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Abstract

The main aim of this paper is to introduce a modified Noor iterations
scheme to provide a unified approach to the Mann and Ishikawa iteration
processes. We study weak and strong convergence of the new iterations
scheme of a nonself asymptotically nonexpansive map satisfying a new con-
trol condition in uniformly convex Banach spaces. Several recent results
about Mann-type and Ishikawa-type iteration schemes for nonself(self) asymp-
totically nonexpansive maps follow directly and concurrently from our re-
sults.

1 Introduction

Let C be a nonempty convex subset of a real normed space E. The map T : C → C
is said to be asymptotically nonexpansive[8] if there exists a sequence {kn} ⊂
[1, ∞) with limn→∞ kn = 1 such that ‖Tnx − Tny‖ ≤ kn ‖x − y‖ for all x, y ∈ C
and for all n ≥ 1; it becomes nonexpansive if kn = 1 for all n ≥ 1. The set of fixed
points of T is denoted by F(T) = {x : Tx = x}.

Iterative techniques for approximating fixed points of nonexpansive and asym-
ptotically nonexpansive maps have been studied by many authors using various
iteration schemes including the Mann iterations scheme and Ishikawa iterations
scheme( see e.g.,[2-6, 9-14, 19-26,28-29]).
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Xu and Noor[29] introduced a three-step iterative scheme, an extension of
two-step iterative scheme of Ishikawa[10], as follows:



















x1 ∈ C,

xn+1 = αnTnyn + (1 − αn)xn,

yn = βnTnzn + (1 − βn)xn,

zn = γnTnxn + (1 − γn)xn, n ≥ 1,

(1.1)

where {αn}, {βn} and {γn} are control sequences in [0, 1] and T : C → C is
asymptotically nonexpansive.

For motivation and background of the three-step iterative scheme, the reader
is referred to the fundamental work of Noor[15](see also [7]). The theory of three-
step iterative scheme is very rich and is well studied in the context of one or
more mappings(for example, see [3], [5], [11], [18], [21], and [26]. It has been
shown in [1] that three-step method performs better than Ishikawa(two-step)
and Mann(one-step) methods for solving variational inequalities. This signifies
that Noor three-step methods are more efficient and robust than the Mann and
Ishikawa type iterative methods to solve problems of applied sciences.

From (1.1), Ishikawa iteration scheme is obtained when γn = 0 for all n ≥ 1 :











x1 ∈ C,

xn+1 = αnTnyn + (1 − αn)xn,

yn = βnTnzn + (1 − βn)xn, n ≥ 1,

(1.2)

From (1.2), we get Mann iteration scheme by taking βn = 0 for all n ≥ 1 :

{

x1 ∈ C,

xn+1 = αnTnxn + (1 − αn)xn, n ≥ 1.
(1.3)

Recall that T is completely continuous if for every bounded sequence {xn} in C,
{Txn} has a convergent subsequence in C.

Using the scheme(1.1), Xu and Noor obtained:

Theorem 1.1[29, Theorem 2.1]. Let E be a uniformly convex Banach space and let C be
a nonempty closed bounded convex subset of E. Let T be completely continuous asymptot-
ically nonexpansive selfmap of C with {kn} satisfying kn ≥ 1 and ∑

∞
n=1(kn − 1) < ∞.

Let {αn}, {βn}, {γn} be control sequences in [0, 1] satisfying: (i) 0 < lim infn→∞ αn ≤
lim supn→∞ αn < 1, and (ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
For x1 ∈ C, generate {xn} by (1.1). Then {xn} converges strongly to a fixed point of T.

If γn = 0 for all n ≥ 1, in Theorem 1.1, we obtain Ishikawa-type convergence
result which is a generalization of Theorem 3 in [23]. Unfortunately, neither from
Theorem 1.1 nor from Theorem 3 of Rhoades[23], one can deduce directly Mann-
type convergence theorem in the presence of the condition lim infn→∞ βn > 0
(1 − βn < 1 − δ for some δ > 0), respectively. To unify the proofs of Ishikawa-
type and Mann-type convergence results, Xu and Noor[29] removed the restric-
tion lim infn→∞ βn > 0 and proved:
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Theorem 1.2 [29, Theorem 2.2]. Let E be a uniformly convex Banach space and let
C be a nonempty closed bounded and convex subset of E. Let T be completely con-
tinuous asymptotically nonexpansive selfmap of C with {kn} satisfying kn ≥ 1 and

∑
∞
n=1(kn − 1) < ∞. Let {αn}, {βn} be control sequences in [0, 1] satisfying: (i) 0 <

lim infn→∞ αn ≤ lim supn→∞ αn < 1, and (ii) lim supn→∞ βn < 1. For a given value
x1 ∈ C, generate the scheme {xn} given in (1.2). Then {xn} converges strongly to a
fixed point of T.

The choice βn = 0 for all n ≥ 1 in the above theorem led to a Mann-type
convergence result in Theorem 2.3 of [29].

This reveals that a unified approach to iterative construction of fixed points
hinges on the control sequences used in the process. Indeed, a survey of the
literature about approximation of fixed points of some nonlinear maps through
convergence of the iterative schemes reflects that conditions on the iteration con-
trol sequences play a vital role to establish the convergence results (see [1-6, 8-29,
31]).

In the schemes(1.1-1.3), T is a selfmap on C.However, if T is from C to E, the
iteration processes (1.1-1.3) may fail to be well defined.

The purpose of this paper is two fold:
(1) To construct an iteration scheme of nonself asymptotically nonexpansive maps.
(2) To provide a unified approach to the two well-known iteration processes,
namely, Mann iteration and Ishikawa iteration.

2 Preliminaries

Let E be a real Banach space. A subset C of E is said to be a retract of E if there
exists a continuous map P : E → C such that Px = x for all x ∈ C. A map
P : E → E is a retraction if P2 = P. For nonself nonexpansive maps, some authors
have studied strong and weak convergence in Hilbert spaces or uniformly convex
Banach spaces (see, e.g.[13]).

The concept of nonself asymptotically nonexpansive maps has been intro-
duced in 2003 by Chidume, Ofoedu and Zegeye[2] as the generalization of asymp-
totically nonexpansive selfmaps as follows:

Let P : E → C be the nonexpansive retraction of E onto C. A map T : C →
E is asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1, ∞) with
limn→∞ kn = 1 such that

∥

∥

∥
T(PT)n−1x − T(PT)n−1y

∥

∥

∥
≤ kn ‖x − y‖

for all x, y ∈ C and for all n ≥ 1.
Using the iteration process:

{

x1 ∈ C,

xn+1 = P((1 − αn)xn + αnT(PT)n−1xn), n ≥ 1,

Chidume, Ofoedu and Zegeye[2] obtained some convergence theorems for non-
self asymptotically nonexpansive maps in uniformly convex Banach spaces.
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We give the following nonself version of (1.1).



















x1 ∈ C,

xn+1 = P(αnT(PT)n−1yn + (1 − αn)xn),

yn = P(βnT(PT)n−1zn + (1 − βn)xn),

zn = P(γnT(PT)n−1xn + (1 − γn)xn), n ≥ 1,

(2.1)

where {αn}, {βn} and {γn} are control sequences in [0, 1], T : C → E asymptoti-
cally nonexpansive map and P is the nonexpansive retraction as defined above.

Ishikawa type-iteration scheme and Mann type-iteration scheme follow im-
mediately from (2.1). When T is a selfmap, P becomes the identity map and
hence (2.1) coincides with (1.1).

In this note, we focus on weak and strong convergence of the scheme(2.1) to a
fixed point of a nonself asymptotically nonexpansive map on an unbounded do-
main under a new and more flexible condition on a control sequence and deduce
Ishikawa-type convergence and Mann-type convergence results simultaneously
as a special case of our results.

In the sequel, we need the following definitions and results:

Definition 2.1(cf.[19]). A normed space E is said to satisfy Opial’s condition if for any
sequence {xn} in E, xn ⇀ x (weak convergence of xn to x) implies that
lim supn→∞ ‖xn − x‖ < lim supn→∞ ‖xn − y‖ for all y ∈ E with y 6= x.

Definition 2.2(cf.[19]). A map T : C → E is called demiclosed with respect to y ∈ E if
for each sequence {xn} in C and each x ∈ E, xn ⇀ x and Txn → y imply that x ∈ C
and Tx = y.

Definition 2.3 (cf.[12]). A map T : C → E is said to satisfy condition (A) if there
exists a nondecreasing function f : [0, ∞) → [0, ∞) with f (0) = 0, f (r) > 0 for
all r ∈ (0, ∞) such that ‖x − Tx‖ ≥ f (d(x, F)) for all x ∈ C where d(x, F) =
infp∈F(T) ‖x − p‖ .

Lemma 2.1[30, Theorem 2]. Let r > 0 be a fixed real number. Then a Banach space
E is uniformly convex if and only if there is a continuous strictly increasing convex map
g : [0, ∞) → [0, ∞) with g(0) = 0 such that for all x, y ∈ Br[0] = {x ∈ E : ‖x‖ ≤ r},

‖λx + (1 − λ)y‖2 ≤ λ ‖x‖2 + (1 − λ) ‖y‖2 − λ(1 − λ)g(‖x − y‖)

for all λ ∈ [0, 1].

Lemma 2.2 [27, Lemma 2.2]. Let g : [0, ∞) → [0, ∞) with g(0) = 0 be a continuous
strictly increasing map. If a sequence {xn} in [0, ∞) satisfies limn→∞ g(xn) = 0, then
limn→∞ xn = 0.

Lemma 2.3[11, Lemma 1.1]. Let {rn} and {sn} be two nonnegative real sequences such
that

rn+1 ≤ (1 + sn)rn, for all n ≥ 1.

If ∑
∞
n=1 sn < ∞, then limn→∞ rn exists.
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3 Weak and Strong Convergence Results

We prove a pair of lemmas to establish our weak and strong convergence theo-
rems.

Lemma 3.1. Let C be a nonempty closed convex subset of a normed space E which is
also a nonexpansive retract of E with nonexpansive retraction P. Let T : C → E
be asymptotically nonexpansive map with {kn} ⊂ [1, ∞) such that ∑

∞
n=1(kn − 1) < ∞

and F(T) 6= φ. Then for the iterative scheme {xn} given in (2.1), we have that: (a)
limn→∞ ‖xn − q‖ exists for any q ∈ F(T) and (b) limn→∞ d(xn, F) exists.
Proof. Let q ∈ F(T). Using (2.1), we have the following estimates:

‖yn − q‖ =
∥

∥

∥
P(βnT(PT)n−1zn + (1 − βn)xn)− Pq

∥

∥

∥
(3.1)

≤
∥

∥

∥
βnT(PT)n−1zn + (1 − βn)(xn − q)

∥

∥

∥

=
∥

∥

∥
βn(T(PT)n−1zn − q) + (1 − βn)(xn − q)

∥

∥

∥

≤ βnkn ‖zn − q‖+ (1 − βn) ‖xn − q‖ .

‖zn − q‖ =
∥

∥

∥
P(γnT(PT)n−1xn + (1 − γn)xn)− Pq

∥

∥

∥
(3.2)

≤
∥

∥

∥
γnT(PT)n−1xn + (1 − γn)(xn − q)

∥

∥

∥

=
∥

∥

∥
γn(T(PT)n−1xn − q) + (1 − γn)(xn − q)

∥

∥

∥

≤ γnkn ‖xn − q‖+ (1 − γn) ‖xn − q‖ .

‖xn+1 − q‖ =
∥

∥

∥
P(αnT(PT)n−1yn + (1 − αn)xn)− Pq

∥

∥

∥
(3.3)

≤
∥

∥

∥
αn(T(PT)n−1yn + (1 − αn)(xn − q)

∥

∥

∥

=
∥

∥

∥
αn((T(PT)n−1yn − q) + (1 − αn)(xn − q)

∥

∥

∥

≤ αnkn ‖yn − q‖+ (1 − αn) ‖xn − q‖ .

Combining the estimates in (3.1),(3.2) and (3.3), we have

‖xn+1 − q‖ ≤ αnβnγnk3
n ‖xn − q‖+ αnβn(1 − γn)k

2
n ‖xn − q‖

+ αnkn(1 − βn) ‖xn − q‖+ (1 − αn) ‖xn − q‖

≤ k3
n ‖xn − q‖ .

That is,
‖xn+1 − q‖ ≤ k3

n ‖xn − q‖ . (3.4)

As ∑
∞
n=1(k

3
n − 1) < ∞, therefore by Lemma 2.3, we get that limn→∞ ‖xn − q‖

exists, which proves (a).
Further, the inequality (3.4) gives that

inf
q∈F(T)

‖xn+1 − q‖ ≤ k3
n inf

q∈F(T)
‖xn − q‖ .
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That is,

d(xn+1, F) ≤ k3
nd(xn, F)

and hence by an argument similar to the one above, we conclude that
limn→∞ d(xn, F) exists. So (b) holds.

The condition lim supn→∞ βnkn(1 + γnkn), in the lemma to follow, is a new
one (cf.(ii) in Theorem 1.1).

Lemma 3.2. Let C be a nonempty closed convex subset of a uniformly convex Ba-
nach space E which is also a nonexpansive retract of E with nonexpansive retrac-
tion P. Let T : C → E be asymptotically nonexpansive map with {kn} ⊂ [1, ∞)
such that ∑

∞
n=1(kn − 1) < ∞ and F(T) 6= φ. For a given x1 ∈ C, let {xn} be

the sequence given in (2.1). If 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1, then

limn→∞

∥

∥xn − T(PT)n−1yn

∥

∥ = 0. Further, if lim supn→∞ βnkn(1 + γnkn) < 1, then
limn→∞ ‖xn − Txn‖ = 0.
Proof. For any q ∈ F(T), {xn − q} is bounded. Therefore { xn − q, T(PT)n−1yn −
q} ⊂ Br[0] ∩ C for some r > 0.

Using Lemma 2.1 and the scheme(2.1), we obtain the estimates:

‖zn − q‖2 =
∥

∥

∥
P(γnT(PT)n−1xn + (1 − γn)xn)− Pq

∥

∥

∥

2
(3.5)

≤
∥

∥

∥
γnT(PT)n−1xn + (1 − γn)xn − q

∥

∥

∥

2

=
∥

∥

∥
γn(T(PT)n−1xn − q) + (1 − γn)(xn − q)

∥

∥

∥

2

≤ γn

∥

∥

∥
T(PT)n−1xn − q

∥

∥

∥

2
+ (1 − γn) ‖xn − q‖2

− γn(1 − γn)g(
∥

∥

∥
xn − T(PT)n−1xn

∥

∥

∥
)

≤ γnk2
n ‖xn − q‖2 + (1 − γn) ‖xn − q‖2

≤ k2
n ‖xn − q‖2 .

‖yn − q‖2 =
∥

∥

∥
P(βnT(PT)n−1zn + (1 − βn)xn)− Pq

∥

∥

∥

2
(3.6)

≤
∥

∥

∥
βnT(PT)n−1zn + (1 − βn)xn − q

∥

∥

∥

2

=
∥

∥

∥
βn(T(PT)n−1zn − q) + (1 − βn)(xn − q)

∥

∥

∥

2

≤ βn

∥

∥

∥
T(PT)n−1zn − q

∥

∥

∥

2
+ (1 − βn) ‖xn − q‖2

− βn(1 − βn)g(
∥

∥

∥
xn − T(PT)n−1zn

∥

∥

∥
)

≤ βnk2
n ‖zn − q‖2 + (1 − βn) ‖xn − q‖2 .
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‖xn+1 − q‖2 =
∥

∥

∥
P(αnT(PT)n−1yn + (1 − αn)xn)− Pq

∥

∥

∥

2
(3.7)

≤
∥

∥

∥
αnT(PT)n−1yn + (1 − αn)xn − q

∥

∥

∥

2

=
∥

∥

∥
αn(T(PT)n−1yn − q) + (1 − αn)(xn − q)

∥

∥

∥

2

≤ αn

∥

∥

∥
T(PT)n−1yn − q

∥

∥

∥

2
+ (1 − αn) ‖xn − q‖2

− αn(1 − αn)g(
∥

∥

∥
xn − T(PT)n−1yn

∥

∥

∥
)

≤ αnk2
n ‖yn − q‖2 + (1 − αn) ‖xn − q‖2

− αn(1 − αn)g(
∥

∥

∥
xn − T(PT)n−1yn

∥

∥

∥
).

Combining (3.5),(3.6) and (3.7) and simplifying, we have

‖xn+1 − q‖2 ≤ ‖xn − p‖2 + (k6
n − 1) ‖xn − p‖2

− αn(1 − αn)g(
∥

∥

∥
xn − T(PT)n−1yn

∥

∥

∥
).

Since {‖xn − p‖ : n ≥ 1} is bounded, there exists ǫ > 0 such that ‖xn − p‖2 ≤
ǫ. Therefore, the above inequality becomes:

‖xn+1 − p‖2 ≤ ‖xn − p‖2 + (k6
n − 1)ǫ

− αn(1 − αn)g(
∥

∥

∥
xn − T(PT)n−1yn

∥

∥

∥
). (3.8)

Suppose that 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1. Then there exist some
real number δ > 0 and a natural number n0 such that αn(1 − αn) ≥ δ for all
n ≥ n0. Let m be a positive integer such that m ≥ n0. Then from the inequality
(3.8), we have

∑
m

n=n0
δg(
∥

∥

∥
xn − T(PT)n−1yn

∥

∥

∥
) ≤ ‖x1 − p‖2 − ‖xm+1 − p‖2

+ ∑
m

n=n0
(k6

n − 1)ǫ

≤ ‖x1 − p‖2 + ∑
m

n=n0
(k6

n − 1)ǫ.

When m → ∞ in the above inequality, we get

∑
∞

n=n0
δg(
∥

∥

∥
xn − T(PT)n−1yn

∥

∥

∥
) < ∞

and therefore limn→∞ g(
∥

∥xn − T(PT)n−1yn

∥

∥) = 0.

By Lemma 2.2, it follows that

lim
n→∞

∥

∥

∥
xn − T(PT)n−1yn

∥

∥

∥
= 0. (3.9)
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Now consider
∥

∥

∥
T(PT)n−1xn − xn

∥

∥

∥
≤
∥

∥

∥
T(PT)n−1yn − T(PT)n−1xn

∥

∥

∥

+
∥

∥

∥
T(PT)n−1yn − xn

∥

∥

∥

≤ kn ‖yn − xn‖+
∥

∥

∥
T(PT)n−1yn − xn

∥

∥

∥

≤ βnkn

∥

∥

∥
xn − T(PT)n−1zn

∥

∥

∥

+
∥

∥

∥
T(PT)n−1yn − xn

∥

∥

∥

≤ βnkn

∥

∥

∥
T(PT)n−1zn − T(PT)n−1xn

∥

∥

∥

+ βnkn

∥

∥

∥
T(PT)n−1xn − xn

∥

∥

∥

+
∥

∥

∥
T(PT)n−1yn − xn

∥

∥

∥

≤ βnγnk2
n

∥

∥

∥
xn − T(PT)n−1xn

∥

∥

∥

+ βnkn

∥

∥

∥
T(PT)n−1xn − xn

∥

∥

∥

+
∥

∥

∥
T(PT)n−1yn − xn

∥

∥

∥

≤ βnkn(1 + γnkn)
∥

∥

∥
T(PT)n−1xn − xn

∥

∥

∥

+
∥

∥

∥
T(PT)n−1yn − xn

∥

∥

∥

and hence it follows that
∥

∥

∥
T(PT)n−1xn − xn

∥

∥

∥
≤

1

1 − βnkn(1 + γnkn)

∥

∥

∥
T(PT)n−1yn − xn

∥

∥

∥
. (3.10)

Since lim infn→∞(1 − βnkn(1 + γnkn)) = 1 − lim supn→∞ βnkn(1 + γnkn) > 0,
so we apply lim sup on both sides of the inequality (3.10) and get

limn→∞

∥

∥

∥
T(PT)n−1xn − xn

∥

∥

∥
= 0. (3.11)

Denote by cn =
∥

∥T(PT)n−1xn − xn

∥

∥ . Then

‖xn+1 − Txn+1‖ ≤ cn+1 + ‖T(PT)nxn+1 − Txn+1‖

≤ cn+1 + k1

∥

∥

∥
T(PT)n−1xn+1 − xn+1

∥

∥

∥

≤ cn+1 + k1‖xn+1 − xn‖+ k1

∥

∥

∥
xn − T(PT)n−1xn

∥

∥

∥

+ k1kn ‖xn − xn+1‖

≤ cn+1 + αn(k1 + 1)kn

∥

∥

∥
xn − T(PT)n−1yn

∥

∥

∥

+ k1

∥

∥

∥
xn − T(PT)n−1xn

∥

∥

∥
.

This, together with (3.9) and (3.11), shows that

limn→∞ ‖Txn − xn‖ = 0.
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Now we establish our weak convergence theorem.

Theorem 3.1. Let C be a nonempty closed convex subset of a uniformly convex Banach
space E which is also a nonexpansive retract of E with nonexpansive retraction
P. Let T : C → E be asymptotically nonexpansive map with {kn} ⊂ [1, ∞) such
that ∑

∞
n=1(kn − 1) < ∞ and F(T) 6= φ. Let {αn}, {βn} and {γn} be control se-

quences in [0, 1] satisfying: (i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1 and (ii)
lim supn→∞ βnkn(1 + γnkn) < 1. For a given x1 ∈ C, generate {xn} as given in (2.1).
Then {xn} converges weakly to a fixed point of T.
Proof. Let p be a fixed point of T. Then limn→∞ ‖xn − p‖exists as proved in
Lemma 3.1. We prove that {xn} has a unique weak subsequential limit in F(T).
Suppose that w1 and w2 are weak limits of the sequences {xni

} and {xnj
}, respec-

tively. Now limn→∞ ‖Txn − xn‖ = 0 gives that limn→∞(I − T)(xni
) = 0. Then

by the demiclosedness of I − T, we obtain T(w1) = w1. Similarly, we can prove
that T(w2) = w2. Next, we establish the uniqueness. To do this, let w1 and w2 be
distinct, then by the Opial’s property,

lim
n→∞

‖xn − w1‖ = lim
ni→∞

‖xni
− w1‖

< lim
ni→∞

‖xni
− w2‖

= lim
n→∞

‖xn − w2‖

= lim
nj→∞

∥

∥

∥
xnj

− w2

∥

∥

∥

< lim
nj→∞

∥

∥

∥
xnj

− w1

∥

∥

∥

= lim
n→∞

‖xn − w1‖ ,

a contradiction. Hence the proof.
Using the condition(A), we establish our strong convergence result as follows:

Theorem 3.2. Let C be a nonempty closed convex subset of a uniformly convex Banach
space E which is also a nonexpansive retract of E with nonexpansive retraction
P. Let T : C → E be asymptotically nonexpansive map with {kn} ⊂ [1, ∞) such
that ∑

∞
n=1(kn − 1) < ∞ and F(T) 6= φ. Let {αn}, {βn} and {γn} be control se-

quences in [0, 1] satisfying: (i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1 and (ii)
lim supn→∞ βnkn(1 + γnkn) < 1. For a given x1 ∈ C, generate {xn} as given in (2.1).
If T satisfies the condition(A), then {xn} converges strongly to a fixed point of T.
Proof. Lemma 3.2 gives that

limn→∞ ‖xn − Txn‖ = 0

and hence the condition (A) reduces to

limn→∞ f (d(xn, F)) = 0.

Since f : [0, ∞) → [0, ∞) is a nondecreasing function satisfying f (0) = 0,
f (r) > 0 for all r ∈ (0, ∞), we get that lim infn→∞ d(xn, F) = 0. In Lemma 3.1,
we have shown that limn→∞ d(xn, F) exists, therefore limn→∞ d(xn, F) = 0. Since
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{ki} is bounded and ∑
∞
i=1(ki − 1) < ∞, therefore ∑

∞
i=1(k

3
i − 1) < ∞. Fix δ =

exp ∑
∞
i=1(k

3
i − 1). As limn→∞ d(xn, F) = 0,therefore for each ǫ > 0, there exists an

n0 such that for all n > n0

d(xn, F) <
ǫ

2δ
.

That is, infp∈F ‖xn0 − p‖ <
ǫ

3δ . So there must exist p∗ ∈ F such that

‖xn0 − p∗‖ <
ǫ

2δ
.

As 1 + x ≤ ex for x ≥ 0, therefore for n, m ≥ n0, we get on the basis of inequal-
ity(3.4) that

‖xn+m − xn‖ ≤ ‖xn+m − p∗‖+ ‖xn − p∗‖

≤ exp

(

n+m−1

∑
i=n0

(k3
i − 1) +

n−1

∑
i=n0

(k3
i − 1)

)

‖xn0 − p∗‖

≤ 2 exp

(

∞

∑
i=1

(k3
i − 1)

)

‖xn0 − p∗‖

< 2δ
( ǫ

2δ

)

= ǫ.

Hence {xn} is a Cauchy sequence in a closed subset C of a Banach space E, so
it must converge to a point of C. Let limn→∞ xn = q. Now limn→∞ d(xn, F) = 0
gives that d(q, F) = 0. Since F is closed, therefore q ∈ F, and the proof is over.

For γn = 0 for all n ≥ 1, Theorem 3.1 and Theorem 3.2, reduce to the follow-
ing Ishikawa-type convergence result.

Theorem 3.3. Let C be a nonempty closed convex subset of a uniformly convex Ba-
nach space E which is also a nonexpansive retract of E with nonexpansive retraction P.
Let T : C → E be asymptotically nonexpansive map with {kn} ⊂ [1, ∞) such that

∑
∞
n=1(kn − 1) < ∞ and F(T) 6= φ. Suppose that γn = 0 for all n ≥ 1 in {xn} given

by (2.1) and {αn}, {βn} satisfy: (i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1, and (ii)
lim supn→∞ βn < 1.
(a) If E satisfies the Opial’s property, then {xn} converges weakly to a fixed point of T;
(b) If T satisfies the condition(A), then {xn} converges strongly to a fixed point of T.

Taking βn = 0 = γn for all n ≥ 1 in Theorem 3.1 and Theorem 3.2, Mann-type
convergence result is obtained in the following:

Theorem 3.4. Let C be a nonempty convex subset of a uniformly convex Banach space E
which is also a nonexpansive retract of E with nonexpansive retraction P. Let T : C → E
be asymptotically nonexpansive map with {kn} ⊂ [1, ∞) such that ∑

∞
n=1(kn − 1) < ∞

and F(T) 6= φ.Suppose that βn = 0 = γn for all n ≥ 1 in {xn} given by (2.1) and {αn}
satisfies:0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1.
(a) If E satisfies the Opial’s property, then {xn} converges weakly to a fixed point of T;
(b) If T satisfies the condition(A), then {xn} converges strongly to a fixed point of T.

For a selfmap, Theorems 3.1-3.4 provide the following new convergence re-
sults.
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Theorem 3.5. Let C be a nonempty closed convex subset of a uniformly connected Ba-
nach space E. Let T : C → C be asymptotically nonexpansive map with {kn} ⊂ [1, ∞)
such that ∑

∞
n=1(kn − 1) < ∞ and F(T) 6= φ. Let {αn}, {βn} and {γn} be control

sequences in [0, 1] satisfying: (i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1 and (ii)
lim supn→∞ βnkn(1 + γnkn) < 1. For a given x1 ∈ C, generate {xn} as given in (1.1).
Then {xn} converges weakly to a fixed point of T.

Theorem 3.6. Let C be a nonempty closed convex subset of a uniformly convex Banach
space E. Let T : C → C be asymptotically nonexpansive map with {kn} ⊂ [1, ∞) such
that ∑

∞
n=1(kn − 1) < ∞ and F(T) 6= φ. Let {αn}, {βn} be control sequences in [0, 1]

satisfying: (i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1 and (ii) lim supn→∞ βn < 1.
For a given x1 ∈ C, generate {xn} as given in (1.2). If T satisfies the condition(A), then
{xn} converges strongly to a fixed point of T.

Theorem 3.7. Let C be a nonempty closed convex subset of a uniformly convex Banach
space E. Let T : C → C be asymptotically nonexpansive map with {kn} ⊂ [1, ∞) such
that ∑

∞
n=1(kn − 1) < ∞ and F(T) 6= φ. Suppose that for {xn} in (1.3), {αn} satisfies:

(i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1.
(a) If E satisfies Opial’s condition, then {xn} converges weakly to a fixed point of T;
(b) If T satisfies the condition(A), then {xn} converges strongly to a fixed point of T.

Remark 3.1. (i) Theorem 3.3(b) establishes: [23, Theorem 3], [25, Theorem 2.3] and
Theorem 1.2 under new control conditions on parametric sequences and without
“ completely continuous” requirement on T.
(ii) The special cases of Theorem 3.4(b) are: ([2], Theorem 3.7),([23], Theorem 2),
([25], Theorem 1.5) and ([26], Theorem 2.6, Corollary 2.11).
(iii) Theorem 3.4(a) generalizes Theorem 2.1 in [24] while Theorem 3.3(a) extends
Theorem 1 in [12] in case of one map and Theorem 1 in [20] for nonself maps.

Remark 3.2. (i) Xu and Noor[29] used the scheme(1.1) to approximate fixed
points of an asymptotically nonexpansive map and obtained the Ishikawa-type
convergence result as an immediate consequence of the main theorem while the
Mann-type convergence could not follow directly from it. In this note, we have
obtained Ishikawa-type convergence and Mann-type convergence results directly
and simultaneously from our results for nonself asymptotically nonexpansive
maps.
(ii) We have further analyzed the three-step iterative scheme of Xu and Noor[29]
under new parametric control conditions. All of our results can be proved for
three-step iterative scheme with errors in the sense of Xu[31] by making obvious
and suitable changes in the statements and proofs of theorems and corollaries.
We leave the details to the reader; for example, a reformulation of Lemma 3.2
would be:

Lemma 3.3. Let C be a nonempty closed convex subset of a uniformly convex Ba-
nach space E which is also a nonexpansive retract of E with nonexpansive retraction
P. Let T : C → E be asymptotically nonexpansive map with {kn} ⊂ [1, ∞) such that

∑
∞
n=1(kn − 1) < ∞ and F(T) 6= φ. For a given x1 ∈ C,let {xn} be defined by











xn+1 = P((1 − αn − νn)xn + αnT(PT)n−1yn + νnun),

yn = ((1 − βn − µn)xn + βnT(PT)n−1zn + µnvn),

zn = ((1 − γn − λn)xn + γnT(PT)n−1xn + λnwn), n ≥ 1,
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where {un}, {vn}, {wn} are bounded sequences in C and {αn}, {βn}, {γn}, {µn},
{νn}, {λn} are real sequences in [0, 1] with the following restrictions:
(i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1,
(ii) lim supn→∞ βnkn(1 + γnkn) < 1,
(iii) ∑

∞
n=1 νn < ∞, ∑

∞
n=1 µn < ∞ and ∑

∞
n=1 λn < ∞.

Then limn→∞ ‖xn − Txn‖ = 0.

Remark 3.3. The restrictions imposed on the control sequences in the statement
of Lemma 1.5[3] are inadequate for the proof. Lemma 3.3 on the one hand ex-
tends our Lemma 3.2 and on the other hand provides a correct statement as well
as proof of Lemma 1.5 in [3] when T is a selfmap.
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