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Abstract

In this paper, we study the existence of periodic solutions for nth order

functional differential equations x(n)(t) +
n−1

∑
i=0

bi[x
(i)(t)]k + f (t, x(t − τ)) =

p(t). Some new results on the existence of periodic solutions of the equations
are obtained. Our approach is based on the coincidence degree theory of
Mawhin.

1 Introduction

In this paper, we are concerned with the existence of periodic solutions of the n
th order functional differential equations

x(n)(t) +
n−1

∑
i=0

bi[x
(i)(t)]k + f (t, x(t − τ)) = p(t) (1.1)

where bi(i = 0, 1, · · · , n − 1) are constants, k is a integer, f ∈ C(R2, R) and
f (t + T, x) = f (t, x) for ∀x ∈ R, p ∈ C(R, R) with p(t + T) = p(t).

In recent years, there are many papers studying the existence of periodic so-
lutions of first, second or third order differential equations[1, 3-4, 10-11, 13-16, 18,
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20-21, 23]. For example, in [11], Zhang and Wang studied the following differen-
tial equations

x
′′′
(t) + ax

′′2k−1(t) + bx
′2k−1(t) + cx2k−1(t) + g(t, x(t − τ1, x

′
(t − τ2)) = p(t)

(1.2)
The authors established the existence of periodic solutions of Eq. (1.2) under
some conditions on a, b, c and 2k − 1.

In [5-9, 12, 17, 19, 22], n, 2n and 2n + 1 th order differential equations of the
form

x(2n)(t) +
n−1

∑
j=1

ajx
(2j)(t) + (−1)(k+1)g(t, x) = 0 (1.3)

x(2n+1)(t) +
n−1

∑
j=1

ajx
(2j+1)(t) + g(t, x) = 0 (1.4)

were discussed. The authors obtained the results based on the damping terms

x(i)(t)(i = 1, · · · , n − 1). But few of them studied the differential equations with

the damping terms [x(i)(t)]k(i = 1, · · · , n − 1), where k ≥ 1.
In present paper, by using Mawhin,s continuation theorem, we will establish

some theorems on the existence of periodic solutions of Eq. (1.1). The results are
related to not only bi and f (t, x) but also the positive integer k. In addition, we
give an example to illustrate our new results.

2 Some lemmas

We investigate the theorems based on the following Lemmas.

Lemma 2.1 If k ≥ 1 is an integer, x ∈ Cn(R, R), and x(t + T) = x(t), then

(
∫ T

0
|x

′
(t)|kdt)

1
k ≤ T(

∫ T

0
|x

′′
(t)|kdt)

1
k ≤ · · · ≤ Tn−1(

∫ T

0
|x(n)(t)|kdt)

1
k (2.1)

The proof of Lemma 2.1 is easy, here we omit it.
We first introduce Mawhin,s continuation theorem.
Let X and Y be Banach spaces, L : D(L) ⊂ X → Y be a Fredholm operator

of index zero, here D(L) denotes the domain of L. P : X → X, Q : Y → Y be
projectors such that

ImP = KerL, KerQ = ImL, X = KerL ⊕ KerP, Y = ImL ⊕ ImQ.

It follows that
L|D(L)∩KerP : D(L) ∩ KerP → ImL

is invertible, we denote the inverse of that map by Kp. Let Ω be an open bounded

subset of X, D(L) ∩ Ω 6= Ø, the map N : X → Y will be called L-compact in Ω, if
QN(Ω) is bounded and Kp(I − Q)N : Ω → X is compact.
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Lemma 2.2 [2] Let L be a Fredholm operator of index zero and let N be L-
compact on Ω. Assume that the following conditions are satisfied:

(i) Lx 6= λNx, ∀x ∈ ∂Ω ∩ D(L), λ ∈ (0, 1).
(ii) QNx 6= 0, ∀x ∈ ∂Ω ∩ KerL,

(iii) deg{QNx, Ω
⋂

KerL, 0} 6= 0,
Then the equation Lx = Nx has at least one solution in Ω

⋂

D(L).
Now, we define Y = {x ∈ C(R, R) | x(t + T) = x(t)} with the norm |x|∞ =

maxt∈[0,T]{|x(t)|} and X = {x ∈ Cn−1(R, R) | x(t + T) = x(t)} with norm

‖x‖ = max{|x|∞, |x
′
|∞ · · · , |x(n−1)|∞}, we can easily see that X, Y are two Banach

spaces. We also define the operators L and N as follows:

L : D(L) ⊂ X → Y, Lx = x(n), D(L) = {x|x ∈ Cn(R, R), x(t + T) = x(t)}
(2.2)

N : X → Y, Nx = −
n−1

∑
i=1

bi[x
(i)(t)]k − f (t, x(t − τ)) + p(t). (2.3)

It is easy to see that Eq. (1.1) can be converted to the abstract equation Lx =
Nx. Moreover, from the definition of L, we see that kerL = R, dim(kerL) = 1,

ImL = {y|y ∈ Y,
∫ T

0 y(s)ds = 0} is closed, and dim(Y \ ImL) = 1, we have
codim(ImL) = dim(kerL), so L is a Fredholm operator with index zero. Let

P : X −→ KerL, Px = x(0), Q : Y −→ Y \ ImL, Qy = 1
T

∫ T
0 y(t)dt

and let

L|D(L)∩KerP : D(L) ∩ KerP → ImL.

Then L|D(L)∩KerP has a unique continuous inverse Kp. One can easily find that N

is L-compact in Ω, where Ω is an open bounded subset of X.

3 Main result

Theorem 3.1 Suppose n = 2m + 1, m > 0 an integer, k is odd, and the following
conditions hold
(H1) the function f satisfies

lim
x→∞

|
f (t,x)

xk | ≤ γ, (3.1)

where γ ≥ 0.
(H2)

|b0| > γ (3.2)

(H3) there is a positive integer 0 < s ≤ m such that

{

b2s 6= 0, i f s = m
b2s 6= 0, b2s+i = 0, i = 1, 2, · · · , 2m − 2s, i f 0 < s < m

(3.3)
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(H4)















A2(2s, k) +
γA1(2s, k)

|b0| − γ
+ k|b0|T

2s[
A1(2s, k)

|b0| − γ
]

k−1
k < |b2s|, i f 1 < s ≤ m

γA1(2, k)

|b0| − γ
+ k|b0|T

2[
A1(2, k)

|b0| − γ
]

k−1
k < |b2|, i f s = 1

(3.4)

where A1(s, k) =
s

∑
i=1

|bi|T
(s−i)k, A2(s, k) =

s−2

∑
i=1

|bi|T
(s−i)k. Then Eq. (1.1) has at

least one T-periodic solution.
Proof. Consider the equation

Lx = λNx, λ ∈ (0, 1)

where L and N are defined by (2.2) and (2.3) . Let

Ω1 = {x ∈ D(L)/KerL, Lx = λNx f or some λ ∈ (0, 1)}

for x ∈ Ω1, We have

x(n)(t) = −λ
2s

∑
i=0

bi[x
(i)(t)]k − λ f (t, x(t − τ)) + λp(t), λ ∈ (0, 1) (3.5)

Multiplying both sides of (3.5) by x(t), and integrating them on [0, T], we have
for λ ∈ (0, 1)

∫ T

0
x(n)(t)x(t)dt = −λ

2s

∑
i=0

bi

∫ T

0
[x(i)(t)]kx(t)dt−

λ
∫ T

0
f (t, x(t − τ))x(t)dt + λ

∫ T

0
p(t)x(t)dt.

(3.6)

It is easy to see that, for any positive integer i,

∫ T

0
x(2i−1)(t)x(t)dt = 0. (3.7)

In view of n = 2m + 1 and k is odd, it follows from (3.3) and (3.7) that

b0

∫ T

0
|x(t)|k+1dt = −

2s

∑
i=1

bi

∫ T

0
[x(i)(t)]kx(t)dt −

∫ T

0
f (t, x(t − τ))x(t)dt+

∫ T

0
p(t)x(t)dt. () 3.8)

From which it follows that

|b0|
∫ T

0
|x(t)|k+1dt ≤

∫ T

0
|x(t)|[

2s

∑
i=1

|bi||x
(i)(t)|k + | f (t, x(t − τ))|+ |p(t)|]dt

(3.9)
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By using Hölder inequality and Lemma 2.1, from (3.9) , we obtain

|b0|
∫ T

0
|x(t)|k+1dt ≤ (

∫ T

0
|x(t)|k+1dt)

1
k+1 [

2s

∑
i=1

|bi|(
∫ T

0
|x(i)(t)|k+1dt)

k
k+1

+(
∫ T

0
| f (t, x(t − τ))|

k+1
k dt)

k
k+1 + (

∫ T

0
|p(t)|

k+1
k dt)

k
k+1 ]

≤ (
∫ T

0
|x(t)|k+1dt)

1
k+1 [

2s

∑
i=1

|bi|T
(2s−i)k(

∫ T

0
|x(2s)(t)|k+1dt)

k
k+1

+(
∫ T

0
| f (t, x(t − τ))|

k+1
k dt)

k
k+1 + |p(t)|∞ T

k
k+1 ].

(3.10)

So

|b0|(
∫ T

0
|x(t)|k+1dt)

k
k+1 ≤ A1(2s, k)(

∫ T

0
|x(2s)(t)|k+1dt)

k
k+1

+ (
∫ T

0
| f (t, x(t − τ))|

k+1
k dt)

k
k+1 + u1. ((3.11))

where u1 is a positive constant. Choose a constant ε > 0 such that

γ + ε < |b0|

and














A2(2s, k) +
(γ + ε)A1(2s, k)

|b0| − (γ + ε)
+ k|b0|T

2s[
A1(2s, k)

|b0| − (γ + ε)
]

k−1
k < |b2s|, i f 1 < s ≤ m

(γ + ε)A1(2, k)

|b0| − (γ + ε)
+ k|b0|T

2[
A1(2, k)

|b0| − (γ + ε)
]

k−1
k < |b2|, i f s = 1

For the above constant ε > 0, we see from (3.1) that there is a constant δ > 0 such that

| f (t, x(t − τ))| < (γ + ε)|x(t − τ)|k, f or |x(t − τ)| > δ, t ∈ [0, T] (3.12)

Denote

∆1 = {t ∈ [0, T] : |x(t − τ)| ≤ δ}, ∆2 = {t ∈ [0, T] : |x(t − τ)| > δ}. (3.13)

Since

∫ T

0
| f (t, x(t − τ))|

k+1
k dt ≤

∫

∆1

| f (t, x(t − τ))|
k+1

k dt +
∫

∆2

| f (t, x(t − τ))|
k+1

k dt

≤ ( fδ)
k+1

k T + (γ + ε)
k+1

k

∫ T

0
|x(t − τ)|k+1dt

= ( fδ)
k+1

k T + (γ + ε)
k+1

k

∫ T

0
|x(t)|k+1dt

(3.14)
where fδ = maxt∈[0,T],|x|≤δ | f (t, x)|. Using inequality

(a + b)l ≤ al + bl f or a ≥ 0, b ≥ 0 and 0 ≤ l ≤ 1 (3.15)
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it follows from (3.14) that

(
∫ T

0
| f (t, x(t − τ))|

k+1
k dt)

k
k+1 ≤ fδT

k
k+1 + (γ + ε)(

∫ T

0
|x(t)|k+1dt)

k
k+1 (3.16)

Substituting the above formula into (3.11) , we have

[|b0| −(γ + ε)](
∫ T

0
|x(t)|k+1dt)

k
k+1 ≤ A1(2s, k)(

∫ T

0
|x(2s)(t)|k+1dt)

k
k+1 + u2.

(3.17)
where u2 is a positive constant.
That is

(
∫ T

0
|x(t)|k+1dt)

k
k+1 ≤

A1(2s, k)

|b0| − (γ + ε)
(
∫ T

0
|x(2s)(t)|k+1dt)

k
k+1 + u3. (3.18)

where u3 is a positive constant.

On the other hand, multiplying both sides of (3.5) by x(2s)(t), and integrating
on [0, T], we have

∫ T
0 x(n)(t)x(2s)(t)dt = −

2s

∑
i=0

bi

∫ T

0
[x(i)(t)]kx(2s)(t)dt

−
∫ T

0
f (t, x(t − τ))x(2s)(t)dt +

∫ T

0
p(t)x(2s)(t)dt

(3.19)

If 1 < s ≤ m, since

∫ T

0
x(2m+1)(t)x(2s)(t)dt = 0,

∫ T

0
[x(2s−1)(t)]kx(2s)(t)dt = 0, (3.20)

and
∫ T

0
[x(t)]k x(2s)(t)dt = −k

∫ T

0
[x(t)]k−1x(2s−1)(t)x

′
(t)dt (3.21)

by using Hölder inequality and Lemma 2.1, from (3.19) , we have

|b2s|
∫ T

0
|x(2s)(t)|k+1dt

≤
∫ T

0
|x(2s)(t)|[

2s−2

∑
i=1

|bi||x
(i)(t)|k + | f (t, x(t − τ))|+ |p(t)|]dt

+ k|b0|
∫ T

0
|x(t)|k−1|x(2s−1)(t)||x

′
(t)|dt

≤ (
∫ T

0
|x(2s)(t)|k+1dt)

1
k+1 [

2s−2

∑
i=1

|bi|T
(2s−i)k(

∫ T

0
|x(2s)(t)|k+1dt)

k
k+1+

(
∫ T

0
| f (t, x(t − τ))|

k+1
k dt)

k
k+1 + |p(t)|∞T

k
k+1 ]+

k|b0||x
′
(t)|∞

∫ T

0
|x(t)|k−1||x(2s−1)(t)|dt () 3.22)
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Since x(0) = x(T), there exists ξ ∈ [0, T] such that x
′
(ξ) = 0. Hence for t ∈ [0, T]

x
′
(t) = x

′
(ξ) +

∫ t

ξ
x
′′
(σ)dσ

Using Hölder inequality and Lemma 2.1, we have

|x
′
(t)|∞ ≤

∫ T

0
|x

′′
(t)|dt ≤ T

k
k+1 (

∫ T

0
|x

′′
(t)|k+1dt)

1
k+1

≤ T2s−1− 1
k+1 (

∫ T

0
|x(2s)(t)|k+1dt)

1
k+1 () 3.23)

Using inequality

(
1

T

∫ T

0
|x(t)|r |)

1
r ≤ (

1

T

∫ T

0
|x(t)|l |)

1
l f or 0 ≤ r ≤ l and ∀x ∈ R. (3.24)

and applying Hölder inequality, we obtain from Lemma 2.1

∫ T

0
|x(t)|k−1||x(2s−1)(t)|dt ≤ (

∫ T

0
|x(t)|kdt)

k−1
k (

∫ T

0
|x(2s−1)(t)|kdt)

1
k

≤ T
1

k+1 (
∫ T

0
|x(t)|k+1dt)

k−1
k+1 (

∫ T

0
|x(2s−1)(t)|k+1dt)

1
k+1

≤ T1+ 1
k+1 (

∫ T

0
|x(t)|k+1dt)

k−1
k+1 (

∫ T

0
|x(2s)(t)|k+1dt)

1
k+1

(3.25)
Substituting the above formula, (3.16) and (3.23) into (3.22) , we have

|b2s|
∫ T

0 |x(2s)(t)|k+1dt

≤ (
∫ T

0
|x(2s)(t)|k+1dt)

1
k+1 [A2(2s, k)(

∫ T

0
|x(2s)(t)|k+1dt)

k
k+1

+(γ + ε)(
∫ T

0
|x(t)|k+1dt)

k
k+1 + (|p(t)|∞ + fδ)T

k
k+1 ]

+k|b0|T
2s(

∫ T

0
|x(2s)(t)|k+1dt)

2
k+1 (

∫ T

0
|x(t)|k+1|dt)

k−1
k+1

(3.26)

Then, we have

(|b2s| −A2(2s, k))(
∫ T

0
|x(2s)(t)|k+1dt)

k
k+1

≤ k|b0|T
2s(

∫ T

0
|x(2s)(t)|k+1dt)

1
k+1 (

∫ T

0
|x(t)|k+1|dt)

k−1
k+1

+(γ + ε)(
∫ T

0
|x(t)|k+1dt)

k
k+1 + u4

(3.27)

where u4 is a positive constant.
Using inequality

(a + b)l ≤ al + bl f or a ≥ 0, b ≥ 0 and 0 ≤ l ≤ 1 (3.28)

it follows from (3.18) that
∫ T

0
|x(t)|k+1dt)

k−1
k+1 ≤ [

A1(2s, k)

|b0| − (γ + ε)
]

k−1
k

∫ T

0
|x(2s)(t)|k+1dt)

k−1
k+1 + u5 (3.29)
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where u5 is a positive constant.
Substituting the above formula and (3.18) into (3.27) , we have

{|b2s|−A2(2s, k)−
(γ + ε)A1(2s, k)

|b0| − (γ + ε)
− k|b0|T

2s[
A1(2s, k)

|b0| − (γ + ε)
]

k−1
k }(

∫ T

0
|x(2s)(t)|k+1dt)

k
k+1

≤ u5k|b0|T
2s(

∫ T

0
|x(2s)(t)|k+1dt)

1
k+1 + u6

(3.30)

where u6 is a positive constant.

If s = 1, since
∫ T

0
[x

′
(t)]kx

′′
(t)dt = 0,

∫ T

0
[x(t)]kx

′′
(t)dt = −k

∫ T

0
[x(t)]k−1[x

′
(t)]2dt,

from (3.19) , we have

b2

∫ T

0
[x

′′
(t)]k+1dt = −kb0

∫ T

0
[x(t)]k−1[x

′
(t)]2dt

−
∫ T

0
f (t, x(t − τ))x

′
(t)dt +

∫ T

0
p(t)x

′
(t)dt () 3.31)

Applying the above method, we have

{|b2| −
(γ + ε)A1(2, k)

|b0| − (γ + ε)
− k|b0|T

2[
A1(2, k)

|b0| − (γ + ε)
]

k−1
k }(

∫ T

0
|x

′′
(t)|k+1dt)

k
k+1

≤ u7k|b0|T
2(
∫ T

0
|x

′′
(t)|k+1dt)

1
k+1 + u8

(3.32)
where u7, u8 is a positive constant.
Hence there is a constant M1, M2 > 0 such that

∫ T

0
|x(2s)(t)|k+1dt ≤ M1 (3.33)

and
∫ T

0
|x(t)|k+1dt ≤ M2 (3.34)

From (3.5), using Hölder inequality and Lemma 2.1, we have

∫ T

0
|x(n)(t)|dt ≤

2s

∑
i=1

|bi|
∫ T

0
|x(i)(t)|kdt + |b0|

∫ T

0
|x(t)|kdt+

∫ T

0
| f (t, x(t − τ))|dt +

∫ T

0
|p(t)|dt

≤
2s

∑
i=1

|bi|T
(2s−i)k+ 1

k+1 (
∫ T

0
|x(2s)(t)|k+1dt)

k
k+1

+ |b0|T
1

k+1 (
∫ T

0
|x(t)|k+1dt)

k
k+1

+ (γ + ε)T
1

k+1 (
∫ T

0
|x(t)|k+1dt)

k
k+1 + (|p(t)|∞ + fδ)T

≤
2s

∑
i=1

|bi|T
(2s−i)k+ 1

k+1 (M1)
k

k+1 + |b0|T
1

k+1 (M2)
k

k+1

+ (γ + ε)T
1

k+1 (M2)
k

k+1 + (|p(t)|∞ + fδ)T = M () 3.35)
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where M is a positive constant. We claim that

|x(i)(t)| ≤ Tn−i−1
∫ T

0
|x(n)(t)|dt, (i = 1, 2, · · · , n − 1) (3.36)

In fact, noting that x(n−2)(0) = x(n−2)(T), there must be a constant ξ1 ∈ [0, T]

such that x(n−1)(ξ1) = 0, we obtain

|x(n−1)(t)| = |x(n−1)(ξ1) +
∫ t

ξ1

x(n)(s)ds| ≤ |x(n−1)(ξ1)|

+
∫ T

0
|x(n)(t)|dt =

∫ T

0
|x(n)(t)|dt. () 3.37)

Similarly, since x(n−3)(0) = x(n−3)(T), there must be a constant ξ2 ∈ [0, T] such

that x(n−2)(ξ2) = 0, from (3.37) we get

|x(n−2)(t)| = |x(n−2)(ξ2) +
∫ t

ξ2

x(n−1)(s)ds| ≤
∫ T

0
|x(n−1)(t)|dt ≤ T

∫ T

0
|x(n)(t)|dt.

(3.38)
By induction, we have

|x(i)(t)| ≤ Tn−i−1
∫ T

0
|x(n)(t)|dt, (i = 1, 2, · · · , n − 1) (3.39)

Furthermore, we have

|x(i)(t)|∞ ≤ Tn−i−1
∫ T

0
|x(n)(t)|dt ≤ Tn−i−1M, (i = 1, 2, · · · , n − 1) (3.40)

From (3.34) it follows that there exists a ξ ∈ [0, T] such that |x(ξ)| ≤ M
1

k+1
2 .

Applying Lemma 2.1, we get

|x(t)|∞ ≤ x(ξ) +
∫ t

ξ
x
′
(t)dt ≤ M

1
k+1
2 + T

k
k+1 (

∫ T

0
|x

′
(t)|k+1dt)

1
k+1

≤ M
1

k+1
2 + T2s−1+ k

k+1 (
∫ T

0
|x(2s)(t)|k+1dt)

1
k+1 = M

1
k+1
2 + T2s−1+ k

k+1 M
1

k+1
1

(3.41)
It follows that there is a constant A > 0 such that ‖x‖ ≤ A, Thus Ω1 is bounded.

Let Ω2 = {x ∈ KerL, QNx = 0}. Suppose x ∈ Ω2, then x(t) = d ∈ R and
satisfies

QNx =
1

T

∫ T

0
[−b0dk − f (t, d) + p(t)]dt = 0, (3.42)

We will prove that there exists a constant B > 0 such that |d| ≤ B. If |d| ≤ δ,
taking δ = B, we get |d| ≤ B. If |d| > δ, from (3.42) , we have

|b0||d|
k = |

1

T

∫ T

0
[− f (t, d) + p(t)]dt|

≤
1

T

∫ T

0
| f (t, d)|dt + |p(t)|∞ ≤ (γ + ε)|d|k + |p(t)|∞

(3.43)
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Thus

|d| ≤ [
|p(t)|∞

|b0| − (γ + ε)
]

1
k (3.44)

Taking [
|p(t)|∞

|b0|−(γ+ε)
]

1
k = B, we have |d| ≤ B, which implies Ω2 is bounded. Let Ω

be a non-empty open bounded subset of X such that Ω ⊃ Ω1 ∪ Ω2. We can easily
see that L is a Fredholm operator of index zero and N is L-compact on Ω. Then
by the above argument we have
(i) Lx 6= λNx, ∀x ∈ ∂Ω ∩ D(L), λ ∈ (0, 1).
(ii) QNx 6= 0, ∀x ∈ ∂Ω ∩ KerL.

At last we will prove that condition (iii) of Lemma 2.2 is satisfied. We take

H : (Ω ∩ KerL)× [0, 1] → KerL

H(d, µ) = sgn(−b0)µd +
1 − µ

T

∫ T

0
[−b0dk − f (t, d) + p(t)]dt

(3.45)

From assumptions (H1) and (H2), we can easily obtain H(d, µ) 6= 0, ∀(d, µ) ∈
∂Ω ∩ KerL × [0, 1], which results in

deg{QN, Ω ∩ KerL, 0} = deg{H(·, 0), Ω ∩ KerL, 0} = deg{H(·, 1), Ω ∩ KerL, 0} 6= 0
(3.46)

Hence, by using Lemma 2.2, we know that Eq. (1.1) has at least one T-periodic
solution.

Theorem 3.2 Suppose n = 4m+ 1, m > 0 an integer, k is odd, conditions (H1), (H2)
hold. If
(H5) there is a positive integer 0 < s ≤ m such that

b4s−3 6= 0, b4s−3+i = 0, i = 1, 2, · · · , 4m − 4s + 3, (3.47)

(H6)















A2(4s − 3, k) +
γA1(4s − 3, k)

|b0| − γ
+ k|b0|T

4s−3[
A1(4s − 3, k)

|b0| − γ
]

k−1
k < b4s−3, i f 1 < s ≤ m

γA1(1, k)

|b0| − γ
< b1, i f s = 1

(3.48)

Then Eq. (1.1) has at least one T-periodic solution.
Proof From the proof of Theorem 3.1, we have

(
∫ T

0
|x(t)|k+1dt)

k
k+1 ≤

A1(4s − 3, k)

|b0| − (γ + ε)
(
∫ T

0
|x(4s−3)(t)|k+1dt)

k
k+1 + u9. (3.49)

where u9 is a positive constant.

Multiplying both sides of (3.5) by x(4s−3)(t), and integrating on [0, T], we have

∫ T

0
x(n)(t)x(4s−3)(t)dt = −λ

4s−3

∑
i=0

bi

∫ T

0
[x(i)(t)]kx(4s−3)(t)dt

−λ
∫ T

0
f (t, x(t − τ))x(4s−3)(t)dt + λ

∫ T

0
p(t)x(4s−3)(t)dt

(3.50)
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Since

∫ T

0
x(4m+1)(t)x(4s−3)(t)dt = (−1)2m−2s+2

∫ T

0
[x(2m+2s−1)(t)]2dt (3.51)

Then from (3.50) (3.51) it follows that

b4s−3

∫ T

0
|x(4s−3)(t)|k+1dt

≤ −
4s−4

∑
i=0

bi

∫ T

0
[x(i)(t)]kx(4s−3)(t)dt −

∫ T

0
f (t, x(t − τ))x(4s−3)(t)dt

+
∫ T

0
p(t)x(4s−3)(t)dt () 3.52)

By using the same way as in the proof of Theorem 3.1, the following theorems
can be proved in case 1 < s ≤ m or s = 1.

Theorem 3.3 Suppose n = 4m + 1, m > 0 for a positive integer, k is odd, condi-
tions (H1), (H2) hold. If
(H7) there is a positive integer 0 < s ≤ m such that

b4s−1 6= 0, b4s−1+i = 0, i = 1, 2, · · · , 4m − 4s + 1 (3.53)

(H8)

A2(4s − 1, k) +
γA1(4s − 1, k)

|b0| − γ
+ k|b0|T

4s−1[
A1(4s − 1, k)

|b0| − γ
]

k−1
k < −b4s−1 (3.54)

Then Eq. (1.1) has at least one T-periodic solution.

Theorem 3.4 Suppose n = 4m + 3, m ≥ 0 an integer, k is odd, conditions (H1)−
(H2) hold. If
(H9) there is a positive integer 0 ≤ s ≤ m such that

b4s+1 6= 0, b4s+1+i = 0, i = 1, 2, · · · , 4m − 4s + 1 (3.55)

(H10)















A2(4s + 1, k) +
γA1(4s + 1, k)

|b0| − γ
+ k|b0|T

4s+1[
A1(4s + 1, k)

|b0| − γ
]

k−1
k < −b4s+1, i f 0 < s ≤ m

γA1(1, k)

|b0| − γ
< −b1, i f s = 0

(3.56)

Then Eq. (1.1) has at least one T-periodic solution.

Theorem 3.5 Suppose n = 4m+ 3, m > 0 an integer, k is odd, conditions (H1), (H2)
hold If
(H11) there is a positive integer 0 < s ≤ m such that

b4s−1 6= 0, b4s−1+i = 0, i = 1, 2, · · · , 4m − 4s + 3 (3.57)
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(H12)

A2(4s − 1, k) +
γA1(4s − 1, k)

|b0| − γ
+ k|b0|T

4s−1[
A1(4s − 3, k)

|b0| − γ
]

k−1
k < b4s−1 (3.58)

Then Eq. (1.1) has at least one T-periodic solution.

Theorem 3.6 Suppose n = 4m, m > 0 an integer, k is odd, conditions (H1) hold.
If
(H13)

b0 > γ (3.59)

(H14) there is a positive integer 0 < s ≤ 2m such that

{

b2s−1 6= 0, i f s = 2m
b2s−1 6= 0, b2s−1+i = 0, i = 1, 2, · · · , 4m − 2s, i f 0 < s < 2m

(3.60)

(H15)



















A2(2s − 1, k) +
γA1(2s − 1, k)

|b0| − γ
+ k|b0|T

2s−1[
A1(2s − 1, k)

|b0| − γ
]

k−1
k < |b2s−1|,

i f 1 < s ≤ 2m
γA1(1, k)

|b0| − γ
< |b1|, i f s = 1

(3.61)

Then Eq. (1.1) has at least one T-periodic solution.

Theorem 3.7 Suppose n = 4m + 2, m > 0 an integer, k is odd, conditions (H1)
hold. If
(H16)

−b0 > γ (3.62)

(H17) there is a positive integer 0 < s ≤ 2m + 1 such that

{

b2s−1 6= 0, i f s = 2m + 1
b2s−1 6= 0, b2s−1+i = 0, i = 1, 2, · · · , 4m − 2s, i f 0 < s < 2m + 1

(3.63)

(H18)











A2(2s − 1, k) + γA1(2s−1,k)
|b0|−γ

+ k|b0|T
2s−1[ A1(2s−1,k)

|b0|−γ
]

k−1
k < |b2s−1|,

i f 1 < s ≤ 2m + 1
γA1(1,k)
|b0|−γ

< |b1|, i f s = 1

(3.64)
Then Eq. (1.1) has at least one T-periodic solution.

Theorem 3.8 Suppose n = 4m, m > 0 an integer, k is odd, conditions (H1), (H13)
hold. If
(H19) there is a positive integer 0 < s ≤ m such that

b4s−2 6= 0, b4s−2+i = 0, i = 1, 2, · · · , 4m − 4s + 1 (3.65)
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(H20)






A2(4s − 2, k) + γA1(4s−2,k)
|b0|−γ

+ k|b0|T
4s−2[ A1(4s−2,k)

|b0|−γ
]

k−1
k < −b4s−2, if 1 < s ≤ m

γA1(2,k)
|b0|−γ

+ k|b0|T
2[ A1(2,k)

|b0|−γ
]

k−1
k < |b2|, if s = 1

(3.66)
Then Eq. (1.1) has at least one T-periodic solution.

Theorem 3.9 Suppose n = 4m, m > 1 an integer, k is odd, conditions (H1), (H13)
hold. If
(H21) there is a positive integer 1 < s ≤ m such that

b4s−4 6= 0, b4s−4+i = 0, i = 1, 2, · · · , 4m − 4s + 3 (3.67)

(H22)

A2(4s − 4, k) + γA1(4s−4,k)
|b0|−γ

+ k|b0|T
4s−4[ A1(4s−4,k)

|b0|−γ
]

k−1
k < −b4s−4 (3.68)

Then Eq. (1.1) has at least one T-periodic solution.

Theorem 3.10 Suppose n = 4m + 2, m ≥ 1 an integer, k is odd, conditions
(H1), (H16) hold, and the following conditions hold
(H23) there is a positive integer 1 ≤ s ≤ m such that

b4s 6= 0, b4s+i = 0, i = 1, 2, · · · , 4m − 4s + 1 (3.69)

(H24)

A2(4s, k) + γA1(4s,k)
|b0|−γ

+ k|b0|T
4s[ A1(4s,k)

|b0|−γ
]

k−1
k < −b4s (3.70)

Then Eq. (1.1) has at least one T-periodic solution.

Theorem 3.11 Suppose n = 4m + 2, m ≥ 1 an integer, k is odd, conditions
(H1), (H16) hold. If
(H25) there is a positive integer 1 ≤ s ≤ m such that

b4s−2 6= 0, b4s−2+i = 0, i = 1, 2, · · · , 4m − 4s + 3 (3.71)

(H26)






A2(4s − 2, k) + γA1(4s−2,k)
|b0|−γ

+ k|b0|T
4s−2[ A1(4s−2,k)

|b0|−γ
]

k−1
k < b4s−2, if 1 < s ≤ m

γA1(2,k)
|b0|−γ

+ k|b0|T
2[ A1(2,k)

|b0|−γ
]

k−1
k < b2, if s = 1

(3.72)
Then Eq. (1.1) has at least one T-periodic solution.

The proofs of Theorem 3.3-) 3.11 are similar to that of Theorem 3.1.

Theorem 3.12 Suppose k is even, conditions (H1) hold. If
(H27) there is an constant c > 0 such that f (t, y) + b0xk

< −|p(t)|∞ ∀t ∈ R;
|x|, |y| > c and f (t, 0) > |p(t)|∞ ∀t ∈ R.

(H28) there is a positive integer 0 < s ≤ n − 1 such that
{

bs < 0, i f s = n − 1
bs < 0, bs+i = 0, i = 1, 2, · · · , n − 1 − s, i f 0 < s < n − 1

(3.73)
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(H29)

A3(s, k) + γTsk
< |bs| (3.74)

where A3(s, k) =
s−1

∑
i=0

T(s−i)k|bi|. Then Eq. (1.1) has at least one T-periodic positive

solution.
Proof. For x(t) > 0, x ∈ Ω1, we have

x(n)(t) = −λ
s

∑
i=0

bi[x
(i)(t)]k − λ f (t, x(t − τ)) + λp(t), λ ∈ (0, 1).

Integrating the above formula on [0, T], we have

∫ T
0 [ f (t, x(t − τ)) + b0|x(t)|

k ]dt = −
s

∑
i=1

bi

∫ T
0 |x(i)(t)|kdt +

∫ T
0 p(t)dt (3.75)

If s > 1, since

−
s

∑
i=0

bi

∫ T
0 |x(i)(t)|kdt ≥ −bs

∫ T
0 |x(s)(t)|kdt −

s−1

∑
i=1

|bi|
∫ T

0 |x(i)(t)|kdt

≥ [−bs −
s−1

∑
i=1

T(s−i)k|bi|]
∫ T

0 |x(s)(t)|kdt ≥ 0.

(3.76)

it follows from (3.75) and (3.76) that we have

∫ T
0 [ f (t, x(t − τ)) + b0|x(t)|

k ]dt ≥
∫ T

0 p(t)dt. (3.77)

If s = 1, it is easy to see that the above inequality holds.
We can prove that there is a t1 ∈ [0, T] such that |x(t1)| < c. Indeed, from

(3.77) , there is a t0 ∈ [0, T] such that

f (t0, x(t0 − τ)) + b0|x(t0)|
k ≥ −|p(t)|∞ (3.78)

If 0 < x(t0) ≤ c, then take t1 = t0 so that 0 < x(t1) ≤ c.
If x(t0) > c, it follows from assumption (H27) that 0 < x(t0 − τ) ≤ c. Since x(t)
is continuous for t ∈ R and x(t + T) = x(t), so there must be an integer k and a
point t1 ∈ [0, T] such that t0 − τ = kT + t1. so |x(t1)| = |x(t0 − τ)| ≤ c, which
implies

|x(t)|∞ ≤ c +
∫ T

0 |x
′
(t)|dt ≤ c + T

k−1
k (

∫ T
0 |x

′
(t)|kdt)

1
k ≤ c + Ts− 1

k (
∫ T

0 |x(s)(t)|kdt)
1
k

(3.79)
On the other hand, from (3.75) , if s > 1, we have

bs

∫ T
0 |x(s)(t)|kdt

= −
s−1

∑
i=1

bi

∫ T
0 |x(i)(t)|kdt − b0

∫ T
0 |x(t)|kdt −

∫ T
0 f (t, x(t − τ))dt +

∫ T
0 p(t)dt.

(3.80)
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Thus, applying Lemma 2.1, we get

|bs|
∫ T

0 |x(s)(t)|kdt ≤
s−1

∑
i=1

|bi|
∫ T

0 |x(i)(t)|kdt+

|b0|
∫ T

0 |x(t)|kdt +
∫ T

0 | f (t, x(t − τ))|dt +
∫ T

0 |p(t)|dt

≤
s−1

∑
i=1

|bi|
∫ T

0 |x(i)(t)|kdt + |b0|
∫ T

0 |x(t)|kdt + (γ + ε)
∫ T

0 |x(t − τ)|kdt

+( fδ + |p(t)|)T

≤
s−1

∑
i=1

T(s−i)k|bi|
∫ T

0 |x(s)(t)|kdt + [|b0|+ (γ + ε)]T|x(t)|k∞ + ( fδ + |p(t)|)T

(3.81)
We can prove that there is a constant M3 > 0 such that

∫ T
0 |x(s)(t)|kdt ≤ M3 (3.82)

For some nonnegative integer l, there is a constant 0 < h < 1 such that

(1 + x)l
< 1 + (l + 1)x, x ∈ (0, h) (3.83)

Now we consider two cases to finish our proof.

Case 1 If (
∫ T

0 |x(s)(t)|kdt)
1
k ≤ c

T
s− 1

k h
, then

|x(t)|∞ ≤ c + Ts− 1
k (
∫ T

0
|x(s)(t)|kdt)

1
k ≤ c +

c

h
(3.84)

So substituting the above formula into (3.81) , we have

[|bs| −
s−1

∑
i=1

T(s−i)k|bi|]
∫ T

0
[x(s)(t)]kdt ≤ [|b0|+ (γ + ε)]T((c +

c

h
))k + ( fδ + |p(t)|)T

(3.85)
Hence there is a constant M3 > 0 such that

∫ T

0
|x(s)(t)|kds ≤ M3 (3.86)

Case 2 If (
∫ T

0 |x(s)(t)|kdt)
1
k >

c

T
s− 1

k h
.

|x(t)|k∞ ≤ [c + Ts− 1
k (
∫ T

0 |x(s)(t)|kdt)
1
k ]k

= Tsk−1(
∫ T

0 |x(s)(t)|kdt)[1 + c

T
s− 1

k (
∫ T

0 |x(s)(t)|kdt)
1
k

]k

≤ Tsk−1(
∫ T

0 |x(s)(t)|kdt)[1 + c(k+1)

T
s− 1

k (
∫ T

0 |x(s)(t)|kdt)
1
k

]

= Tsk−1(
∫ T

0 |x(s)(t)|kdt) + c(k + 1)Ts(k−1)+ 1
k−1(

∫ T
0 |x(s)(t)|kdt)

k−1
k

(3.87)
Substituting the above formula into (3.81) , we have

|bs|
∫ T

0 |x(s)(t)|kdt

≤
s−1

∑
i=1

T(s−i)k|bi|
∫ T

0 |x(s)(t)|kdt + [|b0|+ (γ + ε)][Tsk(
∫ T

0 |x(s)(t)|kdt)

+c(k + 1)Ts(k−1)+ 1
k (
∫ T

0 |x(s)(t)|kdt)
k−1

k ] + ( fδ + |p(t)|)T
(3.88)
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Then

[|bs| −A3(s, k)− (γ + ε)Tsk]
∫ T

0 [x(s)(t)]kdt

≤ c(k + 1)[|b0|+ (γ + ε)]Ts(k−1)(
∫ T

0 |x(s)(t)|kdt)
k−1

k + ( fδ + |p(t)|)T
(3.89)

Hence there is a constant M4 > 0 such that

∫ T
0 |x(s)(t)|kdd ≤ M4 (3.90)

If s = 1, similarly, we can prove that there is a constant M5 > 0 such that

∫ T
0 |x

′
(t)|kdd ≤ M5 (3.92)

The remainder can be proved in the same way as in the proof of Theorem 3.1.

Theorem 3.13 Suppose k is even, conditions (H1) and (H29) hold. If
(H30) there is an constant c > 0 such that f (t, y) + b0xk

> |p(t)|∞ ∀t ∈ R;
|x|, |y| > c and f (t, 0) < −|p(t)|∞∀t ∈ R .

(H31) there is a positive integer 0 < s ≤ n − 1 such that

{

bs > 0, i f s = n − 1
bs > 0, bs+i = 0, i = 1, 2, · · · , n − 1 − s, i f 0 < s < n − 1

(3.93)

Then Eq. (1.1) has at least one T-periodic positive solution.

Example 3.1 Consider the following equation

x(5)(t) + 1000[x
′′
(t)]3 + 1

100 [x
′
(t)]3 + 1

8000 [x(t)]
3 + 1

40000(sin t)[x(t − π)]3 = cos t
(3.94)

where n = 5, k = 3, b4 = b3 = 0, b2 = 1000, b1 = 1
100 , b0 = 1

8000 , f (t, x) =
1

40000 (sin t)x3, p(t) = cos t, τ = π. Thus, T = 2π, γ = 1
40000 , A1(2, k) = |b1|(2π)3 +

|b2| =
1

100 × (2π)3 + 1000. Obviously assumption (H1)− (H3) hold and

γA1(2,k)
|b0|−γ

+ k|b0|(2π)2[ A1(2,k)
|b0|−γ

]
k−1

k < |b2| (3.95)

By Theorem 3.1, we know that Eq. (3.94) has at least one 2π-periodic solution.
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