The orthogonal u-invariant of a quaternion algebra

Karim Johannes Becher

Mohammad G. Mahmoudi

Abstract

In quadratic form theory over fields, a much studied field invariant is the u-invariant, defined as the supremum of the dimensions of anisotropic quadratic forms over the field. We investigate the corresponding notions of u-invariant for hermitian and for skew-hermitian forms over a division algebra with involution, with a special focus on skew-hermitian forms over a quaternion algebra with canonical involution. Under certain conditions on the center of the quaternion algebra, we obtain sharp bounds for this invariant.

1 Involutions and hermitian forms

Throughout this article K denotes a field of characteristic different from 2 and K^{\times} its multiplicative group. We shall employ standard terminology from quadratic form theory, as used in [9]. We say that K is real if K admits a field ordering, nonreal otherwise. By the Artin-Schreier Theorem, K is real if and only if -1 is not a sum of squares in K.

Let Δ be a division ring whose center is K and with $\operatorname{dim}_{K}(\Delta)<\infty$; we say that Δ is a division algebra over K, for short. We further assume that Δ is endowed with an involution σ, that is, a map $\sigma: \Delta \rightarrow \Delta$ such that $\sigma(a+b)=\sigma(a)+\sigma(b)$ and $\sigma(a b)=\sigma(b) \sigma(a)$ hold for any $a, b \in \Delta$ and such that $\sigma \circ \sigma=i d_{\Delta}$. Then $\left.\sigma\right|_{K}: K \rightarrow K$ is an involution of K, and there are two cases to be distinguished.

[^0]If $\left.\sigma\right|_{K}=i d_{K}$, then we say that the involution σ is of the first kind. In the other case, when $\left.\sigma\right|_{K}$ is a nontrivial automorphism of the field K, we say that σ is of the second kind. In general, we fix the subfield $k=\{x \in K \mid \sigma(x)=x\}$ and say that σ is a K / k-involution of Δ. Note that $\sigma: \Delta \rightarrow \Delta$ is k-linear. If σ is of the second kind, then K / k is a quadratic extension. Recall that involutions of the first kind on a division algebra Δ over K exist if and only if Δ is of exponent at most 2, i.e. $\Delta \otimes_{K} \Delta$ is isomorphic to a full matrix algebra over K. Moreover, an involution σ of the first kind on Δ is either of orthogonal or of symplectic type, depending on the dimension of the subspace $\{x \in \Delta \mid \sigma(x)=x\}$ (see [9, Chap. 8, (7.6)]).

Let $\varepsilon \in K^{\times}$with $\sigma(\varepsilon) \varepsilon=1$. We are mainly interested in the cases where $\varepsilon= \pm 1$; if σ is of the first kind then these are the only possibilities for ε. An ε-hermitian form over (Δ, σ) is a pair (V, h) where V is a finite-dimensional right vector space over Δ and h is a map $h: V \times V \rightarrow \Delta$ that is Δ-linear in the second argument and with $\sigma(h(x, y))=\varepsilon \cdot h(y, x)$ for any $x, y \in V$; it follows that h is 'sesquilinear' in the sense that $h(x a, y b)=\sigma(a) h(x, y) b$ for any $x, y \in V$ and $a, b \in \Delta$. In this situation we may also refer to h as the ε-hermitian form and to V as the underlying vector space. We simply say that h is hermitian (resp. skewhermitian) if h is 1 -hermitian (resp. (-1)-hermitian).

In the simplest case we have $\Delta=K, \sigma=i d_{K}$, and $\varepsilon=1$. A 1-hermitian form over $\left(K, i d_{K}\right)$ is a symmetric bilinear form $b: V \times V \rightarrow K$ on a finite-dimensional vector space V over K; by the choice of a basis it can be identified with a quadratic form over K in $n=\operatorname{dim}_{K}(V)$ variables.

An ε-hermitian form h over (Δ, σ) with underlying vector space V is said to be regular or nondegenerate if, for any $x \in V \backslash\{0\}$, the associated Δ-linear form $V \rightarrow \Delta, y \mapsto h(x, y)$ is not the zero map; if this condition fails h is said to be singular or degenerate. We say that h is isotropic if there exists a vector $x \in V \backslash\{0\}$ such that $h(x, x)=0$, otherwise we say that h is anisotropic. Let h_{1} and h_{2} be two ε hermitian forms over (Δ, σ) with underlying spaces V_{1} and V_{2}. The orthogonal sum of h_{1} and h_{2} is the ε-hermitian form h on the Δ-vector space $V=V_{1} \times V_{2}$ given by $h(x, y)=h_{1}\left(x_{1}, y_{1}\right)+h_{2}\left(x_{2}, y_{2}\right)$ for $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in V$, and it is denoted by $h_{1} \perp h_{2}$. An isometry between h_{1} and h_{2} is an isomorphism of Δ-vector spaces $\tau: V_{1} \rightarrow V_{2}$ such that $h_{1}(x, y)=h_{2}(\tau(x), \tau(y))$ holds for all $x, y \in V_{1}$. If an isometry between h_{1} and h_{2} exists, then we say that h_{1} and h_{2} are isometric and write $h_{1} \simeq h_{2}$. Witt's Cancellation Theorem [2, (6.3.4)] states that, whenever h_{1}, h_{2} and h are ε-hermitian forms on (Δ, σ) such that $h_{1} \perp h \simeq h_{2} \perp h$, then also $h_{1} \simeq h_{2}$ holds. A regular $2 n$-dimensional ε-hermitian form (V, h) is hyperbolic if there exits an n-dimensional subspace W of V with $h(x, y)=0$ for all $x, y \in W$. The (up to isometry) unique regular isotropic 2 -dimensional ε-hermitian form is denoted by \mathbb{H}.

Given an ε-hermitian form (V, h) over (Δ, σ) we write

$$
D(h)=\{h(x, x) \mid x \in V \backslash\{0\}\} \subseteq \Delta .
$$

Note that this set contains 0 if and only if h is isotropic. We further put

$$
\operatorname{Sym}^{\varepsilon}(\Delta, \sigma)=\{x \in \Delta \mid \sigma(x)=\varepsilon x\} .
$$

For any ε-hermitian form h over (Δ, σ) we have $D(h) \subseteq \operatorname{Sym}^{\varepsilon}(\Delta, \sigma)$. Given elements $a_{1}, \ldots, a_{n} \in \operatorname{Sym}^{\varepsilon}(\Delta, \sigma)$, an ε-hermitian form h on the Δ-vector space
$V=\Delta^{n}$ is defined by $h(x, y)=\sigma\left(x_{1}\right) a_{1} y_{1}+\cdots+\sigma\left(x_{n}\right) a_{n} y_{n}$ for $x=\left(x_{1}, \ldots, x_{n}\right)$, $y=\left(y_{1}, \ldots, y_{n}\right) \in \Delta^{n}=V$. We denote this form h by $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ and observe that it is regular if and only if $a_{i} \neq 0$ for $1 \leqslant i \leqslant n$. As $\operatorname{char}(K) \neq 2$, any ε-hermitian form is isometric to $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ for some $n \in \mathbb{N}$ and $a_{1}, \ldots, a_{n} \in \operatorname{Sym}^{\varepsilon}(\Delta, \sigma)$ [2, (6.2.4)].

We denote by $\operatorname{Herm}_{n}^{\varepsilon}(\Delta, \sigma)$ the set of isometry classes of regular n-dimensional ε-hermitian forms over (Δ, σ). Mapping $a \in \operatorname{Sym}^{\varepsilon}(\Delta, \sigma)$ to the class of $\langle a\rangle$ yields a surjection

$$
\operatorname{Sym}^{\varepsilon}(\Delta, \sigma) \backslash\{0\} \longrightarrow \operatorname{Herm}_{1}^{\varepsilon}(\Delta, \sigma)
$$

Two elements $a, b \in \operatorname{Sym}^{\varepsilon}(\Delta, \sigma)$ are congruent if there exists $c \in \Delta$ such that $a=\sigma(c) b c$, which is equivalent to saying that $\langle a\rangle \simeq\langle b\rangle$ over (Δ, σ).
1.1 Remark. In the case where $\Delta=K$ and $\varepsilon=1$, there is a natural one-to-one correspondence between $\operatorname{Herm}_{1}^{\varepsilon}(\Delta, \sigma)$ and $K^{\times} / K^{\times 2}$. We may thus identify the two sets with one another and endow $\operatorname{Herm}_{1}^{1}(\Delta, \sigma)$ with a natural group structure. One can proceed in a similar way in two other cases, first when Δ is a quaternion algebra and σ is its canonical involution, and second when σ is a unitary involution on the field $\Delta=K$.

For an ε-hermitian form h over (Δ, σ) and $a \in k^{\times}$where $k=\{x \in K \mid \sigma(x)=$ $x\}$, we define the scaled ε-hermitian form $a h$ in the obvious way. Two ε-hermitian forms h and h^{\prime} over (Δ, σ) are said to be similar if $h^{\prime} \simeq a h$ holds for some $a \in k^{\times}$.

2 Hermitian u-invariants

We keep the setting of the previous section. Following [8, Chap. 9, (2.4)] we define

$$
u(\Delta, \sigma, \varepsilon)=\sup \{\operatorname{dim}(h) \mid h \text { anisotropic } \varepsilon \text {-hermitian form over }(\Delta, \sigma)\}
$$

in $\mathbb{N} \cup\{\infty\}$ and call this the u-invariant of $(\Delta, \sigma, \varepsilon)$. In this context,

$$
u\left(K, i d_{K}, 1\right)=\sup \{\operatorname{dim}(\varphi) \mid \varphi \text { anisotropic quadratic form over } K\}
$$

is the u-invariant of the field K, also denoted by $u(K)$. We refer to [8, Chap. 8] for an overview of this invariant for nonreal fields and for a discussion of different versions of this definition that are interesting when dealing with real fields.

To obtain upper bounds on $u(\Delta, \sigma, \varepsilon)$, one can use the theory of systems of quadratic forms. In fact, to every ε-hermitian form h over (Δ, σ) one can associate a system of quadratic forms over k in such a way that the isotropy of h is equivalent to the simultaneous isotropy of this system.

For $r \in \mathbb{N}$, one denotes by $u_{r}(K)$ the supremum of the $n \in \mathbb{N}$ for which there exists a system of r quadratic forms in n variables over K having no nontrivial common zero. The numbers $u_{r}(K)$ are called the system u-invariants of K. Note that $u_{0}(K)=0$ and $u_{1}(K)=u(K)$. Leep proved that these system u-invariants satisfy the inequalities

$$
u_{r}(K) \leqslant r u(K)+u_{r-1}(K) \leqslant \frac{r(r+1)}{2} u(K)
$$

for any integer $r \geqslant 1$. Using systems of quadratic forms, he further showed that $u(L) \leqslant \frac{[L: K]+1}{2} u(K)$ holds for an arbitrary finite field extension L / K. (See [9, Chap. 2, Sect. 16] for these and more facts on systems on quadratic forms.) In the same vein the following result was obtained in [7, (3.6)].
2.1 Proposition. Let Δ be a division algebra over K, σ an involution on Δ, and $\varepsilon \in K$ with $\varepsilon \sigma(\varepsilon)=1$. Then

$$
u(\Delta, \sigma, \varepsilon) \leqslant \frac{u_{r}(k)}{m^{2}[K: k]} \leqslant \frac{r(r+1)}{2 m^{2}[K: k]} \cdot u(k)
$$

where $k=\{x \in K \mid \sigma(x)=x\}, m=\operatorname{deg}(\Delta)$ and $r=\operatorname{dim}_{k}\left(\operatorname{Sym}^{\varepsilon}(\Delta, \sigma)\right)$. In particular, if $u(k)<\infty$, then $u(\Delta, \sigma, \varepsilon)<\infty$.

In this article, we are mainly concerned with the u-invariant of an involution of the first kind. Assume that σ is an involution of the first kind on the division algebra Δ over K. In this case $\Delta \otimes_{K} \Delta$ is isomorphic to a full matrix algebra and $\varepsilon= \pm 1$. In [7] it is explained that $u(\Delta, \sigma, \varepsilon)$ only depends on ε and on the type of σ, i.e., whether it is orthogonal or symplectic. More precisely, given two involutions of the first kind σ and τ on Δ one has $u(\Delta, \sigma, \varepsilon)=u(\Delta, \tau, \varepsilon)$ if σ and τ are of same type and $u(\Delta, \sigma, \varepsilon)=u(\Delta, \tau,-\varepsilon)$ if they are of opposite type. We define

$$
u^{+}(\Delta)=u(\Delta, \sigma,+1) \quad \text { and } \quad u^{-}(\Delta)=u(\Delta, \sigma,-1)
$$

with respect to an arbitrary orthogonal involution σ on Δ, as these numbers do not depend on the choice of σ. We call $u^{+}(\Delta)$ the orthogonal and $u^{-}(\Delta)$ the symplectic u-invariant of Δ. By the previous, for any symplectic involution τ on Δ one has $u(\Delta, \tau, \varepsilon)=u^{-\varepsilon}(\Delta)$.

Let us briefly mention that, in the case of an involution σ of the second kind, $u(\Delta, \sigma, \varepsilon)$ depends only on the field $k=\{x \in K \mid \sigma(x)=x\}$, in particular it does not depend on ε at all.

Let $i \in \mathbb{N}$. Using (2.1) one can obtain estimates for the u-invariants of division algebras with involution over a \mathcal{C}_{i}-field. We recall some facts from Tsen-Lang Theory, following [9, Chap. 2, Sect. 15]. A field K is called a \mathcal{C}_{i}-field if every homogeneous polynomial over K of degree d in more than d^{i} variables has a nontrivial zero. The natural examples of \mathcal{C}_{i}-fields are extensions of transcendence degree i of an arbitrary algebraically closed field and (for $i>0$) extensions of transcendence degree $i-1$ of a finite field. A result due to Lang and Nagata states that, if K is a \mathcal{C}_{i}-field, then $u_{r}(K) \leqslant r \cdot 2^{i}$ for any $r \in \mathbb{N}$ (cf. [9, Chap. 2, (15.8)]). In [8, Chap. 5], variations of the \mathcal{C}_{i}-property and open problems in this context are discussed.
2.2 Corollary. Let K be a \mathcal{C}_{i}-field and let Δ be a division algebra of exponent 2 and of degree m over K. Then $u^{+}(\Delta) \leqslant 2^{i-1} \cdot \frac{m+1}{m}$ and $u^{-}(\Delta) \leqslant 2^{i-1} \cdot \frac{m-1}{m}$.

Proof: We use (2.1) and the fact that $u_{r}(k) \leqslant 2^{i} r$.
2.3 Corollary. Let K be a \mathcal{C}_{i}-field. Let Δ be a quaternion division algebra over K. Then $u^{+}(\Delta) \leqslant 3 \cdot 2^{i-2}$ and $u^{-}(\Delta) \leqslant 2^{i-2}$.

Example (5.4) will show that the first bound in (2.3) is sharp. For the second bound, we leave this as an easy exercise. In fact, determining the symplectic u-invariant of a quaternion algebra is a pure quadratic form theoretic problem in view of Jacobson's Theorem [9, Chap. 10, (1.1)], which relates hermitian forms over a quaternion algebra with canonical involution -the unique symplectic involution on a quaternion algebra - to quadratic forms over the center. This is why our investigation for quaternion algebras concentrates on the orthogonal u-invariant.

3 Kneser's Theorem

In this section, we give an upper bound on the u-invariant of a division algebra with involution in terms of the number of 1-dimensional (skew-)hermitian forms, subject to a condition on the levels of certain subalgebras. This extends an observation due to Kneser [4, Chap. XI, (6.4)] on the commutative case.

From [6] we recall the definition of the level of an involution. Let σ be an involution on a central simple algebra Δ over K. The level of σ is defined as

$$
s(\Delta, \sigma)=\sup \{m \in \mathbb{N} \mid m \times\langle 1\rangle \text { is anisotropic over }(\Delta, \sigma)\}
$$

in $\mathbb{N} \cup\{\infty\}$. Whenever $s(\Delta, \sigma)$ is finite, it is equal to the smallest number m for which -1 can be written as a sum of m hermitian squares over (Δ, σ).
3.1 Theorem. Let Δ be a division algebra over K equipped with an involution σ. Let $\varepsilon \in K$ be such that $\sigma(\varepsilon) \varepsilon=1$. Let ψ be an ε-hermitian form over (Δ, σ) and let $\alpha \in \Delta^{\times}$ be such that $\sigma(\alpha)=\varepsilon \alpha$. Let $C_{\Delta}(\alpha)$ be the centralizer of $K(\alpha)$ in Δ. Suppose that $s\left(C_{\Delta}(\alpha),\left.\sigma\right|_{C_{\Delta}(\alpha)}\right)<\infty$. If $\varphi=\psi \perp\langle\alpha\rangle$ is anisotropic then $D(\psi) \subsetneq D(\varphi)$.

Proof: We write $0=\sigma\left(d_{0}\right) d_{0}+\cdots+\sigma\left(d_{s}\right) d_{s}$ with $s=s\left(C_{\Delta}(\alpha),\left.\sigma\right|_{C_{\Delta}(\alpha)}\right)$ and $d_{0}, \ldots, d_{s} \in C_{\Delta}(\alpha) \backslash\{0\}$. We suppose that $D(\psi)=D(\varphi)$ and want to conclude that φ is isotropic. We claim that $\alpha \cdot\left(\sigma\left(d_{0}\right) d_{0}+\cdots+\sigma\left(d_{i}\right) d_{i}\right) \in D(\varphi)$ for any $0 \leqslant i \leqslant s$. For $i=s$ this yields that φ is isotropic.

For $i=0$, note that α and $\alpha \sigma\left(d_{0}\right) d_{0}$ are represented by φ. Let now $1 \leqslant i \leqslant s$ and assume that the claim holds for $i-1$. With $\alpha\left(\sigma\left(d_{0}\right) d_{0}+\cdots+\sigma\left(d_{i-1}\right) d_{i-1}\right) \in$ $D(\varphi)=D(\psi)$, we obtain readily that $\alpha\left(\sigma\left(d_{0}\right) d_{0}+\cdots+\sigma\left(d_{i-1}\right) d_{i-1}\right)+\alpha \sigma\left(d_{i}\right) d_{i} \in$ $D(\varphi)$, finishing the argument.
3.2 Corollary. Assume that $s\left(C_{\Delta}(\alpha),\left.\sigma\right|_{C_{\Delta}(\alpha)}\right)<\infty$ for every $\alpha \in \operatorname{Sym}^{\varepsilon}(\Delta, \sigma)$. Then $u(\Delta, \sigma, \varepsilon) \leqslant\left|\operatorname{Herm}_{1}^{\varepsilon}(\Delta, \sigma)\right|$.

Proof: Let $h \simeq\left\langle a_{1}, \ldots, a_{n}\right\rangle$ be an anisotropic ε-hermitian form of dimension n over (Δ, σ). Set $h_{i}=\left\langle a_{1}, \ldots, a_{i}\right\rangle$ for $1 \leqslant i \leqslant n$. Using (3.1) we obtain that $D\left(h_{1}\right) \subsetneq$ $D\left(h_{2}\right) \subsetneq \cdots \subsetneq D\left(h_{n}\right)=D(h)$. We conclude that h represents at least n pairwise incongruent elements of $\operatorname{Sym}^{\varepsilon}(\Delta, \sigma)$, i.e. $\left|\operatorname{Herm}_{1}^{\varepsilon}(\Delta, \sigma)\right| \geqslant n$. Therefore we have $\left|\operatorname{Herm}_{1}^{\varepsilon}(\Delta, \sigma)\right| \geqslant u(\Delta, \sigma, \varepsilon)$.
3.3 Remark. The hypothesis of (3.2) is trivially satisfied if the subfield of K consisting of the elements fixed by σ is nonreal; this is for example the case when σ is of the first kind and K is a nonreal field.
3.4 Example. Let p be a prime number different from 2 and let Q denote the unique quaternion division algebra over \mathbb{Q}_{p}. Then it follows from [9, Chap. 10, (3.6)] that $u^{+}(Q)=\left|\operatorname{Herm}_{1}^{-1}(Q, \gamma)\right|=3$ (see also (4.9), below). Let now m be a positive integer and $K=Q_{p}\left(\left(t_{1}\right)\right) \ldots\left(\left(t_{m}\right)\right)$. Then Q_{K} is a quaternion division algebra over K and $u^{+}\left(Q_{K}\right)=\left|\operatorname{Herm}_{1}^{-1}\left(Q_{K}, \gamma\right)\right|=3 \cdot 2^{m}$. This follows from the fact that the u-invariant(s) and the number of 1 -dimensional ε-hermitian forms over a division algebra defined over a field K both double when the center is extended from K to $K((t))$.

The upper bound on the u-invariant obtained in (3.2) motivates us to look for criteria for the finiteness of $\operatorname{Herm}_{1}^{\varepsilon}(\Delta, \sigma)$ where Δ is a division algebra over K, σ an involution on Δ, and $\varepsilon= \pm 1$. We conjecture that $\left|\operatorname{Herm}_{1}^{\varepsilon}(\Delta, \sigma)\right|<\infty$ is equivalent to $\left|K^{\times} / K^{\times 2}\right|<\infty$. In the next section we shall confirm this in the case of skew-hermitian forms over a quaternion division algebra.

4 Congruence of pure quaternions

From this section on we consider a quaternion division algebra Q over K. Let γ denote the canonical involution of Q, π the norm form of Q and π^{\prime} its pure part, so that $\pi=\langle 1\rangle \perp \pi^{\prime}$. By a skew-hermitian form over Q we always mean a regular skew-hermitian form over (Q, γ). In this section we want to describe $\operatorname{Herm}_{1}^{-1}(Q, \gamma)$.

Following [10] the discriminant of a skew-hermitian form h over Q is defined as the class $\operatorname{disc}(h)=(-1)^{n} \operatorname{Nrd}\left(\left(h\left(x_{i}, x_{j}\right)\right)_{i j}\right) K^{\times 2}$ in $K^{\times} / K^{\times 2}$ where $\left(x_{1}, \ldots, x_{n}\right)$ is an arbitrary Δ-basis of the underlying vector space and where $\operatorname{Nrd}: M_{n}(\Delta) \rightarrow K$ denotes the reduced norm.
4.1 Remark. For $a \in K^{\times}$, there exists a skew-hermitian form of dimension 1 and discriminant a over Q if and only if $-a$ is represented by the pure part of the norm form of Q. In particular, any 1-dimensional skew-hermitian form over Q has nontrivial discriminant.
4.2 Proposition. Skew-hermitian forms of dimension 1 over Q are classified up to similarity by their discriminants.

Proof: More generally, similar skew-hermitian forms over Q have the same discriminant. Assume now that $z_{1}, z_{2} \in Q^{\times}$are pure quaternions such that the discriminants of the skew-hermitian forms $\left\langle z_{1}\right\rangle$ and $\left\langle z_{2}\right\rangle$ coincide. Hence there exists $d \in K^{\times}$such that $z_{2}^{2}=d^{2} z_{1}^{2}=\left(d z_{1}\right)^{2}$. Therefore the pure quaternions z_{2} and $d z_{1}$ are congruent in Q, i.e. there exists $\alpha \in Q^{\times}$such that $d z_{1}=\alpha^{-1} z_{2} \alpha$. Multiplying this equality by $\operatorname{Nrd}(\alpha)=\gamma(\alpha) \alpha$, it follows that $(\operatorname{Nrd}(\alpha) d) z_{1}=\gamma(\alpha) z_{2} \alpha$. With $c=(\operatorname{Nrd}(\alpha) d) \in K^{\times}$we obtain that $\left\langle c z_{1}\right\rangle \simeq\left\langle z_{2}\right\rangle$, so $\left\langle z_{1}\right\rangle$ and $\left\langle z_{2}\right\rangle$ are similar.
4.3 Remark. A closer look at the above argument yields the following refinement. Let G be a subgroup of K^{\times}containing $\operatorname{Nrd}\left(Q^{\times}\right)$. Two 1-dimensional skewhermitian forms are obtained from one another by scaling with an element of G if and only if their discriminants coincide in K^{\times} / G^{2}.
4.4 Lemma (Scharlau). Let $\lambda, \mu \in Q^{\times}$be anticommuting elements, so in particular $Q \simeq(a, b)_{K}$ with $a=\lambda^{2}, b=\mu^{2} \in K^{\times}$. Let $c \in K^{\times}$. The skew-hermitian forms $\langle\lambda\rangle$ and $\langle c \lambda\rangle$ over Q are isometric if and only if c is represented by one of the quadratic forms $\langle 1,-a\rangle$ and $\langle b,-a b\rangle$ over K.
Proof: See [9, Chap. 10, (3.4)].
The following result was obtained in [5], in slightly different terms.
4.5 Proposition (Lewis). Let λ be a nonzero pure quaternion in Q. Consider $\operatorname{Herm}_{1}^{-1}(Q, \gamma)$ as a pointed set with the isometry class of $\langle\lambda\rangle$ as distinguished point. With $L=K(\lambda)$ and $a=\lambda^{2} \in K^{\times}$, one obtains an exact sequence

$$
1 \longrightarrow \mathbb{Z} / 2 \mathbb{Z} \longrightarrow K^{\times} / N_{L / K}\left(L^{\times}\right) \xrightarrow{\cdot \lambda} \operatorname{Herm}_{1}^{-1}(Q, \gamma) \xrightarrow{(-a) \operatorname{Nrd}} K^{\times} / K^{\times 2} .
$$

Proof: Let $b \in K^{\times}$be such that $Q=(a, b)_{K}$. By (4.4) the group of elements $x \in K^{\times}$ such that $\langle x \lambda\rangle \simeq\langle\lambda\rangle$ coincides with $N_{L / K}\left(L^{\times}\right) \cup b N_{L / K}\left(L^{\times}\right)$. This proves the exactness in the first two terms. The exactness at $\operatorname{Herm}_{1}^{-1}(Q, \gamma)$ follows from (4.2).
4.6 Remark. We sketch an alternative, cohomological argument for the exact sequence in (4.5), which was pointed out to us by J.-P. Tignol. Let $\rho=\operatorname{Int}(\lambda) \circ \gamma$. Note that $\operatorname{Herm}_{1}^{-1}(Q, \gamma)$ can be identified with $\operatorname{Herm}_{1}^{1}(Q, \rho)=H^{1}(K, O(\rho))$ where $O(\rho)=\{x \in Q \mid \rho(x) x=1\}$. By [3, Chap. VII, $\S 29]$, there is an exact sequence $1 \rightarrow O^{+}(\rho) \rightarrow O(\rho) \rightarrow \mu_{2} \rightarrow 1$. Moreover, $O^{+}(\rho)=L^{1}=\left\{x \in L \mid N_{L / K}(x)=1\right\}$. This yields the exact sequence $1 \rightarrow \mu_{2} \rightarrow H^{1}\left(K, L^{1}\right) \rightarrow H^{1}(K, O(\rho)) \rightarrow K^{\times} / K^{\times 2}$. Using that $H^{1}\left(K, L^{1}\right) \simeq K^{\times} / N_{L / K}\left(L^{\times}\right)$we obtain the sequence in (4.5).
4.7 Proposition. Let $S=\left\{a K^{\times 2} \mid a \in D\left(\pi^{\prime}\right)\right\} \subseteq K^{\times} / K^{\times 2}$. For $\alpha \in S$ let $H_{\alpha}=\left\{h \in \operatorname{Herm}_{1}^{-1}(Q, \gamma) \mid \operatorname{disc}(h)=\alpha\right\}$. Then $\operatorname{Herm}_{1}^{-1}(Q, \gamma)=\bigcup_{\alpha \in S} H_{\alpha}$, in particular $\left|\operatorname{Herm}_{1}^{-1}(Q, \gamma)\right|=\sum_{\alpha \in S}\left|H_{\alpha}\right|$. Moreover, for any $\alpha=a K^{\times 2} \in S$ one has $\left|H_{\alpha}\right| \leqslant \frac{1}{2}\left|K^{\times} / N_{L / K}\left(L^{\times}\right)\right|$with $L=K(\sqrt{-a})$.
Proof: The first part is clear. For $\alpha \in S$, there is a pure quaternion $\lambda \in Q^{\times}$with $\operatorname{disc}(\langle\lambda\rangle)=-\alpha$, and (4.5) applied to $L=K(\lambda)$ yields the last part.
4.8 Corollary. Let $S=\left\{a K^{\times 2} \mid a \in D\left(\pi^{\prime}\right)\right\}$ and let \mathcal{L} be the set of maximal subfields of Q. Then

$$
\left|\operatorname{Herm}_{1}^{-1}(Q, \gamma)\right| \leqslant \frac{1}{2} \sup _{L \in \mathcal{L}}\left|K^{\times} / N_{L / K}\left(L^{\times}\right)\right| \cdot|S|
$$

Proof: This is immediate from (4.7).
4.9 Remark. We keep the notation of (4.8). Kaplansky showed in [1] that Q is the unique quaternion division algebra over K if and only if

$$
\sup _{L \in \mathcal{L}}\left|K^{\times} / N_{L / K}\left(L^{\times}\right)\right|=2 .
$$

If this condition holds, then (4.8) yields $\left|\operatorname{Herm}_{1}^{-1}(Q, \gamma)\right| \leqslant|S|$, and as the converse inequality follows from (4.7), we obtain that $\left|\operatorname{Herm}_{1}^{-1}(Q, \gamma)\right|=|S|$. This applies in particular to any local field. Moreover, if K is a non-dyadic local field, then $\left|K^{\times} / K^{\times 2}\right|=4$ and $|S|=3$, so that we obtain immediately that $u^{+}(Q)=$ $\left|\operatorname{Herm}_{1}^{-1}(Q, \gamma)\right|=|S|=3$.
4.10 Theorem. $\operatorname{Herm}_{1}^{-1}(Q, \gamma)$ is finite if and only if $K^{\times} / K^{\times 2}$ is finite.

Proof: Let $S=\left\{a K^{\times 2} \mid a \in D\left(\pi^{\prime}\right)\right\}$. We fix a pure quaternion λ in Q and put $L=K(\lambda)$.

Assume that $K^{\times} / K^{\times 2}$ is finite. Then S is finite. For $\alpha=a K^{\times 2}$, there is a surjection from H_{α} to the group $K^{\times} / N_{L / K}\left(L^{\times}\right)$, where $L=K(\sqrt{-a})$, and this group is a quotient of $K^{\times} / K^{\times 2}$. Therefore H_{α} is finite for any $\alpha \in S$. Since S is also finite, it follows that $\operatorname{Herm}_{1}^{-1}(Q, \gamma)=\bigcup_{\alpha \in S} H_{\alpha}$ is finite.

Suppose now that $\operatorname{Herm}_{1}^{-1}(Q, \gamma)$ is finite. Then $K^{\times} / N_{L / K}\left(L^{\times}\right)$is finite by (4.5). As $K^{\times} / \operatorname{Nrd}\left(Q^{\times}\right)$is a quotient of this group, it is also finite. Moreover, the image of disc : $\operatorname{Herm}_{1}^{-1}(Q, \gamma) \longrightarrow K^{\times} / K^{\times 2}$ is finite, which means that S is finite. Since the group of reduced norms $\operatorname{Nrd}\left(Q^{\times}\right)$is generated by the elements of $D\left(\pi^{\prime}\right)$, it follows that $\operatorname{Nrd}\left(Q^{\times}\right) / K^{\times 2}$ is finite. Hence, $K^{\times} / K^{\times 2}$ is finite.

5 Anisotropic forms of dimension three

We keep the setting of the previous section. In this section we show that 3-dimensional anisotropic skew-hermitian forms over Q do exist in all but a few exceptional cases.
5.1 Lemma. Let $x, y, z \in Q^{\times}$be pure quaternions. If $\operatorname{Nrd}(x y z) \notin D\left(\pi^{\prime}\right)$, then the skew-hermitian form $\langle x, y, z\rangle$ over Q is anisotropic.

Proof: If $\langle x, y, z\rangle$ is isotropic, then $\langle x, y, z\rangle \simeq \mathbb{H} \perp\langle w\rangle$ for some pure quaternion $w \in Q^{\times}$and it follows that $\operatorname{Nrd}(x y z)=\operatorname{Nrd}(w) \in D\left(\pi^{\prime}\right)$.

Recall that a preordering of a field K is a subset $T \subseteq K$ that is closed under addition and under multiplication and contains all squares in K.
5.2 Theorem. The following are equivalent:
(1) $D\left(\pi^{\prime}\right) \cup\{0\}$ is a preordering of K.
(2) $D\left(\pi^{\prime}\right)$ is closed under multiplication.
(3) $D\left(\pi^{\prime}\right)=D(\pi)$.
(4) For any $a, b, c \in D\left(\pi^{\prime}\right)$ one has abc $\in D\left(\pi^{\prime}\right)$.

If any of these conditions holds, then K is a real field and $Q_{K(\sqrt{-1})}$ is split.
Proof: By the definition of a preordering, (1) implies (2). Since any element of Q is a product of two pure quaternions, the group of nonzero norms $D(\pi)$ is generated by the elements of $D\left(\pi^{\prime}\right)$. Therefore (2) implies (3). Since $D(\pi)$ is always a group, it is clear that (3) implies (4).

Assume now that (4) holds. Take a diagonalization $\pi^{\prime} \simeq\langle a, b, c\rangle$. Then $a, b, c \in D\left(\pi^{\prime}\right)$, so (4) yields that $a b c \in D\left(\pi^{\prime}\right)$. Since π^{\prime} has determinant 1 , we have $a b c \in K^{\times 2}$ and conclude that $1 \in D\left(\pi^{\prime}\right)$. Fixing $c=1 \in D\left(\pi^{\prime}\right)$ we conclude from (4) that $D\left(\pi^{\prime}\right)$ is closed under multiplication. Hence (2) and (3) are satisfied. For $a, b \in D\left(\pi^{\prime}\right)$, we have $a^{-1} b \in D\left(\pi^{\prime}\right)$, whence $1+a^{-1} b \in D(\pi)=D\left(\pi^{\prime}\right)$ by (3)
and $a+b=a\left(1+a^{-1} b\right) \in D\left(\pi^{\prime}\right)$ by (2). Hence $D\left(\pi^{\prime}\right)$ is closed under addition. Therefore $D\left(\pi^{\prime}\right) \cup\{0\}$ is a preordering, showing (1). Since $\pi=\langle 1\rangle \perp \pi^{\prime}$ is anisotropic, this preordering does not contain -1 , so K is real. Moreover, $Q_{K(\sqrt{-1})}$ is split because $1 \in D\left(\pi^{\prime}\right)$.
5.3 Corollary. If $D\left(\pi^{\prime}\right) \neq D(\pi)$ or if K is nonreal or if $Q_{K(\sqrt{-1})}$ is a division algebra, then $u^{+}(Q) \geqslant 3$.

Proof: By (5.2), in each case there are $a, b, c \in D\left(\pi^{\prime}\right)$ with $a b c \notin D\left(\pi^{\prime}\right)$. With pure quaternions $x, y, z \in Q$ such that $\operatorname{Nrd}(x)=a, \operatorname{Nrd}(y)=b$, and $\operatorname{Nrd}(z)=c$, the skew-hermitian form $\langle x, y, z\rangle$ is anisotropic by (5.1).
5.4 Example. Let $k=\mathbb{C}\left(X_{1}, X_{2}\right), Q=\left(X_{1}, X_{2}\right)$, and $K=\mathbb{C}\left(X_{1}, \ldots, X_{n}\right)$ for some $n \geqslant 2$. Then Q_{K} is a division algebra and $u^{+}\left(Q_{K}\right) \leqslant 3 \cdot 2^{n-2}$ by (2.3), because K is a \mathcal{C}_{n}-field. By (5.3), there is an anisotropic 3-dimensional skew-hermitian form h over Q. Multiplying this form h by the quadratic form $\left\langle 1, X_{3}\right\rangle \otimes \cdots \otimes\left\langle 1, X_{n}\right\rangle$ over K, we obtain a skew-hermitian form of dimension $3 \cdot 2^{n-2}$ over Q_{K}. Therefore $u^{+}\left(Q_{K}\right)=3 \cdot 2^{n-2}$.

6 Kaplansky fields

Kaplansky [1] noticed that most statements about quadratic over local fields remain valid over what he called 'generalized Hilbert fields', which are called 'preHilbert fields' in [4, Chap. XII, Sect. 6]. As the relation to Hilbert's work is vague (based on the notion of the 'Hilbert symbol' for a local field), we use the term 'Kaplansky field' instead. To be precise, K is called a Kaplansky field if there is a unique quaternion division algebra over K (up to isomorphism). Natural examples of such fields are local fields and real closed fields. For the construction of other examples we refer to [4, Chap. XII, Sect. 7].

Tsukamoto [10] obtained a classification for skew-hermitian forms over the unique quaternion division algebra over a field K that is either real closed or a local number field. As observed in [10], the same result holds more generally under the condition that the field K satisfies 'local class field theory'. In this section we show that Tsukamoto's classification for skew-hermitian forms over a quaternion division algebra Q over K is valid whenever K is a Kaplansky field, which is a strictly weaker condition. The proof is adapted from [10] and [9, Chap. 10, (3.6)].
6.1 Lemma. Let K be a Kaplansky field and let Q be the unique quaternion division algebra over K. For any pure quaternion $\lambda \in Q^{\times}$and any $d \in K^{\times}$we have $\langle\lambda\rangle \simeq\langle d \lambda\rangle$ as skew-hermitian forms over Q.

Proof: Let $\mu \in Q^{\times}$be such that $\mu \lambda=-\lambda \mu$. Then $Q \simeq(a, b)_{K}$ for $a=\lambda^{2}$ and $b=\mu^{2}$. Assume that there exists $d \in K^{\times}$with $\langle\lambda\rangle \not \approx\langle d \lambda\rangle$. By (4.4), none of the forms $\langle 1,-a\rangle$ and $\langle b,-a b\rangle$ represents d. Then $(a, d)_{K}$ is a quaternion division algebra and not isomorphic to Q, contradicting the hypothesis.
6.2 Theorem (Tsukamoto). Let K be a Kaplansky field and let Q be the unique quaternion division algebra over K.
(a) Any skew-hermitian form of dimension at least 4 over Q is isotropic.
(b) Skew-hermitian forms over Q are classified by their dimension and discriminant.
(c) A 2-dimensional skew-hermitian form over Q is isotropic if and only if it has trivial discriminant.
(d) Any 3-dimensional skew-hermitian form over Q with trivial discriminant is anisotropic.

Proof: Let γ denote the canonical involution on Q. We first show that 1-dimensional skew-hermitian forms over Q are classified by the discriminant. Suppose that $z_{1}, z_{2} \in \operatorname{Sym}^{-}(Q, \gamma)$ are such that the skew-hermitian forms $\left\langle z_{1}\right\rangle$ and $\left\langle z_{2}\right\rangle$ over Q have the same discriminant. According to (4.2), then $\left\langle z_{1}\right\rangle \simeq\left\langle c z_{2}\right\rangle$ for some $c \in K$. Since also $\left\langle z_{2}\right\rangle \simeq\left\langle c z_{2}\right\rangle$ by (6.1), we obtain that $\left\langle z_{1}\right\rangle \simeq\left\langle z_{2}\right\rangle$.
(a) Let $z_{1}, z_{2} \in \operatorname{Sym}^{-}(Q, \gamma)$ be such that the skew-hermitian form $\left\langle z_{1}, z_{2}\right\rangle$ over Q has trivial discriminant. Then $\operatorname{Nrd}\left(z_{1}\right)$ and $\operatorname{Nrd}\left(z_{2}\right)$ represent the same class in $K^{\times} / K^{\times 2}$. This means that the 1-dimensional forms $\left\langle z_{1}\right\rangle$ and $\left\langle-z_{2}\right\rangle$ have the same discriminant, whence $\left\langle z_{1}\right\rangle \simeq\left\langle-z_{2}\right\rangle$ by what we showed above.
(b) Let φ be a 3-dimensional skew-hermitian form over Q. If φ is isotropic, then $\varphi \simeq \mathbb{H} \perp\langle a\rangle$ where $a \in \operatorname{Sym}^{-}(Q, \gamma)$, and it follows that φ has the same discriminant as $\langle a\rangle$, which cannot be trivial by part (a).
(c) Let φ be a 4-dimensional skew-hermitian form over Q. Choose $a_{1}, \ldots, a_{4} \in$ $\operatorname{Sym}^{-}(Q, \gamma)$ such that $\varphi \simeq\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle$. As $\operatorname{dim}_{K}\left(\operatorname{Sym}^{-}(Q, \gamma)\right)=3$, there exist $c_{1}, \ldots, c_{4} \in K$, not all zero, such that $c_{1} a_{1}+c_{2} a_{2}+c_{3} a_{3}+c_{4} a_{4}=0$. By the first paragraph of the proof, for $1 \leqslant i \leqslant 4$ there is some $d_{i} \in Q$ with $c_{i} a_{i}=\gamma\left(d_{i}\right) a_{i} d_{i}$. Then $\sum_{i=1}^{4} \gamma\left(d_{i}\right) a_{i} d_{i}=0$ and thus φ is isotropic.
(d) Let φ and ψ be two n-dimensional skew-hermitian forms over Q for some $n \geqslant 1$, and assume that both forms have the same discriminant. By (b), the $2 n$ dimensional form $\varphi \perp-\psi$ then splits off $n-1$ hyperbolic planes. The remaining 2-dimensional form has trivial discriminant and thus is hyperbolic by (a). Therefore $\varphi \perp-\psi$ is hyperbolic, which means that $\varphi \simeq \psi$.
6.3 Corollary. Let Q be a quaternion division algebra over K. Skew-hermitian forms over Q are classified by dimension and discriminant if and only if K is a Kaplansky field.

Proof: By (6.2) the condition is sufficient. To show its necessity, suppose that Q is not the unique quaternion division algebra over K. By (4.9), there exists $\lambda \in Q \backslash K$ such that, for the field $L=K(\lambda) \subseteq Q$, the index of $N_{L / K}\left(L^{\times}\right)$in K^{\times}is at least 4 . Let $a, b \in K^{\times}$be such that $\lambda^{2}=a$ and $Q \simeq(a, b)_{K}$. Now, there exists $c \in K^{\times}$ such that neither c nor $b c$ is a norm of L / K. Then the two 1-dimensional skewhermitian forms $\langle\lambda\rangle$ and $\langle c \lambda\rangle$ over Q have the same discriminant, but they are not isometric by (4.4).
6.4 Corollary. Let K be a nonreal Kaplansky field and let Q be the unique quaternion division algebra over K. Then $u^{+}(Q)=3$.

Proof: We have $u^{+}(Q) \leqslant 3$ by (6.2) and $u^{+}(Q) \geqslant 3$ by (5.3).
The field K is said to be euclidean if $K^{\times 2} \cup\{0\}$ is an ordering of K, or equivalently, if K is real and $K^{\times}=K^{\times 2} \cup-K^{\times 2}$ (cf. [4, Chap. VIII, (4.2)]). If K is
euclidean, then $(-1,-1)_{K}$ is the unique quaternion division algebra over K, in particular K is a Kaplansky field.
6.5 Proposition. Let Q be a quaternion division algebra over K and γ its canonical involution. The following are equivalent:
(1) $u^{+}(Q)=1$.
(2) $\left|\operatorname{Herm}_{1}^{-1}(Q, \gamma)\right|=1$.
(3) K is euclidean and $Q \simeq(-1,-1)_{K}$.

Proof: The equivalence of (1) and (2) is clear. If (3) holds, then K is a Kaplansky field and any 1-dimensional skew-hermitian form over Q has trivial discriminant, and by (6.2) this implies (2).

Suppose that (1) and (2) hold. From (2) it follows that $D\left(\pi^{\prime}\right)=K^{\times 2}$, whence $\pi^{\prime} \simeq\langle 1,1,1\rangle$ and $\sum K^{\times 2}=K^{\times 2}$. Therefore we have $Q \simeq(-1,-1)_{K}$ and furthermore $-1 \notin K^{\times 2}=\sum K^{\times 2}$, as Q is not split. So K is real. To prove (3), it remains to show that $K^{\times}=K^{\times 2} \cup-K^{\times 2}$. We fix $i \in Q$ with $i^{2}=-1$ and $L=K(i)$. For any $a \in K^{\times}$, the skew-hermitian form $\langle i,-a i\rangle$ over Q is isotropic by (1), whence $a \in N_{L / K}\left(L^{\times}\right) \cup-N_{L / K}\left(L^{\times}\right)=K^{\times 2} \cup-K^{\times 2}$ by (4.4).
6.6 Proposition. Let K be a real Kaplansky field and let $Q=(-1,-1)_{K}$. Then $u^{+}(Q) \leqslant 2$.

Proof: Let i be a pure quaternion in Q with $i^{2}=-1$. By (6.2), the skew-hermitian form $\langle i, i\rangle$ over Q is isotropic. We claim that every 2-dimensional skew-hermitian form over Q is isometric to $\langle i, z\rangle$ for some pure quaternion $z \in Q^{\times}$. Once this is shown, it follows that every 3-dimensional skew-hermitian form over Q contains $\langle i, i\rangle$ and therefore is isotropic.

Let h be a 2-dimensional skew-hermitian form over Q. We write $\operatorname{disc}(h)=$ $a K^{\times 2}$ with $a \in K^{\times}$. Then $a \in \operatorname{Nrd}\left(Q^{\times}\right)$and a is a sum of four squares in K. Since K is a real Kaplansky field, the quaternion algebra $(-1, a)_{K}$ is split, because it is not isomorphic to $(-1,-1)_{K}$. Therefore a is a sum of two squares in K. It follows that there is a pure quaternion z in Q with $\operatorname{Nrd}(z)=a$. Then the skew-hermitian form $\langle i, z\rangle$ over Q has discriminant a and is therefore isometric to h, by (6.2).
6.7 Example. Let K be a maximal subfield of \mathbb{R} with $2 \notin K^{\times 2}$. Then K is a real field with four square classes represented by $\pm 1, \pm 2$, and $Q=(-1,-1)_{K}$ is the unique quaternion division algebra over K. Since $Q \simeq(-1,-2)_{K}$, there are anticommuting pure quaternions $\alpha, \beta \in Q$ with $\alpha^{2}=1$ and $\beta^{2}=2$. Then the skew-hermitian form $\langle\alpha, \beta\rangle$ over Q has nontrivial discriminant $2 K^{\times 2}$, so it is anisotropic. This together with (6.6) shows that $u^{+}(Q)=2$.
6.8 Theorem. Let K be a Kaplansky field and let Q be the unique quaternion division algebra over K. Then

$$
u^{+}(Q)=\left\{\begin{array}{l}
1 \text { if } K \text { is real euclidean, } \\
2 \text { if } K \text { is real non-euclidean, } \\
3 \text { if } K \text { is nonreal. }
\end{array}\right.
$$

Proof: This follows from (6.2), (6.5), (6.6), and (5.3).

Acknowledgements

We wish to express our gratitude to David Lewis and to Jean-Pierre Tignol for inspiring discussions on the subject of this work. We further wish to acknowledge financial support provided by the European RTN Network 'Algebraic KTheory, Linear Algebraic Groups and Related Structures' (HPRN CT-2002-00287), the Swiss National Science Foundation (Grant No. 200020-100229/1), the Irish Research Council for Science, Engineering, and Technology (Basic Research Grant SC/02/265), the Research Council of Sharif University of Technology, the Deutsche Forschungsgemeinschaft (project Quadratic Forms and Invariants, BE 2614/3-1), and by the Zukunftskolleg, Universität Konstanz.

References

[1] I. Kaplansky. Fröhlich's local quadratic forms. J. Reine Angew. Math. 239/240 (1969): 74-77.
[2] M.-A. Knus. Quadratic and Hermitian forms over rings. Grundlehren der Mathematischen Wissenschaften, 294. Springer-Verlag, Berlin, 1991.
[3] M.-A. Knus, S. A. Merkurjev, M. Rost, J.-P. Tignol. The Book of Involutions. American Mathematical Society Colloquium Publications, 44. Providence, RI, 1998.
[4] T. Y. Lam, Introduction to Quadratic Forms over Fields. Graduate Studies in Mathematics, 67. American Mathematical Society, Providence, RI, 2005.
[5] D. W. Lewis. Quadratic forms, quaternion algebras and Hilbert's theorem 90. Preprint (1979).
[6] D. W. Lewis. Sums of Hermitian Squares. J. Algebra 115 (1988): 466-480.
[7] M. G. Mahmoudi. Hermitian forms and the u-invariant. Manuscripta Math. 116 (2005): 493-516.
[8] A. Pfister. Quadratic forms with applications to algebraic geometry and topology. London Mathematical Society Lecture Note Series, 217. Cambridge University Press, Cambridge, 1995.
[9] W. Scharlau. Quadratic and Hermitian forms. Grundlehren der Mathematischen Wissenschaften, 270. Springer-Verlag, Berlin, 1985.
[10] T. Tsukamoto. On the local theory of quaternionic anti-hermitian forms. J. Math. Soc. Japan 13 (1961): 387-400.

Fachbereich Mathematik und Statistik, D203, Universität Konstanz, 78457 Konstanz, Germany.
Email: becher@maths.ucd.ie
Department of Mathematical Sciences, Sharif University of Technology, P.O. Box: 11155-9415, Tehran, Iran.

Email: mmahmoudi@sharif.ir

[^0]: Received by the editors November 2008.
 Communicated by M. Van den Bergh.
 2000 Mathematics Subject Classification : 11E04, 11E39, 11E81.
 Key words and phrases : hermitian form, involution, division algebra, isotropy, system of quadratic forms, discriminant, Tsen-Lang Theory, Kneser's Theorem, local field, Kaplansky field.

