Periodic solutions for $n^{\text {th }}$ order functional differential equations*

LiJun Pan XingRong Chen

Abstract

In this paper, we study the existence of periodic solutions for $n^{\text {th }}$ order functional differential equations $x^{(n)}(t)+\sum_{i=0}^{n-1} b_{i}\left[x^{(i)}(t)\right]^{k}+f(t, x(t-\tau))=$ $p(t)$. Some new results on the existence of periodic solutions of the equations are obtained. Our approach is based on the coincidence degree theory of Mawhin.

1 Introduction

In this paper, we are concerned with the existence of periodic solutions of the n th order functional differential equations

$$
\begin{equation*}
x^{(n)}(t)+\sum_{i=0}^{n-1} b_{i}\left[x^{(i)}(t)\right]^{k}+f(t, x(t-\tau))=p(t) \tag{1.1}
\end{equation*}
$$

where $b_{i}(i=0,1, \cdots, n-1)$ are constants, k is a integer, $f \in C\left(R^{2}, R\right)$ and $f(t+T, x)=f(t, x)$ for $\forall x \in R, p \in C(R, R)$ with $p(t+T)=p(t)$.

In recent years, there are many papers studying the existence of periodic solutions of first, second or third order differential equations[1,3-4, 10-11, 13-16, 18,

[^0]20-21, 23]. For example, in [11], Zhang and Wang studied the following differential equations

$$
\begin{equation*}
x^{\prime \prime \prime}(t)+a x^{\prime \prime 2 k-1}(t)+b x^{\prime 2 k-1}(t)+c x^{2 k-1}(t)+g\left(t, x\left(t-\tau_{1}, x^{\prime}\left(t-\tau_{2}\right)\right)=p(t)\right. \tag{1.2}
\end{equation*}
$$

The authors established the existence of periodic solutions of Eq. (1.2) under some conditions on a, b, c and $2 k-1$.

In $[5-9,12,17,19,22], n, 2 n$ and $2 n+1$ th order differential equations of the form

$$
\begin{gather*}
x^{(2 n)}(t)+\sum_{j=1}^{n-1} a_{j} x^{(2 j)}(t)+(-1)^{(k+1)} g(t, x)=0 \tag{1.3}\\
x^{(2 n+1)}(t)+\sum_{j=1}^{n-1} a_{j} x^{(2 j+1)}(t)+g(t, x)=0 \tag{1.4}
\end{gather*}
$$

were discussed. The authors obtained the results based on the damping terms $x^{(i)}(t)(i=1, \cdots, n-1)$. But few of them studied the differential equations with the damping terms $\left[x^{(i)}(t)\right]^{k}(i=1, \cdots, n-1)$, where $k \geq 1$.

In present paper, by using Mawhin's continuation theorem, we will establish some theorems on the existence of periodic solutions of Eq. (1.1). The results are related to not only b_{i} and $f(t, x)$ but also the positive integer k. In addition, we give an example to illustrate our new results.

2 Some lemmas

We investigate the theorems based on the following Lemmas.
Lemma 2.1 If $k \geq 1$ is an integer, $x \in C^{n}(R, R)$, and $x(t+T)=x(t)$, then

$$
\begin{equation*}
\left(\int_{0}^{T}\left|x^{\prime}(t)\right|^{k} d t\right)^{\frac{1}{k}} \leq T\left(\int_{0}^{T}\left|x^{\prime \prime}(t)\right|^{k} d t\right)^{\frac{1}{k}} \leq \cdots \leq T^{n-1}\left(\int_{0}^{T}\left|x^{(n)}(t)\right|^{k} d t\right)^{\frac{1}{k}} \tag{2.1}
\end{equation*}
$$

The proof of Lemma 2.1 is easy, here we omit it.
We first introduce Mawhin's continuation theorem.
Let X and Y be Banach spaces, $L: D(L) \subset X \rightarrow Y$ be a Fredholm operator of index zero, here $D(L)$ denotes the domain of $L . P: X \rightarrow X, Q: Y \rightarrow Y$ be projectors such that

$$
\operatorname{ImP} P=\operatorname{Ker} L, K e r Q=\operatorname{ImL}, X=\operatorname{Ker} L \oplus \operatorname{Ker} P, Y=\operatorname{ImL} L \oplus \operatorname{ImQ} Q .
$$

It follows that

$$
\left.L\right|_{D(L) \cap K e r P}: D(L) \cap \operatorname{Ker} P \rightarrow I m L
$$

is invertible, we denote the inverse of that map by K_{p}. Let Ω be an open bounded subset of $X, D(L) \cap \bar{\Omega} \neq \varnothing$, the map $N: X \rightarrow Y$ will be called L-compact in $\bar{\Omega}$, if $Q N(\bar{\Omega})$ is bounded and $K_{p}(I-Q) N: \bar{\Omega} \rightarrow X$ is compact.

Lemma 2.2 [2] Let L be a Fredholm operator of index zero and let N be L compact on $\bar{\Omega}$. Assume that the following conditions are satisfied:
(i) $L x \neq \lambda N x, \forall x \in \partial \Omega \cap D(L), \lambda \in(0,1)$.
(ii) $Q N x \neq 0, \forall x \in \partial \Omega \cap \operatorname{KerL}$,
(iii) $\operatorname{deg}\{Q N x, \Omega \cap \operatorname{Ker} L, 0\} \neq 0$, Then the equation $L x=N x$ has at least one solution in $\bar{\Omega} \cap D(L)$.

Now, we define $Y=\{x \in C(R, R) \mid x(t+T)=x(t)\}$ with the norm $|x|_{\infty}=$ $\max _{t \in[0, T]}\{|x(t)|\}$ and $X=\left\{x \in C^{n-1}(R, R) \mid x(t+T)=x(t)\right\}$ with norm $\|x\|=\max \left\{|x|_{\infty},\left|x^{\prime}\right|_{\infty} \cdots,\left|x^{(n-1)}\right|_{\infty}\right\}$, we can easily see that X, Y are two Banach spaces. We also define the operators L and N as follows:

$$
\begin{gather*}
L: D(L) \subset X \rightarrow Y, L x=x^{(n)}, D(L)=\left\{x \mid x \in C^{n}(R, R), x(t+T)=x(t)\right\} \tag{2.2}\\
N: X \rightarrow Y, N x=-\sum_{i=1}^{n-1} b_{i}\left[x^{(i)}(t)\right]^{k}-f(t, x(t-\tau))+p(t) \tag{2.3}
\end{gather*}
$$

It is easy to see that Eq. (1.1) can be converted to the abstract equation $L x=$ $N x$. Moreover, from the definition of L, we see that $\operatorname{ker} L=R, \operatorname{dim}(\operatorname{ker} L)=1$, $\operatorname{ImL}=\left\{y \mid y \in Y, \int_{0}^{T} y(s) d s=0\right\}$ is closed, and $\operatorname{dim}(Y \backslash \operatorname{ImL})=1$, we have $\operatorname{codim}(\operatorname{ImL})=\operatorname{dim}(\operatorname{ker} L)$, so L is a Fredholm operator with index zero. Let

$$
P: X \longrightarrow \operatorname{Ker} L, P x=x(0), Q: Y \longrightarrow Y \backslash \operatorname{ImL}, Q y=\frac{1}{T} \int_{0}^{T} y(t) d t
$$

and let

$$
\left.L\right|_{D(L) \cap \text { Ker } P}: D(L) \cap \operatorname{Ker} P \rightarrow \operatorname{ImL} .
$$

Then $\left.L\right|_{D(L) \cap K e r P}$ has a unique continuous inverse K_{p}. One can easily find that N is L-compact in $\bar{\Omega}$, where Ω is an open bounded subset of X.

3 Main result

Theorem 3.1 Suppose $n=2 m+1, m>0$ an integer, k is odd, and the following conditions hold
$\left(H_{1}\right)$ the function f satisfies

$$
\begin{equation*}
\lim _{x \rightarrow \infty}\left|\frac{f(t, x)}{x^{k}}\right| \leq \gamma \tag{3.1}
\end{equation*}
$$

where $\gamma \geq 0$.
$\left(\mathrm{H}_{2}\right)$

$$
\begin{equation*}
\left|b_{0}\right|>\gamma \tag{3.2}
\end{equation*}
$$

$\left(H_{3}\right)$ there is a positive integer $0<s \leq m$ such that

$$
\left\{\begin{array}{l}
b_{2 s} \neq 0, \quad \text { if } s=m \tag{3.3}\\
b_{2 s} \neq 0, b_{2 s+i}=0, i=1,2, \cdots, 2 m-2 s, \quad \text { if } 0<s<m
\end{array}\right.
$$

$\left(H_{4}\right)$

$$
\left\{\begin{array}{l}
A_{2}(2 s, k)+\frac{\gamma A_{1}(2 s, k)}{\left|b_{0}\right|-\gamma}+k\left|b_{0}\right| T^{2 s}\left[\frac{A_{1}(2 s, k)}{\left|b_{0}\right|-\gamma}\right]^{\frac{k-1}{k}}<\left|b_{2 s}\right|, \quad \text { if } 1<s \leq m \tag{3.4}\\
\frac{\gamma A_{1}(2, k)}{\left|b_{0}\right|-\gamma}+k\left|b_{0}\right| T^{2}\left[\frac{A_{1}(2, k)}{\left|b_{0}\right|-\gamma}\right]^{\frac{k-1}{k}}<\left|b_{2}\right|, \quad \text { if } s=1
\end{array}\right.
$$

where $A_{1}(s, k)=\sum_{i=1}^{s}\left|b_{i}\right| T^{(s-i) k}, A_{2}(s, k)=\sum_{i=1}^{s-2}\left|b_{i}\right| T^{(s-i) k}$. Then Eq. (1.1) has at least one T-periodic solution.
Proof. Consider the equation

$$
L x=\lambda N x, \lambda \in(0,1)
$$

where L and N are defined by (2.2) and (2.3) . Let

$$
\Omega_{1}=\{x \in D(L) / \operatorname{Ker} L, L x=\lambda N x \text { for some } \lambda \in(0,1)\}
$$

for $x \in \Omega_{1}$, We have

$$
\begin{equation*}
x^{(n)}(t)=-\lambda \sum_{i=0}^{2 s} b_{i}\left[x^{(i)}(t)\right]^{k}-\lambda f(t, x(t-\tau))+\lambda p(t), \lambda \in(0,1) \tag{3.5}
\end{equation*}
$$

Multiplying both sides of (3.5) by $x(t)$, and integrating them on $[0, T]$, we have for $\lambda \in(0,1)$

$$
\begin{align*}
\int_{0}^{T} x^{(n)}(t) x(t) d t & =-\lambda \sum_{i=0}^{2 s} b_{i} \int_{0}^{T}\left[x^{(i)}(t)\right]^{k} x(t) d t- \tag{3.6}\\
& \lambda \int_{0}^{T} f(t, x(t-\tau)) x(t) d t+\lambda \int_{0}^{T} p(t) x(t) d t
\end{align*}
$$

It is easy to see that, for any positive integer i,

$$
\begin{equation*}
\int_{0}^{T} x^{(2 i-1)}(t) x(t) d t=0 \tag{3.7}
\end{equation*}
$$

In view of $n=2 m+1$ and k is odd, it follows from (3.3) and (3.7) that

$$
\begin{array}{r}
b_{0} \int_{0}^{T}|x(t)|^{k+1} d t=-\sum_{i=1}^{2 s} b_{i} \int_{0}^{T}\left[x^{(i)}(t)\right]^{k} x(t) d t-\int_{0}^{T} f(t, x(t-\tau)) x(t) d t+ \\
\int_{0}^{T} p(t) x(t) d t
\end{array}
$$

From which it follows that

$$
\begin{equation*}
\left|b_{0}\right| \quad \int_{0}^{T}|x(t)|^{k+1} d t \leq \int_{0}^{T}|x(t)|\left[\sum_{i=1}^{2 s}\left|b_{i}\right|\left|x^{(i)}(t)\right|^{k}+|f(t, x(t-\tau))|+|p(t)|\right] d t \tag{3.9}
\end{equation*}
$$

By using Hölder inequality and Lemma 2.1, from (3.9) , we obtain

$$
\begin{align*}
\left|b_{0}\right| & \int_{0}^{T}|x(t)|^{k+1} d t \leq\left(\int_{0}^{T}|x(t)|^{k+1} d t\right)^{\frac{1}{k+1}}\left[\sum_{i=1}^{2 s}\left|b_{i}\right|\left(\int_{0}^{T}\left|x^{(i)}(t)\right|^{k+1} d t\right)^{\frac{k}{k+1}}\right. \\
& \left.+\left(\int_{0}^{T}|f(t, x(t-\tau))|^{\frac{k+1}{k}} d t\right)^{\frac{k}{k+1}}+\left(\int_{0}^{T}|p(t)|^{\frac{k+1}{k}} d t\right)^{\frac{k}{k+1}}\right] \tag{3.10}\\
& \leq\left(\int_{0}^{T}|x(t)|^{k+1} d t\right)^{\frac{1}{k+1}}\left[\sum_{i=1}^{2 s}\left|b_{i}\right| T^{(2 s-i) k}\left(\int_{0}^{T}\left|x^{(2 s)}(t)\right|^{k+1} d t\right)^{\frac{k}{k+1}}\right. \\
& \left.+\left(\int_{0}^{T}|f(t, x(t-\tau))|^{\frac{k+1}{k}} d t\right)^{\frac{k}{k+1}}+|p(t)|_{\infty} T^{\frac{k}{k+1}}\right] .
\end{align*}
$$

So

$$
\begin{align*}
\left|b_{0}\right|\left(\int_{0}^{T}|x(t)|^{k+1} d t\right)^{\frac{k}{k+1}} \leq A_{1}(2 s, k) & \left(\int_{0}^{T}\left|x^{(2 s)}(t)\right|^{k+1} d t\right)^{\frac{k}{k+1}} \\
& +\left(\int_{0}^{T}|f(t, x(t-\tau))|^{\frac{k+1}{k}} d t\right)^{\frac{k}{k+1}}+u_{1} . \tag{3.11}
\end{align*}
$$

where u_{1} is a positive constant. Choose a constant $\varepsilon>0$ such that

$$
\gamma+\varepsilon<\left|b_{0}\right|
$$

and

$$
\left\{\begin{array}{l}
A_{2}(2 s, k)+\frac{(\gamma+\varepsilon) A_{1}(2 s, k)}{\left|b_{0}\right|-(\gamma+\varepsilon)}+k\left|b_{0}\right| T^{2 s}\left[\frac{A_{1}(2 s, k)}{\left|b_{0}\right|-(\gamma+\varepsilon)}\right]^{\frac{k-1}{k}}<\left|b_{2 s}\right|, \quad \text { if } 1<s \leq m \\
\frac{(\gamma+\varepsilon) A_{1}(2, k)}{\left|b_{0}\right|-(\gamma+\varepsilon)}+k\left|b_{0}\right| T^{2}\left[\frac{A_{1}(2, k)}{\left|b_{0}\right|-(\gamma+\varepsilon)}\right]^{\frac{k-1}{k}<\left|b_{2}\right|, \quad \text { if } s=1}
\end{array}\right.
$$

For the above constant $\varepsilon>0$, we see from (3.1) that there is a constant $\delta>0$ such that

$$
\begin{equation*}
|f(t, x(t-\tau))|<(\gamma+\varepsilon)|x(t-\tau)|^{k}, \text { for }|x(t-\tau)|>\delta, t \in[0, T] \tag{3.12}
\end{equation*}
$$

Denote

$$
\begin{equation*}
\Delta_{1}=\{t \in[0, T]:|x(t-\tau)| \leq \delta\}, \Delta_{2}=\{t \in[0, T]:|x(t-\tau)|>\delta\} . \tag{3.13}
\end{equation*}
$$

Since

$$
\begin{align*}
\int_{0}^{T}|f(t, x(t-\tau))|^{\frac{k+1}{k}} d t & \leq \int_{\Delta_{1}}|f(t, x(t-\tau))|^{\frac{k+1}{k}} d t+\int_{\Delta_{2}}|f(t, x(t-\tau))|^{\frac{k+1}{k}} d t \\
& \leq\left(f_{\delta}\right)^{\frac{k+1}{k}} T+(\gamma+\varepsilon)^{\frac{k+1}{k}} \int_{0}^{T}|x(t-\tau)|^{k+1} d t \\
& =\left(f_{\delta}\right)^{\frac{k+1}{k}} T+(\gamma+\varepsilon)^{\frac{k+1}{k}} \int_{0}^{T}|x(t)|^{k+1} d t \tag{3.14}
\end{align*}
$$

where $f_{\delta}=\max _{t \in[0, T],|x| \leq \delta}|f(t, x)|$. Using inequality

$$
\begin{equation*}
(a+b)^{l} \leq a^{l}+b^{l} \quad \text { for } a \geq 0, b \geq 0 \text { and } 0 \leq l \leq 1 \tag{3.15}
\end{equation*}
$$

it follows from (3.14) that

$$
\begin{equation*}
\left(\int_{0}^{T}|f(t, x(t-\tau))|^{\frac{k+1}{k}} d t\right)^{\frac{k}{k+1}} \leq f_{\delta} T^{\frac{k}{k+1}}+(\gamma+\varepsilon)\left(\int_{0}^{T}|x(t)|^{k+1} d t\right)^{\frac{k}{k+1}} \tag{3.16}
\end{equation*}
$$

Substituting the above formula into (3.11) , we have

$$
\begin{equation*}
\left[\left|b_{0}\right|-(\gamma+\varepsilon)\right]\left(\int_{0}^{T}|x(t)|^{k+1} d t\right)^{\frac{k}{k+1}} \leq A_{1}(2 s, k)\left(\int_{0}^{T}\left|x^{(2 s)}(t)\right|^{k+1} d t\right)^{\frac{k}{k+1}}+u_{2} \tag{3.17}
\end{equation*}
$$

where u_{2} is a positive constant.
That is

$$
\begin{equation*}
\left(\int_{0}^{T}|x(t)|^{k+1} d t\right)^{\frac{k}{k+1}} \leq \frac{A_{1}(2 s, k)}{\left|b_{0}\right|-(\gamma+\varepsilon)}\left(\int_{0}^{T}\left|x^{(2 s)}(t)\right|^{k+1} d t\right)^{\frac{k}{k+1}}+u_{3} . \tag{3.18}
\end{equation*}
$$

where u_{3} is a positive constant.
On the other hand, multiplying both sides of (3.5) by $x^{(2 s)}(t)$, and integrating on $[0, T]$, we have

$$
\begin{align*}
& \int_{0}^{T} \quad x^{(n)}(t) x^{(2 s)}(t) d t=-\sum_{i=0}^{2 s} b_{i} \int_{0}^{T}\left[x^{(i)}(t)\right]^{k} x^{(2 s)}(t) d t \tag{3.19}\\
& \quad-\int_{0}^{T} f(t, x(t-\tau)) x^{(2 s)}(t) d t+\int_{0}^{T} p(t) x^{(2 s)}(t) d t
\end{align*}
$$

If $1<s \leq m$, since

$$
\begin{equation*}
\int_{0}^{T} x^{(2 m+1)}(t) x^{(2 s)}(t) d t=0, \int_{0}^{T}\left[x^{(2 s-1)}(t)\right]^{k} x^{(2 s)}(t) d t=0, \tag{3.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{T}[x(t)]^{k} x^{(2 s)}(t) d t=-k \int_{0}^{T}[x(t)]^{k-1} x^{(2 s-1)}(t) x^{\prime}(t) d t \tag{3.21}
\end{equation*}
$$

by using Hölder inequality and Lemma 2.1, from (3.19) , we have

$$
\begin{align*}
& \left|b_{2 s}\right| \int_{0}^{T}\left|x^{(2 s)}(t)\right|^{k+1} d t \\
& \leq \int_{0}^{T}\left|x^{(2 s)}(t)\right|\left[\sum_{i=1}^{2 s-2}\left|b_{i}\right|\left|x^{(i)}(t)\right|^{k}+|f(t, x(t-\tau))|+|p(t)|\right] d t \\
& \quad+k\left|b_{0}\right| \int_{0}^{T}|x(t)|^{k-1}\left|x^{(2 s-1)}(t)\right|\left|x^{\prime}(t)\right| d t
\end{aligned} \quad \begin{aligned}
& \leq\left(\int_{0}^{T}\left|x^{(2 s)}(t)\right|^{k+1} d t\right)^{\frac{1}{k+1}}\left[\sum_{i=1}^{2 s-2}\left|b_{i}\right| T^{(2 s-i) k}\left(\int_{0}^{T}\left|x^{(2 s)}(t)\right|^{k+1} d t\right)^{\frac{k}{k+1}}+\right. \\
& \left.\quad\left(\int_{0}^{T}|f(t, x(t-\tau))|^{\frac{k+1}{k}} d t\right)^{\frac{k}{k+1}}+|p(t)|_{\infty} T^{\frac{k}{k+1}}\right]+ \\
& \quad k\left|b_{0}\right|\left|x^{\prime}(t)\right|_{\infty} \int_{0}^{T}|x(t)|^{k-1}| | x^{(2 s-1)}(t) \mid d t
\end{align*}
$$

Since $x(0)=x(T)$, there exists $\xi \in[0, T]$ such that $x^{\prime}(\xi)=0$. Hence for $t \in[0, T]$

$$
x^{\prime}(t)=x^{\prime}(\xi)+\int_{\xi}^{t} x^{\prime \prime}(\sigma) d \sigma
$$

Using Hölder inequality and Lemma 2.1, we have

$$
\begin{align*}
\left|x^{\prime}(t)\right|_{\infty} \leq \int_{0}^{T}\left|x^{\prime \prime}(t)\right| d t \leq T^{\frac{k}{k+1}}\left(\int_{0}^{T}\right. & \left.\left|x^{\prime \prime}(t)\right|^{k+1} d t\right)^{\frac{1}{k+1}} \\
& \leq T^{2 s-1-\frac{1}{k+1}}\left(\int_{0}^{T}\left|x^{(2 s)}(t)\right|^{k+1} d t\right)^{\frac{1}{k+1}}
\end{align*}
$$

Using inequality

$$
\begin{equation*}
\left(\left.\frac{1}{T} \int_{0}^{T}|x(t)|^{r} \right\rvert\,\right)^{\frac{1}{r}} \leq\left(\left.\frac{1}{T} \int_{0}^{T}|x(t)|^{l} \right\rvert\,\right)^{\frac{1}{T}} \text { for } 0 \leq r \leq l \text { and } \forall x \in R \tag{3.24}
\end{equation*}
$$

and applying Hölder inequality, we obtain from Lemma 2.1

$$
\begin{align*}
\int_{0}^{T}|x(t)|^{k-1}| | x^{(2 s-1)}(t) \mid d t & \leq\left(\int_{0}^{T}|x(t)|^{k} d t\right)^{\frac{k-1}{k}}\left(\int_{0}^{T}\left|x^{(2 s-1)}(t)\right|^{k} d t\right)^{\frac{1}{k}} \\
& \leq T^{\frac{1}{k+1}}\left(\int_{0}^{T}|x(t)|^{k+1} d t\right)^{\frac{k-1}{k+1}}\left(\int_{0}^{T}\left|x^{(2 s-1)}(t)\right|^{k+1} d t\right)^{\frac{1}{k+1}} \\
& \leq T^{1+\frac{1}{k+1}}\left(\int_{0}^{T}|x(t)|^{k+1} d t\right)^{\frac{k-1}{k+1}}\left(\int_{0}^{T}\left|x^{(2 s)}(t)\right|^{k+1} d t\right)^{\frac{1}{k+1}} \tag{3.25}
\end{align*}
$$

Substituting the above formula, (3.16) and (3.23) into (3.22), we have

$$
\begin{align*}
\left|b_{2 s}\right| & \int_{0}^{T}\left|x^{(2 s)}(t)\right|^{k+1} d t \\
& \leq\left(\int_{0}^{T}\left|x^{(2 s)}(t)\right|^{k+1} d t\right)^{\frac{1}{k+1}}\left[A_{2}(2 s, k)\left(\int_{0}^{T}\left|x^{(2 s)}(t)\right|^{k+1} d t\right)^{\frac{k}{k+1}}\right. \\
& \left.+(\gamma+\varepsilon)\left(\int_{0}^{T}|x(t)|^{k+1} d t\right)^{\frac{k}{k+1}}+\left(|p(t)|_{\infty}+f_{\delta}\right) T^{\frac{k}{k+1}}\right] \tag{3.26}\\
& +k\left|b_{0}\right| T^{2 s}\left(\int_{0}^{T}\left|x^{(2 s)}(t)\right|^{k+1} d t\right)^{\frac{2}{k+1}}\left(\int_{0}^{T}|x(t)|^{k+1} \mid d t\right)^{\frac{k-1}{k+1}}
\end{align*}
$$

Then, we have

$$
\begin{align*}
\left(\left|b_{2 s}\right|\right. & \left.-A_{2}(2 s, k)\right)\left(\int_{0}^{T}\left|x^{(2 s)}(t)\right|^{k+1} d t\right)^{\frac{k}{k+1}} \\
& \leq k\left|b_{0}\right| T^{2 s}\left(\int_{0}^{T}\left|x^{(2 s)}(t)\right|^{k+1} d t\right)^{\frac{1}{k+1}}\left(\int_{0}^{T}|x(t)|^{k+1} \mid d t\right)^{\frac{k-1}{k+1}} \tag{3.27}\\
& +(\gamma+\varepsilon)\left(\int_{0}^{T}|x(t)|^{k+1} d t\right)^{\frac{k}{k+1}}+u_{4}
\end{align*}
$$

where u_{4} is a positive constant.
Using inequality

$$
\begin{equation*}
(a+b)^{l} \leq a^{l}+b^{l} \quad \text { for } a \geq 0, b \geq 0 \text { and } 0 \leq l \leq 1 \tag{3.28}
\end{equation*}
$$

it follows from (3.18) that

$$
\begin{equation*}
\left.\left.\int_{0}^{T}|x(t)|^{k+1} d t\right)^{\frac{k-1}{k+1}} \leq\left[\frac{A_{1}(2 s, k)}{\left|b_{0}\right|-(\gamma+\varepsilon)}\right]^{\frac{k-1}{k}} \int_{0}^{T}\left|x^{(2 s)}(t)\right|^{k+1} d t\right)^{\frac{k-1}{k+1}}+u_{5} \tag{3.29}
\end{equation*}
$$

where u_{5} is a positive constant.
Substituting the above formula and (3.18) into (3.27) , we have

$$
\begin{align*}
\left\{\left|b_{2 s}\right|-\right. & \left.A_{2}(2 s, k)-\frac{(\gamma+\varepsilon) A_{1}(2 s, k)}{\left|b_{0}\right|-(\gamma+\varepsilon)}-k\left|b_{0}\right| T^{2 s}\left[\frac{A_{1}(2 s, k)}{\left|b_{0}\right|-(\gamma+\varepsilon)}\right]^{\frac{k-1}{k}}\right\}\left(\int_{0}^{T}\left|x^{(2 s)}(t)\right|^{k+1} d t\right)^{\frac{k}{k+1}} \\
& \leq u_{5} k\left|b_{0}\right| T^{2 s}\left(\int_{0}^{T}\left|x^{(2 s)}(t)\right|^{k+1} d t\right)^{\frac{1}{k+1}}+u_{6} \tag{3.30}
\end{align*}
$$

where u_{6} is a positive constant.
If $s=1$, since $\int_{0}^{T}\left[x^{\prime}(t)\right]^{k} x^{\prime \prime}(t) d t=0, \int_{0}^{T}[x(t)]^{k} x^{\prime \prime}(t) d t=-k \int_{0}^{T}[x(t)]^{k-1}\left[x^{\prime}(t)\right]^{2} d t$, from (3.19), we have

$$
\begin{align*}
& b_{2} \int_{0}^{T}\left[x^{\prime \prime}(t)\right]^{k+1} d t=-k b_{0} \int_{0}^{T}[x(t)]^{k-1}\left[x^{\prime}(t)\right]^{2} d t \\
&-\int_{0}^{T} f(t, x(t-\tau)) x^{\prime}(t) d t+\int_{0}^{T} p(t) x^{\prime}(t) d t
\end{align*}
$$

Applying the above method, we have

$$
\begin{align*}
\left\{\left|b_{2}\right|\right. & \left.-\frac{(\gamma+\varepsilon) A_{1}(2, k)}{\left|b_{0}\right|-(\gamma+\varepsilon)}-k\left|b_{0}\right| T^{2}\left[\frac{A_{1}(2, k)}{\left|b_{0}\right|-(\gamma+\varepsilon)}\right]^{\frac{k-1}{k}}\right\}\left(\int_{0}^{T}\left|x^{\prime \prime}(t)\right|^{k+1} d t\right)^{\frac{k}{k+1}} \\
& \leq u_{7} k\left|b_{0}\right| T^{2}\left(\int_{0}^{T}\left|x^{\prime \prime}(t)\right|^{k+1} d t\right)^{\frac{1}{k+1}}+u_{8} \tag{3.32}
\end{align*}
$$

where u_{7}, u_{8} is a positive constant.
Hence there is a constant $M_{1}, M_{2}>0$ such that

$$
\begin{equation*}
\int_{0}^{T}\left|x^{(2 s)}(t)\right|^{k+1} d t \leq M_{1} \tag{3.33}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{T}|x(t)|^{k+1} d t \leq M_{2} \tag{3.34}
\end{equation*}
$$

From (3.5), using Hölder inequality and Lemma 2.1, we have

$$
\begin{align*}
& \int_{0}^{T}\left|x^{(n)}(t)\right| d t \leq \sum_{i=1}^{2 s}\left|b_{i}\right| \int_{0}^{T}\left|x^{(i)}(t)\right|^{k} d t+\left|b_{0}\right| \int_{0}^{T}|x(t)|^{k} d t+ \\
& \quad \int_{0}^{T}|f(t, x(t-\tau))| d t+\int_{0}^{T}|p(t)| d t \\
& \leq \sum_{i=1}^{2 s}\left|b_{i}\right| T^{(2 s-i) k+\frac{1}{k+1}}\left(\int_{0}^{T}\left|x^{(2 s)}(t)\right|^{k+1} d t\right)^{\frac{k}{k+1}} \\
& \quad+\left|b_{0}\right| T^{\frac{1}{k+1}}\left(\int_{0}^{T}|x(t)|^{k+1} d t\right)^{\frac{k}{k+1}} \\
& +(\gamma+\varepsilon) T^{\frac{1}{k+1}}\left(\int_{0}^{T}|x(t)|^{k+1} d t\right)^{\frac{k}{k+1}}+\left(|p(t)|_{\infty}+f_{\delta}\right) T \\
& \leq \sum_{i=1}^{2 s}\left|b_{i}\right| T^{(2 s-i) k+\frac{1}{k+1}}\left(M_{1}\right)^{\frac{k}{k+1}}+\left|b_{0}\right| T^{\frac{1}{k+1}}\left(M_{2}\right)^{\frac{k}{k+1}} \\
& \quad+(\gamma+\varepsilon) T^{\frac{1}{k+1}}\left(M_{2}\right)^{\frac{k}{k+1}}+\left(|p(t)|_{\infty}+f_{\delta}\right) T=M
\end{align*}
$$

where M is a positive constant. We claim that

$$
\begin{equation*}
\left|x^{(i)}(t)\right| \leq T^{n-i-1} \int_{0}^{T}\left|x^{(n)}(t)\right| d t,(i=1,2, \cdots, n-1) \tag{3.36}
\end{equation*}
$$

In fact, noting that $x^{(n-2)}(0)=x^{(n-2)}(T)$, there must be a constant $\xi_{1} \in[0, T]$ such that $x^{(n-1)}\left(\xi_{1}\right)=0$, we obtain

$$
\begin{align*}
\left|x^{(n-1)}(t)\right|=\left|x^{(n-1)}\left(\xi_{1}\right)+\int_{\xi_{1}}^{t} x^{(n)}(s) d s\right| & \leq\left|x^{(n-1)}\left(\xi_{1}\right)\right| \\
& +\int_{0}^{T}\left|x^{(n)}(t)\right| d t=\int_{0}^{T}\left|x^{(n)}(t)\right| d t
\end{align*}
$$

Similarly, since $x^{(n-3)}(0)=x^{(n-3)}(T)$, there must be a constant $\xi_{2} \in[0, T]$ such that $x^{(n-2)}\left(\xi_{2}\right)=0$, from (3.37) we get

$$
\begin{equation*}
\left|x^{(n-2)}(t)\right|=\left|x^{(n-2)}\left(\xi_{2}\right)+\int_{\xi_{2}}^{t} x^{(n-1)}(s) d s\right| \leq \int_{0}^{T}\left|x^{(n-1)}(t)\right| d t \leq T \int_{0}^{T}\left|x^{(n)}(t)\right| d t \tag{3.38}
\end{equation*}
$$

By induction, we have

$$
\begin{equation*}
\left|x^{(i)}(t)\right| \leq T^{n-i-1} \int_{0}^{T}\left|x^{(n)}(t)\right| d t,(i=1,2, \cdots, n-1) \tag{3.39}
\end{equation*}
$$

Furthermore, we have

$$
\begin{equation*}
\left|x^{(i)}(t)\right|_{\infty} \leq T^{n-i-1} \int_{0}^{T}\left|x^{(n)}(t)\right| d t \leq T^{n-i-1} M,(i=1,2, \cdots, n-1) \tag{3.40}
\end{equation*}
$$

From (3.34) it follows that there exists a $\xi \in[0, T]$ such that $|x(\xi)| \leq M_{2}^{\frac{1}{k+1}}$.
Applying Lemma 2.1, we get

$$
\begin{align*}
|x(t)|_{\infty} & \leq x(\xi)+\int_{\tilde{\zeta}}^{t} x^{\prime}(t) d t \leq M_{2}^{\frac{1}{k+1}}+T^{\frac{k}{k+1}}\left(\int_{0}^{T}\left|x^{\prime}(t)\right|^{k+1} d t\right)^{\frac{1}{k+1}} \\
& \leq M_{2}^{\frac{1}{k+1}}+T^{2 s-1+\frac{k}{k+1}}\left(\int_{0}^{T}\left|x^{(2 s)}(t)\right|^{k+1} d t\right)^{\frac{1}{k+1}}=M_{2}^{\frac{1}{k+1}}+T^{2 s-1+\frac{k}{k+1}} M_{1}^{\frac{1}{k+1}} \tag{3.41}
\end{align*}
$$

It follows that there is a constant $A>0$ such that $\|x\| \leq A$, Thus Ω_{1} is bounded.
Let $\Omega_{2}=\{x \in \operatorname{KerL}, Q N x=0\}$. Suppose $x \in \Omega_{2}$, then $x(t)=d \in R$ and satisfies

$$
\begin{equation*}
Q N x=\frac{1}{T} \int_{0}^{T}\left[-b_{0} d^{k}-f(t, d)+p(t)\right] d t=0 \tag{3.42}
\end{equation*}
$$

We will prove that there exists a constant $B>0$ such that $|d| \leq B$. If $|d| \leq \delta$, taking $\delta=B$, we get $|d| \leq B$. If $|d|>\delta$, from (3.42), we have

$$
\begin{align*}
\left|b_{0}\right||d|^{k} & =\left|\frac{1}{T} \int_{0}^{T}[-f(t, d)+p(t)] d t\right| \tag{3.43}\\
& \leq \frac{1}{T} \int_{0}^{T}|f(t, d)| d t+|p(t)|_{\infty} \leq(\gamma+\varepsilon)|d|^{k}+|p(t)|_{\infty}
\end{align*}
$$

Thus

$$
\begin{equation*}
|d| \leq\left[\frac{|p(t)|_{\infty}}{\left|b_{0}\right|-(\gamma+\varepsilon)}\right]^{\frac{1}{k}} \tag{3.44}
\end{equation*}
$$

Taking $\left[\frac{|p(t)|_{\infty}}{\left|b_{0}\right|-(\gamma+\varepsilon)^{\frac{1}{k}}}=B\right.$, we have $|d| \leq B$, which implies Ω_{2} is bounded. Let Ω be a non-empty open bounded subset of X such that $\Omega \supset \overline{\Omega_{1}} \cup \overline{\Omega_{2}}$. We can easily see that L is a Fredholm operator of index zero and N is L-compact on $\bar{\Omega}$. Then by the above argument we have
(i) $L x \neq \lambda N x, \forall x \in \partial \Omega \cap D(L), \lambda \in(0,1)$.
(ii) $Q N x \neq 0, \forall x \in \partial \Omega \cap \operatorname{KerL}$.

At last we will prove that condition (iii) of Lemma 2.2 is satisfied. We take

$$
\begin{align*}
& H:(\Omega \cap \operatorname{Ker} L) \times[0,1] \rightarrow \operatorname{Ker} L \\
& H(d, \mu)=\operatorname{sgn}\left(-b_{0}\right) \mu d+\frac{1-\mu}{T} \int_{0}^{T}\left[-b_{0} d^{k}-f(t, d)+p(t)\right] d t \tag{3.45}
\end{align*}
$$

From assumptions $\left(H_{1}\right)$ and $\left(H_{2}\right)$, we can easily obtain $H(d, \mu) \neq 0, \forall(d, \mu) \in$ $\partial \Omega \cap \operatorname{Ker} L \times[0,1]$, which results in

$$
\begin{equation*}
\operatorname{deg}\{Q N, \Omega \cap \operatorname{Ker} L, 0\}=\operatorname{deg}\{H(\cdot, 0), \Omega \cap \operatorname{Ker} L, 0\}=\operatorname{deg}\{H(\cdot, 1), \Omega \cap \operatorname{KerL} L, 0\} \neq 0 \tag{3.46}
\end{equation*}
$$

Hence, by using Lemma 2.2, we know that Eq. (1.1) has at least one T-periodic solution.

Theorem 3.2 Suppose $n=4 m+1, m>0$ an integer, k is odd, conditions $\left(H_{1}\right),\left(H_{2}\right)$ hold. If
$\left(H_{5}\right)$ there is a positive integer $0<s \leq m$ such that

$$
\begin{equation*}
b_{4 s-3} \neq 0, b_{4 s-3+i}=0, i=1,2, \cdots, 4 m-4 s+3 \tag{3.47}
\end{equation*}
$$

$\left(H_{6}\right)$

$$
\left\{\begin{array}{l}
A_{2}(4 s-3, k)+\frac{\gamma A_{1}(4 s-3, k)}{\left|b_{0}\right|-\gamma}+k\left|b_{0}\right| T^{4 s-3}\left[\frac{A_{1}(4 s-3, k)}{\left|b_{0}\right|-\gamma}\right]^{\frac{k-1}{k}}<b_{4 s-3}, \quad \text { if } 1<s \leq m \tag{3.48}\\
\frac{\gamma A_{1}(1, k)}{\left|b_{0}\right|-\gamma}<b_{1}, \quad \text { if } s=1
\end{array}\right.
$$

Then Eq. (1.1) has at least one T-periodic solution.
Proof From the proof of Theorem 3.1, we have

$$
\begin{equation*}
\left(\int_{0}^{T}|x(t)|^{k+1} d t\right)^{\frac{k}{k+1}} \leq \frac{A_{1}(4 s-3, k)}{\left|b_{0}\right|-(\gamma+\varepsilon)}\left(\int_{0}^{T}\left|x^{(4 s-3)}(t)\right|^{k+1} d t\right)^{\frac{k}{k+1}}+u_{9} . \tag{3.49}
\end{equation*}
$$

where u_{9} is a positive constant.
Multiplying both sides of (3.5) by $x^{(4 s-3)}(t)$, and integrating on $[0, T]$, we have

$$
\begin{align*}
\int_{0}^{T} & x^{(n)}(t) x^{(4 s-3)}(t) d t=-\lambda \sum_{i=0}^{4 s-3} b_{i} \int_{0}^{T}\left[x^{(i)}(t)\right]^{k} x^{(4 s-3)}(t) d t \tag{3.50}\\
& -\lambda \int_{0}^{T} f(t, x(t-\tau)) x^{(4 s-3)}(t) d t+\lambda \int_{0}^{T} p(t) x^{(4 s-3)}(t) d t
\end{align*}
$$

Since

$$
\begin{equation*}
\int_{0}^{T} x^{(4 m+1)}(t) x^{(4 s-3)}(t) d t=(-1)^{2 m-2 s+2} \int_{0}^{T}\left[x^{(2 m+2 s-1)}(t)\right]^{2} d t \tag{3.51}
\end{equation*}
$$

Then from (3.50) (3.51) it follows that

$$
\begin{align*}
& b_{4 s-3} \int_{0}^{T}\left|x^{(4 s-3)}(t)\right|^{k+1} d t \\
& \qquad-\sum_{i=0}^{4 s-4} b_{i} \int_{0}^{T}\left[x^{(i)}(t)\right]^{k} x^{(4 s-3)}(t) d t-\int_{0}^{T} f(t, x(t-\tau)) x^{(4 s-3)}(t) d t \\
& \\
& \quad+\int_{0}^{T} p(t) x^{(4 s-3)}(t) d t
\end{align*}
$$

By using the same way as in the proof of Theorem 3.1, the following theorems can be proved in case $1<s \leq m$ or $s=1$.

Theorem 3.3 Suppose $n=4 m+1, m>0$ for a positive integer, k is odd, conditions $\left(H_{1}\right),\left(H_{2}\right)$ hold. If
$\left(H_{7}\right)$ there is a positive integer $0<s \leq m$ such that

$$
\begin{equation*}
b_{4 s-1} \neq 0, b_{4 s-1+i}=0, i=1,2, \cdots, 4 m-4 s+1 \tag{3.53}
\end{equation*}
$$

$\left(H_{8}\right)$

$$
\begin{equation*}
A_{2}(4 s-1, k)+\frac{\gamma A_{1}(4 s-1, k)}{\left|b_{0}\right|-\gamma}+k\left|b_{0}\right| T^{4 s-1}\left[\frac{A_{1}(4 s-1, k)}{\left|b_{0}\right|-\gamma}\right]^{\frac{k-1}{k}}<-b_{4 s-1} \tag{3.54}
\end{equation*}
$$

Then Eq. (1.1) has at least one T-periodic solution.
Theorem 3.4 Suppose $n=4 m+3, m \geq 0$ an integer, k is odd, conditions $\left(H_{1}\right)-$ $\left(H_{2}\right)$ hold. If
$\left(H_{9}\right)$ there is a positive integer $0 \leq s \leq m$ such that

$$
\begin{equation*}
b_{4 s+1} \neq 0, b_{4 s+1+i}=0, i=1,2, \cdots, 4 m-4 s+1 \tag{3.55}
\end{equation*}
$$

$\left(H_{10}\right)$
$\left\{\begin{array}{l}A_{2}(4 s+1, k)+\frac{\gamma A_{1}(4 s+1, k)}{\left|b_{0}\right|-\gamma}+k\left|b_{0}\right| T^{4 s+1}\left[\frac{A_{1}(4 s+1, k)}{\left|b_{0}\right|-\gamma}\right]^{\frac{k-1}{k}}<-b_{4 s+1}, \quad \text { if } 0<s \leq m \\ \frac{\gamma A_{1}(1, k)}{\left|b_{0}\right|-\gamma}<-b_{1}, \quad \text { if } s=0\end{array}\right.$
Then Eq. (1.1) has at least one T-periodic solution.
Theorem 3.5 Suppose $n=4 m+3, m>0$ an integer, k is odd, conditions $\left(H_{1}\right),\left(H_{2}\right)$ hold If
$\left(H_{11}\right)$ there is a positive integer $0<s \leq m$ such that

$$
\begin{equation*}
b_{4 s-1} \neq 0, b_{4 s-1+i}=0, i=1,2, \cdots, 4 m-4 s+3 \tag{3.57}
\end{equation*}
$$

$\left(H_{12}\right)$

$$
\begin{equation*}
A_{2}(4 s-1, k)+\frac{\gamma A_{1}(4 s-1, k)}{\left|b_{0}\right|-\gamma}+k\left|b_{0}\right| T^{4 s-1}\left[\frac{A_{1}(4 s-3, k)}{\left|b_{0}\right|-\gamma}\right]^{\frac{k-1}{k}}<b_{4 s-1} \tag{3.58}
\end{equation*}
$$

Then Eq. (1.1) has at least one T-periodic solution.
Theorem 3.6 Suppose $n=4 m, m>0$ an integer, k is odd, conditions $\left(H_{1}\right)$ hold. If $\left(H_{13}\right)$

$$
\begin{equation*}
b_{0}>\gamma \tag{3.59}
\end{equation*}
$$

$\left(H_{14}\right)$ there is a positive integer $0<s \leq 2 m$ such that

$$
\left\{\begin{array}{l}
b_{2 s-1} \neq 0, \quad \text { if } s=2 m \tag{3.60}\\
b_{2 s-1} \neq 0, b_{2 s-1+i}=0, i=1,2, \cdots, 4 m-2 s, \quad \text { if } 0<s<2 m
\end{array}\right.
$$

$\left(H_{15}\right)$

$$
\left\{\begin{array}{l}
A_{2}(2 s-1, k)+\frac{\gamma A_{1}(2 s-1, k)}{\left|b_{0}\right|-\gamma}+k\left|b_{0}\right| T^{2 s-1}\left[\frac{A_{1}(2 s-1, k)}{\left|b_{0}\right|-\gamma}\right]^{\frac{k-1}{k}}<\left|b_{2 s-1}\right| \tag{3.61}\\
\frac{\gamma A_{1}(1, k)}{\left|b_{0}\right|-\gamma}<\left|b_{1}\right|, \quad \text { if } s=1<s \leq 2 m
\end{array}\right.
$$

Then Eq. (1.1) has at least one T-periodic solution.
Theorem 3.7 Suppose $n=4 m+2, m>0$ an integer, k is odd, conditions $\left(H_{1}\right)$ hold. If $\left(H_{16}\right)$

$$
\begin{equation*}
-b_{0}>\gamma \tag{3.62}
\end{equation*}
$$

$\left(H_{17}\right)$ there is a positive integer $0<s \leq 2 m+1$ such that

$$
\left\{\begin{array}{l}
b_{2 s-1} \neq 0, \quad \text { if } \quad s=2 m+1 \tag{3.63}\\
b_{2 s-1} \neq 0, b_{2 s-1+i}=0, i=1,2, \cdots, 4 m-2 s, \quad \text { if } 0<s<2 m+1
\end{array}\right.
$$

$\left(H_{18}\right)$

$$
\left\{\begin{array}{l}
A_{2}(2 s-1, k)+\frac{\gamma A_{1}(2 s-1, k)}{\left|b_{0}\right|-\gamma}+k\left|b_{0}\right| T^{2 s-1}\left[\frac{A_{1}(2 s-1, k)}{\left|b_{0}\right|-\gamma}\right]^{\frac{k-1}{k}}<\left|b_{2 s-1}\right|, \tag{3.64}\\
\frac{\gamma f}{} \begin{array}{ll}
\mid b_{1}(1, k) \\
\left|b_{0}\right|-\gamma & b_{1} \mid, \quad \text { if } s=1
\end{array}
\end{array}\right.
$$

Then Eq. (1.1) has at least one T-periodic solution.
Theorem 3.8 Suppose $n=4 m, m>0$ an integer, k is odd, conditions $\left(H_{1}\right),\left(H_{13}\right)$ hold. If $\left(H_{19}\right)$ there is a positive integer $0<s \leq m$ such that

$$
\begin{equation*}
b_{4 s-2} \neq 0, b_{4 s-2+i}=0, i=1,2, \cdots, 4 m-4 s+1 \tag{3.65}
\end{equation*}
$$

$\left(\mathrm{H}_{20}\right)$

$$
\left\{\begin{array}{l}
A_{2}(4 s-2, k)+\frac{\gamma A_{1}(4 s-2, k)}{\left|b_{0}\right|-\gamma}+k\left|b_{0}\right| T^{4 s-2}\left[\frac{A_{1}(4 s-2, k)}{\left|b_{0}\right|-\gamma}\right]^{\frac{k-1}{k}}<-b_{4 s-2}, \quad \text { if } 1<s \leq m \tag{3.66}\\
\frac{\gamma A_{1}(2, k)}{\left|b_{0}\right|-\gamma}+k\left|b_{0}\right| T^{2}\left[\frac{A_{1}(2, k)}{\left|b_{0}\right|-\gamma}\right]^{\frac{k-1}{k}}<\left|b_{2}\right|, \quad \text { if } s=1
\end{array}\right.
$$

Then Eq. (1.1) has at least one T-periodic solution.
Theorem 3.9 Suppose $n=4 m, m>1$ an integer, k is odd, conditions $\left(H_{1}\right),\left(H_{13}\right)$ hold. If
$\left(H_{21}\right)$ there is a positive integer $1<s \leq m$ such that

$$
\begin{equation*}
b_{4 s-4} \neq 0, b_{4 s-4+i}=0, i=1,2, \cdots, 4 m-4 s+3 \tag{3.67}
\end{equation*}
$$

$\left(H_{22}\right)$

$$
\begin{equation*}
A_{2}(4 s-4, k)+\frac{\gamma A_{1}(4 s-4, k)}{\left|b_{0}\right|-\gamma}+k\left|b_{0}\right| T^{4 s-4}\left[\frac{A_{1}(4 s-4, k)}{\left|b_{0}\right|-\gamma}\right]^{\frac{k-1}{k}}<-b_{4 s-4} \tag{3.68}
\end{equation*}
$$

Then Eq. (1.1) has at least one T-periodic solution.
Theorem 3.10 Suppose $n=4 m+2, m \geq 1$ an integer, k is odd, conditions $\left(H_{1}\right),\left(H_{16}\right)$ hold, and the following conditions hold
$\left(H_{23}\right)$ there is a positive integer $1 \leq s \leq m$ such that

$$
\begin{equation*}
b_{4 s} \neq 0, b_{4 s+i}=0, i=1,2, \cdots, 4 m-4 s+1 \tag{3.69}
\end{equation*}
$$

$\left(H_{24}\right)$

$$
\begin{equation*}
A_{2}(4 s, k)+\frac{\gamma A_{1}(4 s, k)}{\left|b_{0}\right|-\gamma}+k\left|b_{0}\right| T^{4 s}\left[\frac{A_{1}(4 s, k)}{\left|b_{0}\right|-\gamma}\right]^{\frac{k-1}{k}}<-b_{4 s} \tag{3.70}
\end{equation*}
$$

Then Eq. (1.1) has at least one T-periodic solution.
Theorem 3.11 Suppose $n=4 m+2, m \geq 1$ an integer, k is odd, conditions $\left(H_{1}\right),\left(H_{16}\right)$ hold. If
$\left(H_{25}\right)$ there is a positive integer $1 \leq s \leq m$ such that

$$
\begin{equation*}
b_{4 s-2} \neq 0, b_{4 s-2+i}=0, i=1,2, \cdots, 4 m-4 s+3 \tag{3.71}
\end{equation*}
$$

$\left(H_{26}\right)$

$$
\left\{\begin{array}{l}
A_{2}(4 s-2, k)+\frac{\gamma A_{1}(4 s-2, k)}{\mid b_{0}-\gamma}+k\left|b_{0}\right| T^{4 s-2}\left[\frac{A_{1}(4 s-2, k)}{\mid b_{0}-\gamma}\right]^{\frac{k-1}{k}}<b_{4 s-2}, \quad \text { if } 1<s \leq m \tag{3.72}\\
\frac{\gamma A_{1}(2, k)}{\left|b_{0}\right|-\gamma}+k\left|b_{0}\right| T^{2}\left[\frac{A_{1}(2, k)}{\left|b_{0}\right|-\gamma}\right]^{\frac{k-1}{k}}<b_{2}, \quad \text { if } s=1
\end{array}\right.
$$

Then Eq. (1.1) has at least one T-periodic solution.
The proofs of Theorem 3.3-) 3.11 are similar to that of Theorem 3.1.
Theorem 3.12 Suppose k is even, conditions $\left(H_{1}\right)$ hold. If
$\left(H_{27}\right)$ there is an constant $c>0$ such that $f(t, y)+b_{0} x^{k}<-|p(t)|_{\infty} \forall t \in R$; $|x|,|y|>c$ and $f(t, 0)>|p(t)|_{\infty} \forall t \in R$.
$\left(H_{28}\right)$ there is a positive integer $0<s \leq n-1$ such that

$$
\left\{\begin{array}{l}
b_{s}<0, \quad \text { if } s=n-1 \tag{3.73}\\
b_{s}<0, b_{s+i}=0, i=1,2, \cdots, n-1-s, \quad \text { if } 0<s<n-1
\end{array}\right.
$$

$\left(H_{29}\right)$

$$
\begin{equation*}
A_{3}(s, k)+\gamma T^{s k}<\left|b_{s}\right| \tag{3.74}
\end{equation*}
$$

where $A_{3}(s, k)=\sum_{i=0}^{s-1} T^{(s-i) k}\left|b_{i}\right|$. Then Eq. (1.1) has at least one T-periodic positive solution.
Proof. For $x(t)>0, x \in \Omega_{1}$, we have

$$
x^{(n)}(t)=-\lambda \sum_{i=0}^{s} b_{i}\left[x^{(i)}(t)\right]^{k}-\lambda f(t, x(t-\tau))+\lambda p(t), \quad \lambda \in(0,1) .
$$

Integrating the above formula on $[0, T]$, we have

$$
\begin{equation*}
\int_{0}^{T}\left[f(t, x(t-\tau))+b_{0}|x(t)|^{k}\right] d t=-\sum_{i=1}^{s} b_{i} \int_{0}^{T}\left|x^{(i)}(t)\right|^{k} d t+\int_{0}^{T} p(t) d t \tag{3.75}
\end{equation*}
$$

If $s>1$, since

$$
\begin{gather*}
-\sum_{i=0}^{s} \quad b_{i} \int_{0}^{T}\left|x^{(i)}(t)\right|^{k} d t \geq-b_{s} \int_{0}^{T}\left|x^{(s)}(t)\right|^{k} d t-\sum_{i=1}^{s-1}\left|b_{i}\right| \int_{0}^{T}\left|x^{(i)}(t)\right|^{k} d t \\
\quad \geq\left[-b_{s}-\sum_{i=1}^{s-1} T^{(s-i) k}\left|b_{i}\right|\right] \int_{0}^{T}\left|x^{(s)}(t)\right|^{k} d t \geq 0 \tag{3.76}
\end{gather*}
$$

it follows from (3.75) and (3.76) that we have

$$
\begin{equation*}
\int_{0}^{T}\left[f(t, x(t-\tau))+b_{0}|x(t)|^{k}\right] d t \geq \int_{0}^{T} p(t) d t . \tag{3.77}
\end{equation*}
$$

If $s=1$, it is easy to see that the above inequality holds.
We can prove that there is a $t_{1} \in[0, T]$ such that $\left|x\left(t_{1}\right)\right|<c$. Indeed, from (3.77), there is a $t_{0} \in[0, T]$ such that

$$
\begin{equation*}
f\left(t_{0}, x\left(t_{0}-\tau\right)\right)+b_{0}\left|x\left(t_{0}\right)\right|^{k} \geq-|p(t)|_{\infty} \tag{3.78}
\end{equation*}
$$

If $0<x\left(t_{0}\right) \leq c$, then take $t_{1}=t_{0}$ so that $0<x\left(t_{1}\right) \leq c$.
If $x\left(t_{0}\right)>c$, it follows from assumption $\left(H_{27}\right)$ that $0<x\left(t_{0}-\tau\right) \leq c$. Since $x(t)$ is continuous for $t \in R$ and $x(t+T)=x(t)$, so there must be an integer k and a point $t_{1} \in[0, T]$ such that $t_{0}-\tau=k T+t_{1}$. so $\left|x\left(t_{1}\right)\right|=\left|x\left(t_{0}-\tau\right)\right| \leq c$, which implies

$$
\begin{equation*}
|x(t)|_{\infty} \leq c+\int_{0}^{T}\left|x^{\prime}(t)\right| d t \leq c+T^{\frac{k-1}{k}}\left(\int_{0}^{T}\left|x^{\prime}(t)\right|^{k} d t\right)^{\frac{1}{k}} \leq c+T^{s-\frac{1}{k}}\left(\int_{0}^{T}\left|x^{(s)}(t)\right|^{k} d t\right)^{\frac{1}{k}} \tag{3.79}
\end{equation*}
$$

On the other hand, from (3.75), if $s>1$, we have

$$
\begin{align*}
& b_{s} \int_{0}^{T}\left|x^{(s)}(t)\right|^{k} d t \\
& =-\sum_{i=1}^{s-1} b_{i} \int_{0}^{T}\left|x^{(i)}(t)\right|^{k} d t-b_{0} \int_{0}^{T}|x(t)|^{k} d t-\int_{0}^{T} f(t, x(t-\tau)) d t+\int_{0}^{T} p(t) d t \tag{3.80}
\end{align*}
$$

Thus, applying Lemma 2.1, we get

$$
\begin{align*}
& \left|b_{s}\right| \int_{0}^{T}\left|x^{(s)}(t)\right|^{k} d t \leq \sum_{i=1}^{s-1}\left|b_{i}\right| \int_{0}^{T}\left|x^{(i)}(t)\right|^{k} d t+ \\
& \quad\left|b_{0}\right| \int_{0}^{T}|x(t)|^{k} d t+\int_{0}^{T}|f(t, x(t-\tau))| d t+\int_{0}^{T}|p(t)| d t
\end{aligned} \quad \begin{aligned}
& \leq \sum_{i=1}^{s-1}\left|b_{i}\right| \int_{0}^{T}\left|x^{(i)}(t)\right|^{k} d t+\left|b_{0}\right| \int_{0}^{T}|x(t)|^{k} d t+(\gamma+\varepsilon) \int_{0}^{T}|x(t-\tau)|^{k} d t \\
& \quad+\left(f_{\delta}+|p(t)|\right) T
\end{align*}
$$

We can prove that there is a constant $M_{3}>0$ such that

$$
\begin{equation*}
\int_{0}^{T}\left|x^{(s)}(t)\right|^{k} d t \leq M_{3} \tag{3.82}
\end{equation*}
$$

For some nonnegative integer l, there is a constant $0<h<1$ such that

$$
\begin{equation*}
(1+x)^{l}<1+(l+1) x, x \in(0, h) \tag{3.83}
\end{equation*}
$$

Now we consider two cases to finish our proof.
Case 1 If $\left(\int_{0}^{T}\left|x^{(s)}(t)\right|^{k} d t\right)^{\frac{1}{k}} \leq \frac{c}{T^{s-\frac{1}{k h}}}$, then

$$
\begin{equation*}
|x(t)|_{\infty} \leq c+T^{s-\frac{1}{k}}\left(\int_{0}^{T}\left|x^{(s)}(t)\right|^{k} d t\right)^{\frac{1}{k}} \leq c+\frac{c}{h} \tag{3.84}
\end{equation*}
$$

So substituting the above formula into (3.81) , we have

$$
\begin{equation*}
\left[\left|b_{s}\right|-\sum_{i=1}^{s-1} T^{(s-i) k}\left|b_{i}\right|\right] \int_{0}^{T}\left[x^{(s)}(t)\right]^{k} d t \leq\left[\left|b_{0}\right|+(\gamma+\varepsilon)\right] T\left(\left(c+\frac{c}{h}\right)\right)^{k}+\left(f_{\delta}+|p(t)|\right) T \tag{3.85}
\end{equation*}
$$

Hence there is a constant $M_{3}>0$ such that

$$
\begin{equation*}
\int_{0}^{T}\left|x^{(s)}(t)\right|^{k} d s \leq M_{3} \tag{3.86}
\end{equation*}
$$

Case 2 If $\left(\int_{0}^{T}\left|x^{(s)}(t)\right|^{k} d t\right)^{\frac{1}{k}}>\frac{c}{T^{s-\frac{1}{k}} .}$.

$$
\begin{align*}
|x(t)|_{\infty}^{k} & \leq\left[c+T^{s-\frac{1}{k}}\left(\int_{0}^{T}\left|x^{(s)}(t)\right|^{k} d t\right)^{\frac{1}{k}}\right]^{k} \\
& =T^{s k-1}\left(\int_{0}^{T}\left|x^{(s)}(t)\right|^{k} d t\right)\left[1+\frac{c}{T^{s-\frac{1}{k}}\left(\int_{0}^{T}\left|x^{(s)}(t)\right|^{k} d t\right)^{\frac{1}{k}}}\right]^{k} \\
& \leq T^{s k-1}\left(\int_{0}^{T}\left|x^{(s)}(t)\right|^{k} d t\right)\left[1+\frac{c(k+1)}{T^{s-\frac{1}{k}}\left(\int_{0}^{T}\left|x^{(s)}(t)\right|^{k} d t\right)^{\frac{1}{k}}}\right] \\
& =T^{s k-1}\left(\int_{0}^{T}\left|x^{(s)}(t)\right|^{k} d t\right)+c(k+1) T^{s(k-1)+\frac{1}{k}-1}\left(\int_{0}^{T}\left|x^{(s)}(t)\right|^{k} d t\right)^{\frac{k-1}{k}} \tag{3.87}
\end{align*}
$$

Substituting the above formula into (3.81) , we have

$$
\begin{align*}
\left|b_{s}\right| & \int_{0}^{T}\left|x^{(s)}(t)\right|^{k} d t \\
& \leq \sum_{i=1}^{s-1} T^{(s-i) k}\left|b_{i}\right| \int_{0}^{T}\left|x^{(s)}(t)\right|^{k} d t+\left[\left|b_{0}\right|+(\gamma+\varepsilon)\right]\left[T^{s k}\left(\int_{0}^{T}\left|x^{(s)}(t)\right|^{k} d t\right)\right. \\
& \left.+c(k+1) T^{s(k-1)+\frac{1}{k}}\left(\int_{0}^{T}\left|x^{(s)}(t)\right|^{k} d t\right)^{\frac{k-1}{k}}\right]+\left(f_{\delta}+|p(t)|\right) T \tag{3.88}
\end{align*}
$$

Then

$$
\begin{align*}
{\left[\left|b_{s}\right|\right.} & \left.-A_{3}(s, k)-(\gamma+\varepsilon) T^{s k}\right] \int_{0}^{T}\left[x^{(s)}(t)\right]^{k} d t \\
& \leq c(k+1)\left[\left|b_{0}\right|+(\gamma+\varepsilon)\right] T^{s(k-1)}\left(\int_{0}^{T}\left|x^{(s)}(t)\right|^{k} d t\right)^{\frac{k-1}{k}}+\left(f_{\delta}+|p(t)|\right) T \tag{3.89}
\end{align*}
$$

Hence there is a constant $M_{4}>0$ such that

$$
\begin{equation*}
\int_{0}^{T}\left|x^{(s)}(t)\right|^{k} d d \leq M_{4} \tag{3.90}
\end{equation*}
$$

If $s=1$, similarly, we can prove that there is a constant $M_{5}>0$ such that

$$
\begin{equation*}
\int_{0}^{T}\left|x^{\prime}(t)\right|^{k} d d \leq M_{5} \tag{3.92}
\end{equation*}
$$

The remainder can be proved in the same way as in the proof of Theorem 3.1.
Theorem 3.13 Suppose k is even, conditions $\left(H_{1}\right)$ and $\left(H_{29}\right)$ hold. If
$\left(H_{30}\right)$ there is an constant $c>0$ such that $f(t, y)+b_{0} x^{k}>|p(t)|_{\infty} \quad \forall t \in R$; $|x|,|y|>c$ and $f(t, 0)<-|p(t)|_{\infty} \forall t \in R$.
$\left(H_{31}\right)$ there is a positive integer $0<s \leq n-1$ such that

$$
\left\{\begin{array}{l}
b_{s}>0, \quad \text { if } s=n-1 \tag{3.93}\\
b_{s}>0, b_{s+i}=0, i=1,2, \cdots, n-1-s, \quad \text { if } \quad 0<s<n-1
\end{array}\right.
$$

Then Eq. (1.1) has at least one T-periodic positive solution.
Example 3.1 Consider the following equation

$$
\begin{equation*}
x^{(5)}(t)+1000\left[x^{\prime \prime}(t)\right]^{3}+\frac{1}{100}\left[x^{\prime}(t)\right]^{3}+\frac{1}{8000}[x(t)]^{3}+\frac{1}{40000}(\sin t)[x(t-\pi)]^{3}=\cos t \tag{3.94}
\end{equation*}
$$

where $n=5, k=3, b_{4}=b_{3}=0, b_{2}=1000, b_{1}=\frac{1}{100}, b_{0}=\frac{1}{8000}, f(t, x)=$ $\frac{1}{40000}(\sin t) x^{3}, p(t)=\cos t, \tau=\pi$. Thus, $T=2 \pi, \gamma=\frac{1}{40000}, A_{1}(2, k)=\left|b_{1}\right|(2 \pi)^{3}+$ $\left|b_{2}\right|=\frac{1}{100} \times(2 \pi)^{3}+1000$. Obviously assumption $\left(H_{1}\right)-\left(H_{3}\right)$ hold and

$$
\begin{equation*}
\frac{\gamma A_{1}(2, k)}{\left|b_{0}\right|-\gamma}+k\left|b_{0}\right|(2 \pi)^{2}\left[\frac{A_{1}(2, k)}{\left|b_{0}\right|-\gamma}\right]^{\frac{k-1}{k}}<\left|b_{2}\right| \tag{3.95}
\end{equation*}
$$

By Theorem 3.1, we know that Eq. (3.94) has at least one 2π-periodic solution.

Acknowledgments

We are grateful for the referee's careful reviewing and valuable suggestions.

References

[1] P. Omari, G. Villari, F. Zanolin, Periodic solutions of Lienard equation with one-side growth restrictions, J. Diff. Equations. 67 (1987) 278-29) 3.
[2] R. E. Gaines, J. L. Mawhin, Coincidence degree and nonlinear differential equations, Lecture Notes in Math, 568, Berlin, New York:Springer-Verlag, 1977.
[3] J. Mawhin, Degré topologique et solutions périodiques des systèmes différentiels non linaires, Bull Soc Roy Sci Liège. 38 (1969) 308-398.
[4] J. O. C. Ezeilo, On the existence of periodic solutions of a certain third-order differential equation, Proc. Cambridge Philos. Soc. 56 (1960) 381-389.
[5] F. Cong, Periodic solutions for $2 k$ th order ordinary differential equations with resonance, Nonlinear Anal. 32 (1998) 787-79) 3.
[6] F. Cong, Existence of $2 k+1$ th order ordinary differential equations, Appl Math Lett. 17 (2004) 727-732.
[7] W. B. Liu, Y. Li, The existence of periodic solutions for high order duffing equations, Acta Math. Sinica, 46 (2003) 49-56 (in Chinese) .
[8] B. W, Liu, L. H. Huang, Existence of periodic solutions for high order Duffing differential equations, Acta Math. Sinica, 47 (2004) 1133-1140 (in Chinese) .
[9] Z. L. Liu, Periodic solution for nonlinear nth order ordinary differential equation, J. Math. Anal Appl. 204 (1996) 46-64.
[10] R. Reissig, Periodic solutions of third-order nonlinear differential equation, Ann Mat Pura Appl. (4) 92 (1972) 193-198.
[11] Z. Q. Zhang, Z. C. Wang. Periodic solution of the third order functional differential equation, J. Math. Anal. Appl. 292 (2004) 115-134
[12] F. Cong, Q. D. Huang, S. Y. Shi, Existence and uniqueness of periodic solutions for $2 n+1$ th order ordinary differential equations, J Math Anal Appl. 241 (2000) 1-9.
[13] S. Lu, W. Ge, On the existence of periodic solutions for Lienard equation with a deviating argument, J. Math. Anal. Appl. 289 (2004) 241-24) 3.
[14] S. Lu, W. Ge, Sufficient conditions for the existence of periodic solutions to some second order differential equation with a deviating argument, J Math Anal Appl. 308 (2005) 393-419.
[15] G. Q. Wang, A priori bounds for periodic solutions of a delay Rayleigh equation, Appl Math Lett. 12 (1999) 41-44.
[16] C. Fabry, J. L. Mawhin, M. N. Nkashama, A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations, Bull London Math soc. 10 (1986) 173-180.
[17] G. Jiao, Periodic solutions of $2 n+1$ th order ordinary differential equations, J Math Anal Appl. 272 (2004) 691-699.
[18] I. T. Kiguradze, B. Puza, On periodic solutions of system of differential equations with deviating arguments, Nonlinear Anal. 42 (2000) 229-242.
[19] S. Srzednicki, On periodic solutions of certain $n^{\text {th }}$ differential equations, J. Math Anal Appl. 196 (1995) 666-675.
[20] G. Q. Wang, Existence theorems of periodic solutions for a delay nonlinear differential equation with piecewise constant argument, J Math Anal Appl. 298 (2004) 298-307.
[21] J. L. Ren, W. G. Ge, On the existence of periodic solutions for the second order functional differential equation, Acta Math Sincia, 47 (2004) 569-578 (in Chinese).
[22] Y. J. Liu, P. H. Yang, W. G. Ge, periodic solutions of high-order delay differential equations, Nonlinear Anal. 63 (2005) 136-152.
[23] J. Mawhin, L^{2}-estimates and periodic solutions of some nonlinear differential equations, Boll. Un. Mat. Ital. (4) 10 (1974) , 343-354.

Department of Mathematics, Southeast University, Nanjing 210096, P.R. China

Department of Mathematics, Jia Ying University, Meizhou Guangdong, 514015, P. R. China
E-mail address:plj1977@126.com

[^0]: *This project is supported by the Natural Science Foun- dation of Guangdong Guangdong Province of P. R. China (No.9151008002000012)

 Received by the editors June 2008- In revised form in October 2008.
 Communicated by F. Dumortier.
 2000 Mathematics Subject Classification : 34K13.
 Key words and phrases : Functional differential equations; Periodic solution; Coincidence degree.

