On the singular locus of Grassmann secant varieties

Filip Cools*

Abstract

Let $X \subset \mathbb{P}^{N}$ be an irreducible non-degenerate variety. If the (h, k)-Grassmann secant variety $G_{h, k}(X)$ of X is not the whole Grassmannian $G(h, N)$, we have that the singular locus of $G_{h, k}(X)$ contains $G_{h, k-1}(X)$. Moreover, if X is a smooth curve without $(2 k+2)$-secant $2 k$-space divisors, we obtain the equality $\operatorname{Sing}\left(G_{h, k}(X)\right)=G_{h, k-1}(X)$.

1 Introduction

Let $X \subset \mathbb{P}^{N}$ be a projective irreducible non-degenerate variety and let h and k be integers such that $0 \leq h \leq k \leq N$. Denote by $G_{h, k}(X) \subset \mathbb{G}(h, N)$ the (h, k) Grassmann secant variety of X, i.e. the closure of the set of h-dimensional linear subspaces contained in the span of $k+1$ independent points of X.

In case $h=0$, the variety $G_{h, k}(X)$ coincides with k th secant variety $S^{k}(X)$ of X. This case has been intensively studied (see for example [Zak]). The study of the case $h>0$ is more recent (see for example [ChCo]).

Grassmann secant varieties are interesting objects, since they are in relation with projections of varieties into lower dimensional projective spaces. They are also in connection with Waring problems for homogeneous forms and tensors (see for example [CaCh] and [Fon]).

In this paper, we will study the singular locus of Grassmann secant varieties. If $G_{h, k}(X) \neq \mathbb{G}(h, N)$, we will prove that the singular locus of $G_{h, k}(X)$ contains $G_{h, k-1}(X)$ (Proposition 3.1). Moreover, if X is a smooth curve such that every effective divisor of length $2 k+2$ on X spans a $(2 k+1)$-dimensional linear subspace of \mathbb{P}^{N}, we are able to prove that the singular locus of $G_{h, k}(X)$ is equal to $G_{h, k-1}(X)$ (Theorem 3.3). Note that these results generalize the results established in [Cop].

[^0]
2 Preliminaries

We start this section with some conventions.
We denote by \mathbb{P}^{N} the projective space of dimension N over the field \mathbb{C} of complex numbers. We say that a variety $X \subset \mathbb{P}^{N}$ is non-degenerate if it is not contained in any hyperplane of \mathbb{P}^{N}.

The linear span $\langle Y\rangle$ of a closed subscheme Y of \mathbb{P}^{N} is the intersection of all hyperplanes H containing Y as a closed subscheme. If P_{0}, \ldots, P_{k} are different points of \mathbb{P}^{N}, we write $\left\langle P_{0}, \ldots, P_{k}\right\rangle$ to denote the linear span of the reduced subscheme of \mathbb{P}^{N} supported by those points. If $P \in Y$, we denote by $\mathbb{T}_{P}(Y)$ the embedded tangent space of Y at P.

Definition 2.1 (Plücker embedding of Grassmannians). The Grassmannian $\mathbb{G}(h, N)$, parameterizing h-dimensional linear subspaces in \mathbb{P}^{N}, can be embedded in a large projective space as follows. Let H be an element of $G(h, N)$ spanned by points $Q_{0}, \ldots, Q_{h} \in \mathbb{P}^{N}$ with $Q_{i}=\left(q_{i 0}: \ldots: q_{i N}\right)$ for all $i \in\{0, \ldots, h\}$. Let \mathcal{S} be the set of subsets $D \subset\{0, \ldots, N\}$ of length $h+1$. Take $D \in \mathcal{S}$ and write $D=\left\{j_{0}, \ldots, j_{h}\right\}$ with $j_{0}<\ldots<j_{h}$. Denote by $p_{D}(H)$ the determinant of the matrix $\left[q_{i j_{k}}\right]_{i, k \in\{0, \ldots, h\}}$. Consider the map $p: \mathbb{G}(h, N) \rightarrow \mathbb{P}^{M}$ with $M=\binom{N+1}{h+1}-1$ sending H to $\left(p_{D}(H)\right)_{D \in \mathcal{S}}$. Note that p is well-defined since the image of H is independent of the choice of its generators Q_{0}, \ldots, Q_{h}. We call p the Plücker embedding of $\mathbb{G}(h, N)$. By considering affine subsets of $\mathbb{G}(h, N)$, one can show that $G(h, N)$ is smooth of dimension $(h+1)(N-h)$.

Lemma 2.2. Let $P, P_{1}, \ldots, P_{r} \in \mathbb{P}^{N}$ such that $P \in\left\langle P_{1}, \ldots, P_{r}\right\rangle$ and let $G \in \mathbb{G}(h-1$, N) be a linear subspace not containing any of the points P, P_{1}, \ldots, P_{r}. Let p be the Plücker embedding of $\mathbb{G}(h, N)$ in \mathbb{P}^{M}. Then we have $p(\langle G, P\rangle) \in\left\langle p\left(\left\langle G, P_{1}\right\rangle\right), \ldots\right.$, $\left.p\left(\left\langle G, P_{r}\right\rangle\right)\right\rangle$.

Proof. Fixing projective coordinates in \mathbb{P}^{N}, we can write P as a linear combination $a_{1} \cdot P_{1}+\ldots+a_{r} \cdot P_{r}$ with $a_{1}, \ldots, a_{r} \in \mathbb{C}$, since $P \in\left\langle P_{1}, \ldots, P_{r}\right\rangle$. By expanding the determinant $p_{D}(\langle G, P\rangle)$ along the last row (i.e. the row corresponding to the point P), we get

$$
\left.p_{D}(\langle G, P\rangle)=a_{1} \cdot p_{D}\left(\left\langle G, P_{1}\right\rangle\right)+\ldots+a_{r} \cdot p_{D}\left(\left\langle G, P_{r}\right\rangle\right)\right\rangle
$$

for every subset D of length $h+1$ of $\{0, \ldots, N\}$. We conclude

$$
p(\langle G, P\rangle)=a_{1} \cdot p\left(\left\langle G, P_{1}\right\rangle\right)+\ldots+a_{r} \cdot p\left(\left\langle G, P_{r}\right\rangle\right)
$$

hence $p(\langle G, P\rangle) \in\left\langle p\left(\left\langle G, P_{1}\right\rangle\right), \ldots, p\left(\left\langle G, P_{r}\right\rangle\right)\right\rangle$.
Definition 2.3 (Grassmann secant varieties). Let $X \subset \mathbb{P}^{N}$ be a projective irreducible non-degenerate variety. If $k \leq N$ is an integer, denote by

$$
i: X^{k+1} \longrightarrow \mathbb{G}(k, N)
$$

the rational map sending $\left(P_{0}, \ldots, P_{k}\right)$ to $\left\langle P_{0}, \ldots, P_{k}\right\rangle$. An element of the image is called a $(k+1)$-secant k-space of X.

Consider for all integers $h \leq k$ the diagram

where $I=\{(G, H) \mid G \supset H\} \subset \mathbb{G}(k, N) \times \mathbb{G}(h, N)$ and p_{1}, p_{2} the projections to the first and second factor, respectively. We define the (h, k)-Grassmann secant variety $G_{h, k}(X)$ of X as the subvariety $p_{2}\left(p_{1}^{-1}(\overline{\operatorname{Im}(i)})\right)$ of $\mathbb{G}(h, N)$.

Remark 2.4. Using the Pluc̈ker embedding of $G(h, N)$ in \mathbb{P}^{M}, we can consider the Grassmann secant variety $G_{h, k}(X)$ as a subvariety of \mathbb{P}^{M}.

3 Singular locus of Grassmann secant varieties

Proposition 3.1. If $X \subset \mathbb{P}^{N}$ is a non-degenerate variety and $0 \leq h<k$ are integers such that

$$
G_{h, k}(X) \varsubsetneqq \mathbb{G}(h, N) \subset \mathbb{P}^{M},
$$

we have $G_{h, k-1}(X) \subset \operatorname{Sing}\left(G_{h, k}(X)\right)$.
Proof. Let H be a general element of $G_{h, k-1}(X)$, hence $H \subset\left\langle P_{0}, \ldots, P_{k-1}\right\rangle$ for some $P_{0}, \ldots, P_{k-1} \in X$. Since $\operatorname{Sing}\left(G_{h, k}(X)\right)$ is a Zariski closed subset of $G_{h, k}(X)$, we only need to show that $H \in \operatorname{Sing}\left(G_{h, k}(X)\right)$. Denote by $\mathbb{T}:=\mathbb{T}_{H}\left(G_{h, k}(X)\right) \subset \mathbb{P}^{M}$ the embedded tangent space of $G_{h, k}(X) \subset \mathbb{P}^{M}$ at H.

We write H as $\langle G, Q\rangle$ with $G \in \mathbb{G}(h-1, N)$ and $Q \in H \subset \mathbb{P}^{N}$. Let $P \in X \backslash\left(H \cup\left\{P_{0}, \ldots, P_{k-1}\right\}\right)$.

Let $R \in\langle Q, P\rangle$. If $R \in G$, we have $R \neq Q$ and

$$
P \in\langle Q, R\rangle \subset\langle Q, G\rangle \subset\left\langle P_{0}, \ldots, P_{k-1}\right\rangle .
$$

Since $X \cap\left\langle P_{0}, \ldots, P_{k-1}\right\rangle=\left\{P_{0}, \ldots, P_{k-1}\right\}$ as a scheme, this gives us a contradiction. We get that $\langle G, R\rangle$ is h-dimensional.

Write $L_{G, Q, P}$ to denote the subset $\{\langle G, R\rangle \mid R \in\langle Q, P\rangle\} \subset \mathbb{G}(h, N)$. Note that $L_{G, Q, P} \subset G_{h, k}(X)$, since $R \in\langle Q, P\rangle$ implies

$$
\langle G, R\rangle \subset\langle G, Q, P\rangle=\langle H, P\rangle \subset\left\langle P_{0}, \ldots, P_{k-1}, P\right\rangle .
$$

On the other hand, Lemma 2.2 implies $p\left(L_{G, Q, P}\right)$ is a line in \mathbb{P}^{M}. This gives us $p\left(L_{G, Q, P}\right) \subset \mathbb{T}$ and a fortiori $p(\langle G, P\rangle) \in \mathbb{T}$ for all $P \in X \backslash\left(H \cup\left\{P_{0}, \ldots, P_{k}\right\}\right)$. Since \mathbb{T} is linear, we even get $p(\langle G, P\rangle) \in \mathbb{T}$ for all $P \in X \backslash H$.

We claim that $p(\widetilde{H}) \in \mathbb{T}$ if $\operatorname{dim}(H \cap \widetilde{H}) \geq h-1$. Indeed, take $G=H \cap \widetilde{H}$ and $Q \in \widetilde{H} \backslash G$, thus $\widetilde{H}=\langle G, Q\rangle$. Since $X \subset \mathbb{P}^{N}$ is non-degenerate, we can find points $P_{0}^{\prime}, \ldots, P_{N}^{\prime} \in X \backslash H$ such that $\left\langle P_{0}^{\prime}, \ldots, P_{N}^{\prime}\right\rangle=\langle X\rangle=\mathbb{P}^{N}$. Now we can apply Lemma 2.2 because $p\left(\left\langle G, P_{i}^{\prime}\right\rangle\right) \in \mathbb{T}$. This gives us $p(H)=p(\langle G, Q\rangle) \in \mathbb{T}$ since \mathbb{T} is linear.

To finish the proof of this theorem, it is enough to show that the dimension of the span of $\{p(\widetilde{H}) \mid \operatorname{dim}(H \cap \widetilde{H}) \geq h-1\}$ is equal to $\operatorname{dim}(\mathbb{G}(h, N))=$
$(h+1)(N-h)$. Take projective coordinates on \mathbb{P}^{N} such that H is the linear subspace $\left\langle E_{0}, \ldots, E_{h}\right\rangle$, where $E_{i}=(0: \ldots: 0: 1: 0 \ldots: 0)$ with one on the i th coordinate. Denote for each $i \in\{0, \ldots, h\}$ and $j \in\{h+1, \ldots, N\}$, the subspace $\left\langle E_{0}, \ldots, E_{i-1}, E_{i+1}, \ldots, E_{h}, E_{j}\right\rangle$ by $H_{i, j}$. The above claim implies that $p\left(H_{i, j}\right) \in \mathbb{T}$ since $\operatorname{dim}\left(H \cap H_{i, j}\right) \geq h-1$. It is easy to see that the set of points $p(H), p\left(H_{0, h+1}\right)$, $\ldots, p\left(H_{h, N}\right)$ is independent, hence $\operatorname{dim}(\mathbb{T}) \geq(h+1)(N-h)$. Of course, we have $\operatorname{dim}(\mathbb{T}) \leq(h+1)(N-h)$, since $G_{h, k}(X) \subset \mathbb{G}(h, N)$ and $\mathbb{G}(h, N)$ is smooth.

In order to state Theorem 3.3, we need the following definition.
Definition 3.2. Let $X \subset \mathbb{P}^{N}$ be a smooth irreducible non-degenerate curve. If D is an effective divisor of degree d such that $\operatorname{dim}\langle D\rangle=e$, we say that D is an d-secant e-space divisor.
Theorem 3.3. Let $X \subset \mathbb{P}^{N}$ be a smooth irreducible non-degenerate curve and let $0 \leq$ $h<k$ be integers such that $G_{h, k}(X) \neq \mathbb{G}(h, N)$. If X has no $(2 k+2)$-secant $2 k$-space divisors, we have $\operatorname{Sing}\left(G_{h, k}(X)\right)=G_{h, k-1}(X)$.

Proof. Since X has no $(k+2)$-secant k-space divisors, [Cop] implies that the map $i: X^{k+1} \rightarrow \mathbb{G}(k, N)$ is an embedding. Hence we may identify X^{k+1} and $i\left(X^{k+1}\right)$.

Denote $J:=p_{1}^{-1}\left(i\left(X^{k+1}\right)\right) \subset I$ and $q: J \rightarrow \mathbb{G}(h, N)$. Since the restriction of p_{1} to J is a $\mathbb{P}^{(h+1)(k-h)}$-bundle above $i\left(X^{k+1}\right)$, we see Y is smooth. Also note that $q(J)=G_{h, k}(X)$.

Let $(D, H) \in J$ with $H \notin G_{h, k-1}(X)$. We are going to prove that q locally defines an embedding of J in $\mathbb{G}(h, N)$ at (D, H). In particular, we will show that the tangent map

$$
d_{(D, H)}(q): \mathbb{T}_{(D, H)}(J) \rightarrow \mathbb{T}_{H}(\mathbb{G}(h, N))
$$

is injective.
Assume $d_{(D, H)}(q)$ is not injective, so there exists a tangent vector $(\alpha, \beta) \in$ $\mathbb{T}_{(D, H)}(J)$ with $\beta=0$ but $\alpha \neq 0$. Take a holomorphic arc $D(t)$ in $i\left(X^{k+1}\right)$ with $D(0)=D$ corresponding to α. The arc $D(t)$ gives rise to holomorphic arcs $P_{0}(t), \ldots, P_{k}(t)$ on X with $P_{i}(0)=P_{i}$, such that $D(t)=\left\langle P_{0}(t), \ldots, P_{k}(t)\right\rangle$. Let $\widehat{P}_{0}, \ldots, \widehat{P}_{k}, \widehat{P}_{0}(t), \ldots, \widehat{P}_{k}(t), \widehat{D}(t), \widehat{H}$ be corresponding objects in the affine cone \mathbb{C}^{N+1} above \mathbb{P}^{N} of respectively $P_{0}, \ldots, P_{k}, P_{0}(t), \ldots, P_{k}(t), D(t), H$.

Using the description of tangent spaces of Grassmannians in [Har, Lecture 16], the tangent vector $(\alpha, \beta) \in \mathbb{T}_{(D, H)}(J) \subset \mathbb{T}_{(D, H)}(I)$ gives rise to a commutative diagram

where $\beta \in \operatorname{Hom}\left(\widehat{H}, \mathbb{C}^{N+1} / \widehat{H}\right)$ and $\alpha \in \operatorname{Hom}\left(\widehat{D}, \mathbb{C}^{N+1} / \widehat{D}\right)$. Since $\beta \equiv 0$, we have $\left.\alpha\right|_{\widehat{H}} \equiv 0$.

Let $\widehat{P} \in \widehat{D}$, so $\widehat{P}=a_{0} \cdot \widehat{P}_{0}+\ldots+a_{k} \cdot \widehat{P_{k}}$ for some $a_{0}, \ldots, a_{k} \in \mathbb{C}$. If $\widehat{P}(t)$ is an arc satisfying $\widehat{P}(t) \in \widehat{D}(t)$ and $\widehat{P}(0)=\widehat{P}$, the map α sends \widehat{P} to $\widehat{v}+\widehat{D}$, with $\widehat{v}=\frac{d \widehat{P}(t)}{d t}(0)$. For example, we can take

$$
\widehat{P}(t)=a_{0} \cdot \widehat{P_{0}}(t)+\ldots+a_{k} \cdot \widehat{P}_{k}(t)
$$

hence $\alpha(\widehat{P})=a_{0} \cdot \widehat{v_{0}}+\ldots+a_{k} \cdot \widehat{v_{k}}+\widehat{D}$ with $\widehat{v_{i}}=\frac{d \widehat{P}_{i}(t)}{d t}(0)$. We conclude that α is the map sending $a_{0} \cdot \widehat{P_{0}}+\ldots+a_{k} \cdot \widehat{P_{k}}$ to $a_{0} \cdot \widehat{v_{0}}+\ldots+a_{k} \cdot \widehat{v_{k}}+\widehat{D}$.

If $\widehat{P} \in \widehat{H} \subset \widehat{D}$ is general, we have $\widehat{P}=a_{0} \cdot \widehat{P_{0}}+\ldots+a_{k} \cdot \widehat{P_{k}}$ with a_{0}, \ldots, a_{k} all different from zero. Since $\left.\alpha\right|_{\widehat{H}} \equiv 0$, we get

$$
a_{0} \cdot \widehat{v_{0}}+\ldots+a_{k} \cdot \widehat{v_{k}} \in \widehat{D}
$$

This is only possible if $\widehat{v_{0}}=\ldots=\widehat{v_{k}}=0$, since $2 D=2 P_{0}+\ldots+2 P_{k}$ is a $(2 k+2)-$ secant $(2 k+1)$-space divisor of X. However, this implies $\alpha \equiv 0$, a contradiction.

We have proven that q is locally an embedding of J in $\mathbb{G}(h, N)$ around (D, H) if $H \notin G_{h, k-1}(X)$. To finish this theorem, we only need to show that J is injective outside $q^{-1}\left(G_{h, k-1}(X)\right)$, since $\operatorname{dim}(J)=\operatorname{dim}\left(G_{h, k}(X)\right)$ (see [ChCi]).

Let $H \in G_{h, k}(X) \backslash G_{h, k-1}(X)$ and assume that $\left(D_{1}, H\right)$ and $\left(D_{2}, H\right)$ are two different points of J above H. Consider D_{1} and D_{2} as divisors on X. Let E be the scheme theoretical intersection of D_{1} and D_{2}. If $\operatorname{deg}(E)=e$, we have $e<k+1$ since $D_{1} \neq D_{2}$. Since $H \notin G_{h, k-1}(X)$, we see $H \not \subset\langle E\rangle$, hence

$$
\operatorname{dim}\left\langle\left\langle D_{1}\right\rangle \cap\left\langle D_{2}\right\rangle\right\rangle \geq \operatorname{dim}\langle\langle E\rangle, H\rangle \geq e .
$$

So we have

$$
d:=\operatorname{dim}\left\langle\left\langle D_{1}\right\rangle,\left\langle D_{2}\right\rangle\right\rangle=\operatorname{dim}\left\langle D_{1}\right\rangle+\operatorname{dim}\left\langle D_{2}\right\rangle-\operatorname{dim}\left\langle\left\langle D_{1}\right\rangle \cap\left\langle D_{2}\right\rangle\right\rangle \leq 2 k-e .
$$

Since $d=\operatorname{dim}\left\langle D_{1}+D_{2}-E\right\rangle$, we get that $D_{1}+D_{2}-E$ is a $(2 k+2-e)$-secant d-space divisor on X with $d \leq 2 k-e$, a contradiction.

References

[CaCh] C. Carlini, J. Chipalkatti, On Waring's problem for several algebraic forms, Comment. Math. Helv. 78 (2003), 494-517.
[ChCi] L. Chiantini, C. Ciliberto, The Grassmannians of secant varieties of curves are not defective, Indag. Math. 13 (2002), 23-28.
[ChCo] L. Chiantini, M. Coppens, Grassmannians of secant varieties, Forum Math. 13 (2001), 615-628.
[Cop] M. Coppens, The singular locus of the secant varieties of a smooth projective curve, Arch. Math. 82 (2004), 16-22.
[Fon] C. Fontanari, On Waring's problem for many forms and Grassmann defective varieties, J. Pure and Appl. Algebra 174 (2002), 243-247.
[Har] J. Harris, Algebraic Geometry, Graduate texts in Math. 133 (1992), SpringerVerlag.
[Zak] F. Zak, Tangents and Secants of Algebraic Varieties, Translations of Mathematical Monographs 127 (1993).

Department of Mathematics, Celestijnenlaan 200B,
B-3001 Leuven, Belgium,
email: Filip.Cools@wis.kuleuven.be

[^0]: *The author is supported by the Research Foundation - Flanders.
 2000 Mathematics Subject Classification : 14M15, 14N05, 14H99.

