lipℓ(X, α) be a homomorphism induced by the selfmap
ϕ : X → X. Note that when m ≤ ℓ one can consider T as an endomorphism of
Lipm(X, α) induced by ϕ, since Lipℓ(X, α) ⊆ Lipm(X, α) . Also, we have

K
(

Lipm(X, α), Lipℓ(X, α)
)
⊆ K (Lipm(X, α)) , (3.1)

since ‖.‖m,α ≤ ‖.‖ℓ,α. Consequently,

dist (T,K(Lipm(X, α))) ≤ dist
(

T,K(Lipm(X, α), Lipℓ(X, α))
)

.

Therefore, if T : Lipm(X, α) → Lipℓ(X, α) is a quasicompact homomorphism in-
duced by the selfmap ϕ : X → X, then T is also a quasicompact endomorphism
of Lipm(X, α) induced by ϕ. So, when X is connected, Theorem 3.2 yields to the
existence of a unique fixed point z0 of ϕ. In the next theorem, we give a necessary
condition for the homomorphism T to be quasicompact.

Theorem 3.3. Let X be a connected compact plane set and m, ℓ be two positive integers
with m ≤ ℓ. Assume that T : Lipm(X, α) → Lipℓ(X, α) is a quasicompact homomor-
phism induced by the selfmap ϕ : X → X. If z0 is the fixed point of ϕ, then |ϕ′(z0)| < 1.

Proof. Since T is quasicompact, one has ‖Tn f − f (z0).1‖ℓ,α → 0 as n → ∞, for ev-
ery f ∈ Lipm(X, α), by using Theorem 3.2(i). Employing the coordinate function
Z we have

‖ϕn − z0.1‖ℓ,α → 0 as n → ∞. (3.2)
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On the other hand,

‖ϕn − z0.1‖ℓ,α ≥‖(ϕn − z0.1)′‖α

≥‖(ϕn − z0.1)′‖X

≥|ϕ′
n(z0)|. (3.3)

Since z0 is the fixed point of ϕ, one has ϕ′
n(z0) = (ϕ′(z0))

n for all n ∈ N. Conse-
quently, employing (3.2) and (3.3) we have |ϕ′(z0)| < 1.

Remark 3.4. It is worth mentioning that, in general, the inclusion in (3.1) is proper.
That is, a compact linear operator from the large space Lipm(X, α) to itself whose
image is contained in the smaller space Lipℓ(X, α) (m ≤ ℓ), is not necessarily a
compact linear operator between the spaces. For example, one can consider the
Volterra operator T : Lipm(D, α) → Lipm(D, α) given by (T f )(z) =

∫ z
0 f (ξ)dξ,

f ∈ Lipm(D, α) where D denotes the open unit disc in the complex plane. Then
T ∈ K(Lipm(D, α)), since (T f )′ = f and pα(T f ) ≤ 2‖ f‖

D
. Also, the range

of T is contained in Lipm+1(D, α) and T /∈ K(Lipm(D, α), Lipm+1(D, α)), since
Lipm(D, α) is not finite dimensional.

Clearly every power compact operator is Riesz and hence quasicompact, but
in general the converse of these implications are not true (see [9]). Feinstein and
Kamowitz in [9] proved several general theorems about quasicompact endomor-
phisms and applied these results to the question of when quasicompact or Riesz
endomorphisms of certain algebras are necessarily power compact. For example,
they showed that for C1[0, 1], the Banach algebra of continuously differentiable
functions on [0, 1], there exist quasicompact endomorphisms which are not power
compact. The conditions under which every quasicompact endomorphism of an-
alytic Lipschitz algebras (LipA(X, α) = Lip(X, α) ∩ A(X)) is power compact have
been studied in [16]. In the next theorems we investigate this problem for the
homomorphisms between Lipschitz algebras of the type Lipn(X, α).

Theorem 3.5. Let X be a connected compact plane set with nonempty interior and m, ℓ be
two positive integers with m ≤ ℓ. Let T : Lipm(X, α) → Lipℓ(X, α) be a quasicompact
homomorphism induced by the selfmap ϕ : X → X, with the fixed point z0. If z0 ∈ intX,
then T is power compact.

Proof. By the hypothesis, B(z0, δ) ⊆ intX for some positive number δ. As men-
tioned before, one can consider T as a quasicompact endomorphism of Lipm(X, α)
induced by the selfmap ϕ. Therefore by Theorem 3.2(ii), there exists a positive in-
teger N such that

ϕn(X) ⊆ B∗(z0,
δ

‖Z‖m,α
), (3.4)

for all n ≥ N. On the other hand, for each z, w ∈ X we have |z−w| ≤ ‖Z‖m,α‖z−
w‖, since Lipm(X, α) contains the coordinate function Z. Consequently, B∗(z, r) ⊆
B(z, r‖Z‖m,α) for each z ∈ X and r > 0. This result along with (3.4) implies
that ϕn(X) ⊆ B(z0, δ) for all n ≥ N. Since TN : Lipm(X, α) → Lipℓ(X, α) is a
homomorphism induced by ϕN and ϕN(X) ⊆ intX, Theorem 2.2 implies that TN

is compact and therefore T is power compact.
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Remark 3.6. One can show that the result of Theorem 3.5 also holds for the little
Lipschitz lipn(X, α), when 0 < α < 1.

We now consider the special case of α = 1 and state some results for the
algebras Lipn(X, 1). It is worth mentioning that the fixed point z0 of the inducing
selfmap ϕ : X → X plays an important role in the previous theorems of this
section. The desired properties of this fixed point were obtained from Theorem
3.2. However, we show that if a selfmap ϕ belongs to Lip(X, 1), then parts (ii) and
(iii) of Theorem 3.2 hold when p1(ϕ) < 1. More precisely, we have the following.

Lemma 3.7. Let X be a compact plane set, ϕ : X → X belong to Lip(X, 1), and p1(ϕ) <
1. Then

(i) There exists z0 ∈ X such that
⋂

ϕn(X) = {z0}. This point z0 is the unique fixed
point of ϕ.

(ii) For each ε > 0, there exists a positive integer N such that ϕN(X) ⊆ B(z0, ε).

Proof. First note that for each positive integer n ≥ 2 by the definition of p1, we
have

|ϕn(z)− ϕn(w)| ≤ p1(ϕ)|ϕn−1(z)− ϕn−1(w)|,

for every z, w ∈ X. Consequently,

|ϕn(z)− ϕn(w)| ≤ pn
1 (ϕ)diamX, (3.5)

for every z, w ∈ X and n ∈ N. Therefore we have diamϕn(X) ≤ pn
1(ϕ)diamX.

Since p1(ϕ) < 1, it follows that lim diamϕn(X) = 0 as n → ∞ and hence
⋂

ϕn(X)
= {z0} for some z0 ∈ X. Obviously z0 is the unique fixed point of ϕ. Finally, for
each ε > 0 using (3.5), one can find a positive integer N with |z0 − ϕN(w)| ≤ ε for
every w ∈ X. This ends the proof.

Note that part (i) of Lemma 3.7 is the classical contraction mapping theorem
for complete metric spaces. By the above lemma and using the same technique
as in the proof of Theorem 3.5, we have the following result.

Theorem 3.8. Let X be a compact plane set with nonempty interior and m, ℓ be two
positive integers with m ≤ ℓ. Let T : Lipm(X, 1) → Lipℓ(X, 1) be a homomorphism
induced by the selfmap ϕ : X → X. Assume that p1(ϕ) < 1 and z0 is the fixed point of
ϕ. If z0 ∈ intX, then T is power compact.

In [16], it was shown that if T is a nonzero power compact endomorphism
of LipA(X, 1) induced by a non-constant selfmap ϕ on a certain compact plane
set X, then the fixed point of ϕ is an interior point of X. We show that the same
condition is necessary for a nonzero homomorphism T : Lipm(X, 1) → Lipℓ(X, 1)
(m ≤ ℓ) to be power compact. Before proving this fact we state the definition of
the type of plane sets which we shall consider (see also [3]).

Definition 3.9. A plane set X has an internal circular tangent at c ∈ ∂X if there
exists an open disc ∆ contained in X with ∆ ∩ X = {c}. A plane set X is strongly
accessible from the interior if it has an internal circular tangent at each point of its
boundary.
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We remark that the closed unit disc D and B(z0, r) \ ∪n
k=1B(zk , rk) are exam-

ples of sets in Definition 3.9, where closed discs B(zk, rk) are mutually disjoint in
B(z0, r) = {z ∈ C : |z − z0| < r}.

A compact plane set X is said to have peak boundary with respect to B ⊆ C(X)
if for each c ∈ ∂X there exists a non-constant function h ∈ B such that ‖h‖X =
h(c) = 1 (see [3]).

Theorem 3.10. Let Ω be a bounded domain in the plane and X = Ω satisfy the (∗)-
condition, be strongly accessible from the interior and have peak boundary with respect
to Lipm(X, 1). Assume that T : Lipm(X, 1) → Lipℓ(X, 1) (m ≤ ℓ) is a nonzero power
compact homomorphism induced by the non-constant selfmap ϕ : X → X. If z0 is the
fixed point of ϕ, then z0 ∈ intX.

Proof. If T : Lipm(X, 1) → Lipℓ(X, 1) is a power compact homomorphism, then
by a slight modification of the proof of [3, Theorem 3.4], as it was mentioned in
[3, Remark 3.5], one has ϕN(X) ⊆ intX for some positive integer N. Since z0 is
the fixed point of ϕ, we have ϕN(z0) = z0 and therefore z0 ∈ intX.

Using Theorem 3.10 in the following example which is similar to an example
in [16], we show that there exists a quasicompact endomorphism of Lipm(D, 1)
which is not power compact.

Example 3.11. For c > 1, consider the selfmap ϕ(z) = z+(c−1)
c for every z ∈ D.

For each positive integer n one has ϕn(z) =
z+(cn−1)

cn . Therefore ϕn takes D onto

the closed disc with radius 1
cn centered at 1 − 1

cn in D.

For each 0 < α ≤ 1, let Tc be the endomorphism of Lipm(D, α) induced by ϕ.
Note that since ϕ ∈ Lipm(D, α), the endomorphism Tc is well-defined. Let L f =
f (1).1 for every f ∈ Lipm(D, α), then L is a compact (rank-one) endomorphism
of Lipm(D, α). For each f ∈ Lipm(D, α) we have

‖Tn
c f − L f‖α ≤ ‖ f‖α

3

(cn)α
. (3.6)

Also by k times differentiation, we have (Tn
c f − L f )(k) = c−nk f (k) ◦ ϕn for each k

(1 ≤ k ≤ m). Therefore

‖(Tn
c f − L f )(k)‖α ≤ c−nk(‖ f (k)‖

D
+ c−nαpα( f (k))) ≤ c−nα‖ f (k)‖α, (3.7)

for each k (1 ≤ k ≤ m). Now using (3.6) and (3.7), we get

‖Tn
c f − L f‖m,α =

m

∑
k=0

1

k!
‖(Tn

c f − L f )(k)‖α

≤3c−nα‖ f‖α +
m

∑
k=1

c−nα‖ f (k)‖α

k!

≤3c−nα‖ f‖m,α.

Therefore ‖Tn
c − L‖ ≤ 3

cnα and consequently, one has dist(Tn
c ,K) ≤ 3

cnα where

K = K(Lipm(D, α)). This implies that dist(Tn
c ,K)

1
n ≤ 3

1
n

cα and therefore re(Tc) ≤
1
cα < 1.
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It follows that for each 0 < α ≤ 1 the endomorphisms Tc of Lipm(D, α) are
quasicompact. Note that the fixed point of ϕ, z0 = 1, does not belong to D.
Therefore Theorem 3.10 implies that the endomorphisms Tc are not power com-
pact when α = 1.
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