
On the singular locus of Grassmann secant

varieties

Filip Cools∗

Abstract

Let X ⊂ PN be an irreducible non-degenerate variety. If the (h, k)-Grass-
mann secant variety Gh,k(X) of X is not the whole Grassmannian G(h, N),
we have that the singular locus of Gh,k(X) contains Gh,k−1(X). Moreover, if
X is a smooth curve without (2k + 2)-secant 2k-space divisors, we obtain the
equality Sing(Gh,k(X)) = Gh,k−1(X).

1 Introduction

Let X ⊂ PN be a projective irreducible non-degenerate variety and let h and k
be integers such that 0 ≤ h ≤ k ≤ N. Denote by Gh,k(X) ⊂ G(h, N) the (h, k)-
Grassmann secant variety of X, i.e. the closure of the set of h-dimensional linear
subspaces contained in the span of k + 1 independent points of X.

In case h = 0, the variety Gh,k(X) coincides with kth secant variety Sk(X) of
X. This case has been intensively studied (see for example [Zak]). The study of
the case h > 0 is more recent (see for example [ChCo]).

Grassmann secant varieties are interesting objects, since they are in relation
with projections of varieties into lower dimensional projective spaces. They are
also in connection with Waring problems for homogeneous forms and tensors
(see for example [CaCh] and [Fon]).

In this paper, we will study the singular locus of Grassmann secant varieties.
If Gh,k(X) 6= G(h, N), we will prove that the singular locus of Gh,k(X) contains
Gh,k−1(X) (Proposition 3.1). Moreover, if X is a smooth curve such that every ef-
fective divisor of length 2k+ 2 on X spans a (2k+ 1)-dimensional linear subspace
of PN , we are able to prove that the singular locus of Gh,k(X) is equal to Gh,k−1(X)
(Theorem 3.3). Note that these results generalize the results established in [Cop].
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2 Preliminaries

We start this section with some conventions.
We denote by PN the projective space of dimension N over the field C of

complex numbers. We say that a variety X ⊂ P
N is non-degenerate if it is not

contained in any hyperplane of PN.
The linear span 〈Y〉 of a closed subscheme Y of PN is the intersection of all hy-

perplanes H containing Y as a closed subscheme. If P0, . . . , Pk are different points
of PN, we write 〈P0, . . . , Pk〉 to denote the linear span of the reduced subscheme
of P

N supported by those points. If P ∈ Y, we denote by TP(Y) the embedded
tangent space of Y at P.

Definition 2.1 (Plücker embedding of Grassmannians). The Grassmannian
G(h, N), parameterizing h-dimensional linear subspaces in PN, can be embedded
in a large projective space as follows. Let H be an element of G(h, N) spanned
by points Q0, . . . , Qh ∈ PN with Qi = (qi0 : . . . : qiN) for all i ∈ {0, . . . , h}. Let
S be the set of subsets D ⊂ {0, . . . , N} of length h + 1. Take D ∈ S and write
D = {j0, . . . , jh} with j0 < . . . < jh. Denote by pD(H) the determinant of the

matrix [qijk ]i,k∈{0,...,h}. Consider the map p : G(h, N) → PM with M = (N+1
h+1 )− 1

sending H to (pD(H))D∈ S . Note that p is well-defined since the image of H is
independent of the choice of its generators Q0, . . . , Qh. We call p the Plücker em-
bedding of G(h, N). By considering affine subsets of G(h, N), one can show that
G(h, N) is smooth of dimension (h + 1)(N − h).

Lemma 2.2. Let P, P1, . . . , Pr ∈ PN such that P ∈ 〈P1, . . . , Pr〉 and let G ∈ G(h − 1,
N) be a linear subspace not containing any of the points P, P1, . . . , Pr. Let p be the
Plücker embedding of G(h, N) in P

M. Then we have p(〈G, P〉) ∈ 〈p(〈G, P1〉), . . . ,
p(〈G, Pr〉)〉.

Proof. Fixing projective coordinates in PN , we can write P as a linear combination
a1.P1 + . . . + ar.Pr with a1, . . . , ar ∈ C, since P ∈ 〈P1, . . . , Pr〉. By expanding the
determinant pD(〈G, P〉) along the last row (i.e. the row corresponding to the
point P), we get

pD(〈G, P〉) = a1.pD(〈G, P1〉) + . . . + ar.pD(〈G, Pr〉)〉

for every subset D of length h + 1 of {0, . . . , N}. We conclude

p(〈G, P〉) = a1.p(〈G, P1〉) + . . . + ar.p(〈G, Pr〉),

hence p(〈G, P〉) ∈ 〈p(〈G, P1〉), . . . , p(〈G, Pr〉)〉.

Definition 2.3 (Grassmann secant varieties). Let X ⊂ P
N be a projective irre-

ducible non-degenerate variety. If k ≤ N is an integer, denote by

i : Xk+1
99K G(k, N)

the rational map sending (P0, . . . , Pk) to 〈P0, . . . , Pk〉. An element of the image is
called a (k + 1)-secant k-space of X.
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Consider for all integers h ≤ k the diagram

I
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.....
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..

i

where I = {(G, H)| G ⊃ H} ⊂ G(k, N) × G(h, N) and p1, p2 the projections to
the first and second factor, respectively. We define the (h, k)-Grassmann secant

variety Gh,k(X) of X as the subvariety p2(p−1
1 (Im(i))) of G(h, N).

Remark 2.4. Using the Pluc̈ker embedding of G(h, N) in PM, we can consider the
Grassmann secant variety Gh,k(X) as a subvariety of PM.

3 Singular locus of Grassmann secant varieties

Proposition 3.1. If X ⊂ PN is a non-degenerate variety and 0 ≤ h < k are integers
such that

Gh,k(X)  G(h, N) ⊂ P
M,

we have Gh,k−1(X) ⊂ Sing(Gh,k(X)).

Proof. Let H be a general element of Gh,k−1(X), hence H ⊂ 〈P0, . . . , Pk−1〉 for some
P0, . . . , Pk−1 ∈ X. Since Sing(Gh,k(X)) is a Zariski closed subset of Gh,k(X), we
only need to show that H ∈ Sing(Gh,k(X)). Denote by T := TH(Gh,k(X)) ⊂ PM

the embedded tangent space of Gh,k(X) ⊂ P
M at H.

We write H as 〈G, Q〉 with G ∈ G(h − 1, N) and Q ∈ H ⊂ P
N . Let

P ∈ X \ (H ∪ {P0, . . . , Pk−1}).
Let R ∈ 〈Q, P〉. If R ∈ G, we have R 6= Q and

P ∈ 〈Q, R〉 ⊂ 〈Q, G〉 ⊂ 〈P0, . . . , Pk−1〉.

Since X ∩ 〈P0, . . . , Pk−1〉 = {P0, . . . , Pk−1} as a scheme, this gives us a contradic-
tion. We get that 〈G, R〉 is h-dimensional.

Write LG,Q,P to denote the subset {〈G, R〉 | R ∈ 〈Q, P〉} ⊂ G(h, N). Note that
LG,Q,P ⊂ Gh,k(X), since R ∈ 〈Q, P〉 implies

〈G, R〉 ⊂ 〈G, Q, P〉 = 〈H, P〉 ⊂ 〈P0, . . . , Pk−1, P〉.

On the other hand, Lemma 2.2 implies p(LG,Q,P) is a line in PM. This gives us
p(LG,Q,P) ⊂ T and a fortiori p(〈G, P〉) ∈ T for all P ∈ X \ (H ∪ {P0, . . . , Pk}).
Since T is linear, we even get p(〈G, P〉) ∈ T for all P ∈ X \ H.

We claim that p(H̃) ∈ T if dim(H ∩ H̃) ≥ h − 1. Indeed, take G = H ∩ H̃

and Q ∈ H̃ \ G, thus H̃ = 〈G, Q〉. Since X ⊂ PN is non-degenerate, we can find
points P′

0, . . . , P′
N ∈ X \ H such that 〈P′

0, . . . , P′
N〉 = 〈X〉 = PN. Now we can apply

Lemma 2.2 because p(〈G, P′
i 〉) ∈ T. This gives us p(H) = p(〈G, Q〉) ∈ T since T

is linear.
To finish the proof of this theorem, it is enough to show that the dimen-

sion of the span of {p(H̃) | dim(H ∩ H̃) ≥ h − 1} is equal to dim(G(h, N)) =
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(h + 1)(N − h). Take projective coordinates on P
N such that H is the linear sub-

space 〈E0, . . . , Eh〉, where Ei = (0 : . . . : 0 : 1 : 0 . . . : 0) with one on the ith
coordinate. Denote for each i ∈ {0, . . . , h} and j ∈ {h + 1, . . . , N}, the subspace
〈E0, . . . , Ei−1, Ei+1, . . . , Eh, Ej〉 by Hi,j. The above claim implies that p(Hi,j) ∈ T

since dim(H ∩ Hi,j) ≥ h− 1. It is easy to see that the set of points p(H), p(H0,h+1),
. . . , p(Hh,N) is independent, hence dim(T) ≥ (h + 1)(N − h). Of course, we have
dim(T) ≤ (h + 1)(N − h), since Gh,k(X) ⊂ G(h, N) and G(h, N) is smooth.

In order to state Theorem 3.3, we need the following definition.

Definition 3.2. Let X ⊂ PN be a smooth irreducible non-degenerate curve. If
D is an effective divisor of degree d such that dim〈D〉 = e, we say that D is an
d-secant e-space divisor.

Theorem 3.3. Let X ⊂ PN be a smooth irreducible non-degenerate curve and let 0 ≤
h < k be integers such that Gh,k(X) 6= G(h, N). If X has no (2k + 2)-secant 2k-space
divisors, we have Sing(Gh,k(X)) = Gh,k−1(X).

Proof. Since X has no (k + 2)-secant k-space divisors, [Cop] implies that the map
i : Xk+1 → G(k, N) is an embedding. Hence we may identify Xk+1 and i(Xk+1).

Denote J := p−1
1 (i(Xk+1)) ⊂ I and q : J → G(h, N). Since the restriction of

p1 to J is a P(h+1)(k−h)-bundle above i(Xk+1), we see Y is smooth. Also note that
q(J) = Gh,k(X).

Let (D, H) ∈ J with H 6∈ Gh,k−1(X). We are going to prove that q locally
defines an embedding of J in G(h, N) at (D, H). In particular, we will show that
the tangent map

d(D,H)(q) : T(D,H)(J) → TH(G(h, N))

is injective.
Assume d(D,H)(q) is not injective, so there exists a tangent vector (α, β) ∈

T(D,H)(J) with β = 0 but α 6= 0. Take a holomorphic arc D(t) in i(Xk+1) with

D(0) = D corresponding to α. The arc D(t) gives rise to holomorphic arcs
P0(t), . . . , Pk(t) on X with Pi(0) = Pi, such that D(t) = 〈P0(t), . . . , Pk(t)〉. Let
P̂0, . . . , P̂k, P̂0(t), . . . , P̂k(t), D̂(t), Ĥ be corresponding objects in the affine cone CN+1

above PN of respectively P0, . . . , Pk, P0(t), . . . , Pk(t), D(t), H.
Using the description of tangent spaces of Grassmannians in [Har, Lecture

16], the tangent vector (α, β) ∈ T(D,H)(J) ⊂ T(D,H)(I) gives rise to a commutative
diagram

D̂ CN+1/D̂
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where β ∈ Hom(Ĥ, C
N+1/Ĥ) and α ∈ Hom(D̂, C

N+1/D̂). Since β ≡ 0, we have
α|Ĥ ≡ 0.

Let P̂ ∈ D̂, so P̂ = a0.P̂0 + . . . + ak.P̂k for some a0, . . . , ak ∈ C. If P̂(t) is an
arc satisfying P̂(t) ∈ D̂(t) and P̂(0) = P̂, the map α sends P̂ to v̂ + D̂, with

v̂ = dP̂(t)
dt (0). For example, we can take

P̂(t) = a0.P̂0(t) + . . . + ak.P̂k(t),
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hence α(P̂) = a0.v̂0 + . . .+ ak.v̂k + D̂ with v̂i =
dP̂i(t)

dt (0). We conclude that α is the

map sending a0.P̂0 + . . . + ak.P̂k to a0.v̂0 + . . . + ak.v̂k + D̂.

If P̂ ∈ Ĥ ⊂ D̂ is general, we have P̂ = a0.P̂0 + . . . + ak.P̂k with a0, . . . , ak all
different from zero. Since α|Ĥ ≡ 0, we get

a0.v̂0 + . . . + ak.v̂k ∈ D̂.

This is only possible if v̂0 = . . . = v̂k = 0, since 2D = 2P0 + . . . + 2Pk is a (2k + 2)-
secant (2k + 1)-space divisor of X. However, this implies α ≡ 0, a contradiction.

We have proven that q is locally an embedding of J in G(h, N) around (D, H)
if H 6∈ Gh,k−1(X). To finish this theorem, we only need to show that J is injective
outside q−1(Gh,k−1(X)), since dim(J) = dim(Gh,k(X)) (see [ChCi]).

Let H ∈ Gh,k(X) \ Gh,k−1(X) and assume that (D1, H) and (D2, H) are two
different points of J above H. Consider D1 and D2 as divisors on X. Let E be the
scheme theoretical intersection of D1 and D2. If deg(E) = e, we have e < k + 1
since D1 6= D2. Since H 6∈ Gh,k−1(X), we see H 6⊂ 〈E〉, hence

dim〈〈D1〉 ∩ 〈D2〉〉 ≥ dim〈〈E〉, H〉 ≥ e.

So we have

d := dim〈〈D1〉, 〈D2〉〉 = dim〈D1〉+ dim〈D2〉 − dim〈〈D1〉 ∩ 〈D2〉〉 ≤ 2k − e.

Since d = dim〈D1 + D2 − E〉, we get that D1 + D2 − E is a (2k + 2 − e)-secant
d-space divisor on X with d ≤ 2k − e, a contradiction.
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