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Abstract

The study of the conformal group in Rp,q usually involves the conformal
compactification of Rp,q. This allows the transformations to be represented
by linear transformations in Rp+1,q+1. So, for example, the conformal group
of Minkowski space, R1,3 leads to its isomorphism with SO(2, 4). This em-
bedding into a higher dimensional space comes at the expense of the geo-
metric properties of the transformations. This is particularly a problem in
R1,3 where we might well prefer to keep the geometric nature of the various
types of transformations in sight.

In this note, we show that this linearization procedure can be achieved
with no loss of geometric insight, if, instead of using this compactification,
we let the conformal transformations act on two copies of the associated Clif-
ford algebra. Although we are mostly concerned with the conformal group
of Minkowski space (where the geometry is clearest), generalization to the
general case is straightforward.

1 Introduction

The conformal group1 of most interest to physicists is the conformal group on
Minkowski space R1,3. (We will choose the metric g = gµν with signature
+,−,−,− and c = 1, and avoid indices by writing 〈x, y〉 = x0y0 − x1y1 − x2y2 −

1There is not complete unanimity as to what constitutes the conformal group. Most authors
restrict it to a connected component. One advantage of a Clifford algebra approach, is that it
naturally leads to a description of the covering group and even allows the inclusion of operators
such as inversions, which are not normally included in the conformal group, even though they
are conformal transformations.
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x3y3.) Although most of the ideas regarding conformal transformations naturally
carry over to general Rp,q spaces, the geometric ideas are easier to understand in
Minkowski space and we are not burdened with extra notation.

The conformal group can be studied from a number of (equivalent) view-
points.

We can compactify R1,3 to a 4-dimensional submanifold of the projective space
P5(R), in which case the identity connected component of the conformal group
is isomorphic to SO(2, 4). (See e.g. Schottenloher [1] for a detailed outline of this
conventional approach whereby non-linear conformal maps are linearized in a
larger space.)

Castro and Pavšič [2] have shown the emergence of the conformal group
SO(2, 4) from the Clifford algebra of spacetime Cl1,3 by pointing out that the con-
formal group is a subgroup of the Clifford group, but again this leads to an un-
derlying six dimensional space where the extra two components are not easy to
identify geometrically.

Hestenes and others [3, 4] developed the idea of the conformal split in general
Rp,q space and used this to highlight the connection between the conformal group
on Rp,q and spin groups which naturally belong to the Clifford algebra Clp+1,q+1.

Lounesto and Latvamaa [5] extended the Clifford algebra Clp,q to the larger
Clifford algebra Clp+1,q and found simple commutation relations in Clp+1,q de-
scribing the conformal Lie algebra of the conformal group on Rp,q. See also Gi-
rard [6] for a description of conformal transformations in terms of quaternionic
parameters.

In the last two of these approaches, and specializing to Minkowski space, it
is recognized that the Clifford algebra Cl1,3 is not large enough to accommodate
the generators of the conformal Lie algebra on R1,3. In a sense, Lounesto and
Latvamaa’s description is the simplest since only the time index is increased. But
in each of these approaches, the geometric nature of the transformations which
make up the conformal group tends to become obscured.

The aim of this paper is to show that the conformal group (more properly,
the covering group of the conformal group) can be realized by the action of Cl1,3

on the space Cl1,3
⊕

Cl1,3. Although this larger space can be viewed as the vector
space of the Clifford algebra Cl2,3 (which is the approach Lounesto and Latvamaa
take), this is unnecessary. Imposing an algebraic structure tends to obscure the
more important geometric ideas and also raises problems of interpretation - e.g.,
what does the extra generator represent physically or geometrically?

2 Conformal transformations

The 10-parameter Poincaré group is the semi-direct product of the 6-parameter
Lorentz group with the 4-parameter group of space-time translations. The Poin-
caré group may then be enlarged to the conformal group by adding dilatations

x → ρx (ρ > 0)
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as well as special conformal transformations

x →
x + 〈x, x〉a

σ(x)
, where σ(x) = 1 + 2〈a, x〉+ 〈a, a〉〈x, x〉

which correspond to local scale changes.

The special conformal transformations may also be obtained as the product of
an inversion

I : x → x−1 =
x

〈x, x〉

followed by a translation and another inversion.

The generators of the (identity component of the) conformal group may be
realized as differential operators acting on Minkowski space. The operators cor-
responding to Lorentz transformations (Mµν), translations (Pµ), dilatations (D)
and special conformal transformations (Kµ) satisfy the following commutation
relations

[Mµν, Mσρ] = gµρMνσ − gµσMνρ + gνσ Mµρ − gνρMµσ

[Pλ, Mµν] = gλµPν − gλνPµ

[D, Mµν] = 0

[Kλ, Mµν] = gλµKν − gλνKµ

[Pµ, Pν] = 0

[D, Pµ] = −Pµ

[Pµ, Kν] = 2(Mµν − gµνD)

[D, Kµ] = Kµ

[Kµ, Kν] = 0

(Note that there is some divergence between authors. Some require that the
generators be Hermitian in which case the imaginary number i makes an occa-
sional appearance in these equations. Since we are dealing with Lie, i.e. anti-
symmetric, products it is perhaps more logical to define these generators to be
skew-Hermitian. This has the added bonus that only real algebras ever have to
be used. In this context, we follow the definitions in Barut and Raczka [7] and
Lounesto [8].)

3 The Clifford algebra representations

We assume familiarity with the basic definitions and ideas in Clifford algebras.
(For these, see Lounesto [8], or Girard [9].) The basis elements for Cl1,3 will be
e0, e1, e2, e3 with e2

0 = 1 and e2
1 = e2

2 = e2
3 = −1. As usual we write eµν for eµeν etc.

and define the (unit) pseudoscalar e = e0123.

We regard Cl1,3 as acting on the vector space Cl1,3
⊕

Cl1,3 by left multiplica-
tion. It is then straightforward to verify that the above commutation relations are
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satisfied by the following operators.

Mµν(x, y) =
1

2
(eµνx, eµνy)

Pµ(x, y) = (eµy, 0)

Kµ(x, y) = (0, eµx)

D(x, y) =
1

2
(−x, y)

where x, y ∈ Cl1,3.

Although the inversion operator is not in the identity component, it too has a
very natural representation in this context as

I(x, y) = (y, x)

It then follows that Kµ = IPµ I.

Since these operators are defined through the action of the associative algebra
Cl1,3, they can be expected to have extra algebraic properties.2 As an example,
the translation generators Pµ satisfy the property

PµPν = 0

(which trivially implies that [Pµ, Pν] = 0). As is shown below in this section, this
property is important when we want to show that Pµ generates a translation in

the direction eµ.3

The transformations that arise from these generators are now easy to describe
geometrically.

Lorentz transformations. It is well known that the elements Mµν generate (the

proper orthochronous) Lorentz transformations on R1,3. In the Clifford al-

gebra setting, where we could define Mµν =
eµν

2
, this is particularly sim-

ple. For example, a boost in the direction n = (n1, n2, n3), with velocity
v = tanh φ (remember that we are using units with c = 1), may be repre-
sented as

x → x′ = axa−1

where a = exp(φn) and n = n1e01 + n2e02 + n3e03. Similarly spacial rota-
tions through an angle θ, are of the same form but now a = exp(θne) with
n describing the axis of rotation and e = e0123.

2As a general rule, if a Lie algebra structure is imposed on an associative algebra via [A, B] =
AB − BA, some properties of AB may be lost

3The authors are indebted to the anonymous referee for pointing out that an earlier draft of
this paper was too vague and that this point could be clarified.
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Translations. Consider now the generator Pµ defined by

Pµ(x, y) = (eµy, 0)

Clearly P2
µ = 0 so that

exp(tPµ) (x, y) = (x + teµy, y)

More generally, if a = (aµeµ) is a vector in R1,3, then

exp(taµPµ) (x, y) = (x + taµeµy, y)

and in particular
exp(taµPµ) (x, 1) = (x + ta, 1)

so that Pa = aµPµ generates the translation operation Ta : x → x + a in R1,3

when this space is identified with the hyperplane R1,3 ⊕

(1) in Cl1,3
⊕

Cl1,3,
(see figure 1).

It might also be worth pointing out, that there is no algebraic reason why we
should only consider translations in the direction of a 1-vector. If u is any
element of Cl1,3, we can define an operator Pu by

Pu(x, y) = (uy, 0)

and this generates a translation in Cl1,3
⊕

Cl1,3. This then leads to a gener-
alization of the conformal group and it would be interesting to characterize
this extended group further.

Special conformal transformations. The generator Kµ behaves much like Pµ, but
on the second component space of Cl1,3

⊕

Cl1,3. It too generates a transla-
tion Ub : y → y+ b in R1,3 when the space in identified with the hyperplane
(1)

⊕

R1,3, this time of the form

exp(taµKµ) (1, y) = (1, y + ta).

This illustrates an advantage of our approach. The special conformal trans-
formations act in an entirely similar way to translations, but on the second
component subspace rather than the first. In that sense, they are no more
non-linear than translations.

Again we can generalize special conformal transformations to operators Ku

defined by
Ku(x, y) = (0, ux).

Dilatations. The operator D defined by D(x, y) = 1
2(−x, y) generates the trans-

formations
exp(tD)(x, y) =

(

e−
t
2 x, e

t
2 y
)

.

which, in the special cases where either x or y is 0, can represent dilations of
1-vectors in R1,3. Again, there is no algebraic reason why dilatations cannot
be considered on all of Cl1,3 or in fact, on all of Cl1,3

⊕

Cl1,3.
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Inversions. Although inversions are not part of the connected component of the
conformal group (and hence do not appear in the conformal Lie algebra),
they are conformal transformations which in our picture, interchange the
two component subspaces and thus provide a link between special confor-
mal transformations and translations.

Cl1,3

Cl1,3

(0, y)

(0, 1)

(0, y + b)

(x, 0) (1, 0) (x + a, 0)

Ub

Ta

Figure 1: Geometric representation of the translations and special conformal
transformations on the space Cℓ1,3 ⊕ Cℓ1,3. The generators Ta and Ub act on the
hyperspaces R1,3 ⊕ (1) and (1)

⊕

R1,3 respectively.

4 Concluding remarks

In this note we have put forth an alternative linearization procedure for the con-
formal group of Rp,q. To achieve linearization, we let the conformal transforma-
tions act on two copies of the associated Clifford algebra instead of the standard
procedure which involves compactifying Rp,q,(so that the conformal transforma-
tions may be represented by linear transformations in Rp+1,q+1). In particular we
have considered the conformal transformations of Minkowski space R1,3 to high-
light the geometrical advantages provided by this Clifford algebra approach.

Representing the conformal algebra in R1,3 in terms of Cl1,3 rather than some
larger Clifford algebra, preserves and in fact emphasizes the geometric nature of
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Figure 2: Geometric representation of an inversion. An inversion corresponds to
a reflection about the ‘line’ (x, x).

conformal transformations. It also makes it easier to treat algebras such as the
stabilized Poincaré-Heisenberg algebra (SPHA). This is regarded as a stabilized
version of the direct sum of the Heisenberg and Poincaré algebras (see Chrysso-
malakos and Okon [10]), but may also be considered in terms of simple commu-
tation relations in Cl1,3 (See Gresnigt et al. [11]).
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