Almost homoclinics for nonautonomous second
order Hamiltonian systems by a variational
approach *
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Abstract

In this paper we shall be concerned with the existence of almost homo-
clinic solutions of the Hamiltonian system § + V,(t,q) = f(t), where t € R,
g € R"and V(t,q) = —3(L(t)q,9) + W(t,q). It is assumed that L is a conti-
nuous matrix valued function such that L(t) are symmetric and positive def-
inite uniformly with respect to t. A map W is C!-smooth, W, (t,q) = o(|q]), as
g — 0 uniformly with respect to t and W(t,q)|g| =2 — o, as |q| — co. More-
over, f # 0 is continuous and sufficiently small in L2(R,R"). It is proved
that this Hamiltonian system possesses a solution gp: R — IR” such that
go(t) — 0, as t — =oo. Since g = 0 is not a solution of our system, g is not
homoclinic in a classical sense. We are to call such a solution almost homo-
clinic. It is obtained as a weak limit of a sequence of almost critical points of
an appropriate action functional I.

1 Introduction

In this work we will look more closely at the second order Hamiltonian system:

G+ Vy(t,q) = f(b), ey
wheret € R, g € R" and functions V: R x R" = R, f: R — R" satisfy:
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(V1) V(tx) = —5(L(t)x,x) + W(t,x) forall t € R, x € R",

(V2) Lis a continuous matrix valued function such that L(¢) are symmetric and
positive definite uniformly with respect to t € IR, i.e. there is & > 0 such
that

(L(t)x, x) > a|x|?

forallx e R"and t € R,

(V3) W is Cl-smooth and there exists y > 2 such that
0 < uW(t,x) < (Wy(t x),x)

forallx € R"\ {0} and t € IR,
(Vi) Wy(t,x) = o(|x|), as x — 0 uniformly with respect to t,
(Vs) there is a continuous map W: R" — R such that

W(t,x) < W(x)
forallt € R, x € R”,

(V) f: R — R"is continuous and f # 0.

Here (-,-): R” x R" — R denotes the standard scalar product in R” and | - | is
the induced norm.
Let us remark that (V3)-(Vy) implies that

W(t,x) = o(|x]*), 0
as x — 0 uniformly with respect to t. Moreover, from (V3) it follows that a map-
ping

(0,00) 35 — W(t, s 1x)sH

is nonincreasing for all t € R and x # 0. Hence for every t € R,

W(tx) <W (tﬁ) x|#, if 0 < |x| <1 3)
and
W(tx) > W (t’i—’) x|®, i |x] > 1. 4)

From (4) we conclude that W grows at a superquadratic rate, as |x| — oo. That is
foreacht € R,
W(t, x)
|x[2

By the assumptions (V;)-(Vs), ¢ = 0 is not a solution of (1). Thus our Hamilto-
nian system does not possess a solution homoclinic to 0 in a classical meaning.
However, we can still ask for the existence of solutions emanating from 0 and
terminating at 0.

— 00, as |x| — oo.
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Definition 1.1. We will say that a solution q of (1) is almost homoclinic (to 0) if
g(t) — 0,as t — £o0.

Let us define
Eim{qe WARRY: [ (14 + (Lq(0),q(1))) dt < oo},

Then E is a Hilbert space under the norm

gl = [ (40P + (o)t a())) de.

Moreover, for g € E,
qllwr2rrey < Bllglle, )

where 71 := \/min{1,a}. Set
M := max{W(x): x € R" A |x| =1}.
Then M > 0, by (V3) and (V). Suppose that
(V7)
M < ZL,BZ and |[|f|l2r R < \/75 <21? —M) .

Let us remark that if « > 1 then § = 1 and, in consequence, M < % and

(Kl I2(RR") < ‘/TE (% — M) We will prove the following theorem.

Theorem 1.1. If the conditions (V1)-(Vy) are satisfied then the Hamiltonian system (1)
has an almost homoclinic solution qo € E.

Many authors have studied the existence of homoclinic solutions of Hamilto-
nian systems. For a treatment of this subject we refer the reader for example to
[1,2,3,4,5,9,11, 12, 13]. This work is motivated by [10] in which P. Rabinowitz
and K. Tanaka received the following result.

Theorem 1.2 (see [10], Th. 5.4, p. 491). Suppose that V: R x R" — R satisfies (V1),
(V3)-(Vy) and

(Vg) L€ C(R,R™) isa function such that L(t) is a positive definite symmetric matrix
forall t € R and the smallest eigenvalue of L(t) — 0o, as |t| — oo, i.e.

|i?f (L(t)x,x) — o0, as |t| — oo,
x|=1

(Vo) thereis W € C(R",R) such that
W(t,x) + W, (8, )] < W(x)

forallx e R", t € R.
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Then the Hamiltonian system
i+ Vy(t,q) =0

has a nontrivial homoclinic to 0 solution q € E.

Our theorem extends the result of Rabinowitz and Tanaka to the case where f is
nonzero. We see at once that (Vo) implies (V5) and it is easy to check that (V3)
gives (V). From (Vg) it follows that there exists r > 0 such that

|t| > r = inf (L(t)x,x) > 1.

|x[=1

Set

:=min inf (L(#)x, x).
v mgh;‘n:l(() )

Since L(t) is positive definite for each t € R, we get v > 0. For all x € R" and
t € R we have

(L()x, x) > Inf (L(t)y, y)|x[* > min{1, y}[x|?,
y|=1
which yields (V) with « = min{1, v}.
Similarly to [10] our solution is obtained by variational methods. Namely,
applying Ekeland’s variational principle we receive a sequence {g }xeny Weakly
convergent in E such that its weak limit is an almost homoclinic solution of (1).

In [6, 7] we also studied almost homoclinic solutions of Hamiltonian systems.
There we considered the case where V is periodic with respect to t € R.

2 Proof of Theorem 1.1

At first, for the convenience of the reader we recall some inequalities which hold
for all g € E, thus making our exposition self-contained. We start with a result
which the proof can be found for example in [6].

Fact 2.1 (see [6], Fact 2.8, p. 385). Let q: R — R" be a continuous mapping such that
g € L2 (R,IR"). For every t € R, the following inequality holds:

loc

9(5)] < V2 ( [ () +1a)P) ds> . ©)

2

The estimation (6) implies that for each ¢ € W12(R, R"),

19l < V2l wizmms, ”

Combining (7) with (5), we get

191l Lo (r gy < V2Bll4lle ®)
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for each g € E. By (7), if p > 2, then for each g € WI2(R,R"),

| _lawrar < ||q||m ey [ la(t)Pat
< 2T gl [l P

a2 g
Hence, if p > 2,

Jallr ey < 2 lallwrage ey ©)
for each g € W'2(IR,R") and, in addition, if ||q]| ro(RR") < 1, then

HqHL;ﬂ R,R") — HqHLZ R,R")* (10)

Forg € E, let

1) = glalt = [~ Weegwde+ [~ (7

Then I € C!(E,R) and it is easy to verify that any critical point of I on E is a
classical solution of (1). Moreover,

P = [ (@),20) + Lo, w(0) d

— 00

—/’a%aq m+/ dt
forallg,w € E.

We will prove that I has a critical point by the use of Ekeland’s variational
principle. Therefore, we state this theorem precisely.

Theorem 2.2 (see [8], Th. 4.3, p. 77). Let K be a compact metric space, Ky C K a closed
subset, X a Banach space, x € C(Ko, X) and let us define the complete metric space M
by

M:={ge€C(K X): g(s) =x(s)ifs € Ko}
with the usual distance. Let ¢ € C1(X,R) and let us define

c:=g&ﬂ%¢@(ﬂ

and

€1 := max
! x(Ko) ¢

If ¢ > cy, then for each e > 0 and for each h € M such that
h <
max ¢(h(s)) < c+e,
there exists v € X such that

¢ —& < ¢(v) < maxg(h(s)),

seK
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dist(v, h(K)) < e2,
19" (0)]]x- < ¢2.

The proof of Theorem 1.1 will be divided into a sequence of lemmas.

Lemma 2.3. There are ¢ > 0and A > 0 such that if ||q||g = o,
then I(q) > A.

Proof. Forallg € E,

1 o0
1(9) > 5li9lIE — /_oo W(t,q(t))dt — Bl fll .2 g g 19| E- (11)
Set
_ V2 12
=35

Assume that 0 < [[g][g < ¢. Then (8) implies that 0 < ||g|| .~ g r" < 1. Applying
(V5), (3) and (10), we get

/_O:OW(t,q(t))dt < /_ZW <t|gg—2|) lq(t)|"dt
q(t)

[ (e ) e

M/ g(t)|dt = M“qHLV R,R")

< Mlqlfo g gy < MBll4l1E-

IN

Consequently, if ||g]|r < o, then

1
1(9) = 5 llgllz — MB*[lql1 = BlIf | 2w rry lalE-

Thus for ||q]|g = o,
1
I(q) > (E - Mﬁz) o> — Ballfll 2 r re

1/ 1 V2 _
=5 (@ - M) — S I fll2mn = A

From (V) we get that A > 0, which completes the proof. n

Lemma 2.4. Let ¢ be a constant defined by (12). Then there exists Q € E such that
QI > 0 and I(Q) < 0.

Proof. Take u € C3°(R,R") such that |u(t)| = 1if [t| < 1and u(t) = 0if |t > 2.
Let us define m as follows:

— inf{W(t,x): [t| <1 A |x] =1},
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(V3) implies that m > 0. By the use of (4), for every ¢ > 1, we receive

/_o:oW(t,Cu(t))dt > /_1IW(t,gu(t))dtzf_llw(t,|;‘§2|)|gu(t)|ﬂdt

1
> met /_lyu(t)wt:zmgﬂ.

In consequence,

1) = @l ~ [ wiegue)ar+ [~ (7o), u(n)ar

1
< 5‘32||u||%—Zm‘?’+€‘l3||f||L2(na,uan)||M||E/

and hence I({u) — —oo, as { — oo. Thus if ¢ is large enough, then Q = ¢u
satisfies the desired claim. [ |

From now on, let us define the complete metric space M by
M:={g € C([0,1]E): g(0) =0 A g(1) = Q}

with the usual distance

d(g,h) := max |[g(s) —h(s)|[e-

s€[0,1]
Let
= inf 1
O Ty )
and

c1 :=max{I(0), 1(Q)},
where Q is determined by Lemma 2.4. We check at once that ¢c; = 0. Moreover,
combining Lemma 2.3 with Lemma 2.4 we have that c > A > 0. Next, applying
Theorem 2.2 we conclude that there exists a sequence {g }ren in E such that

I(gr) = c N T'(gx) =0, (13)

as k — oo. {q tren is so-called a sequence of almost critical points (compare [8],
§4.1, p. 75-80).

Lemma 2.5. The sequence {qy } ke given by (13) possesses a weakly convergent subse-
quence in E.

Proof. Since E is a Hilbert space, it is sufficient to show that {g }ren is bounded.
For all k € IN, we have

100~ 10 ome = (5 ) ol = [ Wit au(o)ar

% /_ o;(vxa,(t, ai (1)), gk (1))dt

+@—%)/wquumm

—00

1 1 1
> (53 ) It =B (1= ) Wl lasle
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by (V3). From (13) we obtain that there is kg € IN such that for all k > ko,

I(qx) —c| <1 A I (gi)lles < p

Since |I'(g¢)q¢| < III'(q1)l|e- 9¢ |, we receive

1
I(qx) — ﬁI/(QkMk <c+1+|lgklle

for all k > ko. Consequently, we get

1 1

1
1+ ladle = (5 ) Il =8 (1= 1) Ifllmen lacle 19

for all k > ky. Since u > 2, the inequality (14) implies that {gi }ren is a bounded
sequence in E. n

Let g0 € E be a weak limit of a weakly convergent subsequence of the se-
quence {qx }xen- Without loss of generality we can assume that

gy —qo in E, as k — oo. (15)

Lemma 2.6. qo: R — R" given by (15) is a desired almost homoclinic solution of the
Hamiltonian system (1).

Proof. We have to show that I'(q9) = 0 and go(t) — 0, as t — +o0.
Fix u € C§(R,R"). There is a > 0 such that supp(u) C [—a,a]. From (15) it
follows that gy — go uniformly on [—a, a] and

/ S, a)dt = [ (Go(t), (),

—a —a

as k — oo. Hence

a

Vau = [ e, a0+ [ (L0, u)d

—a

~ [ Wttae(o),unde + [ (F(0),u(ar =3

—a

[ Go i+ [ (L(e)a0(t), u(t))d

—a —a

- [ WyttaoteD,uo)dt + [ (£, u(®)dt = I'qo).

—a

On the other hand, by (13) we have I'(gx)u — 0, as k — co. In consequence, we
receive I'(go)u = 0. Since C{°(IR, R") is dense in E, we have I'(gp) = 0. From (6)
we conclude that g (t) — 0, as t — £00, which completes the proof. n
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