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Abstract

Motivated by a recent paper by S. Ohno we calculate Hilbert-Schmidt
norms of products of composition and differentiation operators on the Bergman
space A2

α, α > −1 and the Hardy space H2 on the unit disk. When the conver-
gence of sequences (ϕn) of symbols to a given symbol ϕ implies the conver-
gence of product operators Cϕn Dk is also studied. Finally, the boundedness

and compactness of the operator CϕDk : A2
α → A2

α are characterized in terms
of the generalized Nevanlinna counting function.

1 Introduction and an auxiliary result

Let D be the open unit disk in C, dm(z) = 1
π rdrdθ the normalized Lebesgue area

measure on D, dmα(z) = (α + 1)(1− |z|2)αdm(z), α > −1, (note that mα(D) = 1),
and H(D) the class of all analytic functions on D.

The Bergman space A
p
α = A

p
α(D), p > 0, α > −1 consists of all f ∈ H(D)

such that

‖ f‖
p
p,α =

∫

D

| f (z)|pdmα(z) < ∞.

With the norm ‖ · ‖p,α the weighted Bergman space becomes a Banach space,
when p ≥ 1. If p ∈ (0, 1), it is a Frechet space with the translation invariant
metric

d( f , g) = ‖ f − g‖
p
p,α.

The Hardy space Hp = Hp(D), p > 0 consists of all f ∈ H(D) such that

‖ f‖
p
Hp = sup

0<r<1

1

2π

∫ 2π

0
| f (reiθ)|pdθ < ∞.
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Since for every f ∈ Hp

lim
α→−1+0

‖ f‖p,α = ‖ f‖Hp ,

Hp can be viewed as A
p
−1.

Let D be the differentiation operator, i.e., D f = f ′, Dk f = f (k), k ∈ N and
Cϕ the composition operator induced by a nonconstant analytic self-map ϕ of
D. For some classical results on composition operators, see, e.g., [2]. For some
recent results, see, e.g., [1, 3, 8, 9, 10, 15, 17, 18, 20, 25, 28, 32, 33] and the references
therein. Products of integral, differentiation and composition operators on spaces
of analytic functions are studied in [4, 5, 11, 12, 13, 14, 16, 19, 29, 31, 34, 35].

The paper is organized as follows. Motivated by [19, Theorem 3.3] which stud-
ies products of composition and differentiation on H2, in Section 2 we calculate
the exact value of Hilbert-Schmidt norms of products of composition and differ-
entiation operators CϕDk, k ∈ N and DCϕ on the Bergman space A2

α, α > −1 and

the Hardy space H2.
In Section 3 we investigate when convergence of sequences (ϕn) of symbols

to a given symbol ϕ implies the convergence of product operators Cϕn Dk.
In the last section we characterize the boundedness and compactness of the

operator CϕDk : A2
α → A2

α in terms of the generalized Nevanlinna counting func-
tion.

We need the following lemma:

Lemma 1. Let cn,α =
( Γ(n+α+2)

Γ(n+1)Γ(α+2)

)1/2
, α ≥ −1. Then for |x| < 1, the following

formula hold true

∞

∑
n=k

(n(n − 1) · · · (n − k + 1))2c2
n,αxn−k =

k−1

∏
j=0

(α + 2 + j)

(

xk

(1 − x)α+2+k

)(k)

. (1)

Proof. Let

f (x) =
∞

∑
n=k

(

k−1

∏
j=0

(n − j)
)2

c2
n,αxn−k. (2)

It is easy to see that f (n)(x), n ∈ Z exists for |x| < 1 (when for n < 0 it denotes
the nth antiderivative of f ). Integrating (2) k times, we have that for |x| < 1

∫ x

0

∫ x1

0
· · ·

∫ xk−1

0
f (xk)dxk · · · dx1 =

∞

∑
n=k

( k−1

∏
j=0

(n − j)
)

c2
n,αxn = xkg(x), (3)

and
∫ x

0

∫ x1

0
· · ·

∫ xk−1

0
g(xk)dxk · · · dx1 =

∞

∑
n=k

c2
n,αxn =

1

(1 − x)α+2
−

k−1

∑
l=0

c2
l,αxl. (4)

Differentiating (4) k times we obtain

g(x) =
∏

k−1
j=0 (α + 2 + j)

(1 − x)α+2+k
.
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Replacing this in (3) and differentiating such obtained formula k times, (1) fol-
lows.

Remark 1. By using Leibnitz’s formula and some simple calculations, (1) can be
written in the following form

∞

∑
n=k

( k−1

∏
j=0

(n − j)
)2

c2
n,αxn−k =

∑
k
l=0 Ck

l ∏
k
s=l+1 s xl(1 − x)k−lΓ(α + k + l + 2)

Γ(α + 2)(1 − x)α+2+2k
. (5)

Note also that the polynomial in the numerator is positive on the interval [0, 1).

2 Hilbert-Schmidt norm of CϕDk (or DCϕ) : A2
α → A2

α

If H is a separable Hilbert space, then the Hilbert-Schmidt norm ‖T‖HS of an
operator T : H → H is defined by:

‖T‖HS =

( ∞

∑
n=1

‖Ten‖
2

)1/2

, (6)

where {en} is an orthonormal basis on H. The right-hand side in (6) does not
depend on the choice of basis. Hence, it is larger than the operator norm ‖T‖op of
T.

Let

〈 f , g〉α =
∫

D

f (z)g(z)dmα(z),

α ≥ −1, be the scalar product on A2
α and en(z) = cn,αzn, n ∈ N0.

Since for α > −1

‖en‖
2
2,α = (α + 1)c2

n,α

∫

D

|z|2n(1 − |z|2)αdm(z)

= (α + 1)c2
n,α

∫ 1

0
ρn(1 − ρ)αdρ = 1

and 〈en, em〉α = 0 when m 6= n, it follows that (en)n∈N0
is an orthonormal basis

for A2
α. The proof of this fact, for the case α = −1, is simpler.

Theorem 1. The Hilbert-Schmidt norm of the operator CϕDk on A2
α, α > −1 is

‖CϕDk‖HS =

(

(α + 1)
∫

D

Pα(|ϕ(z)|2)

(1 − |ϕ(z)|2)α+2+2k
(1 − |z|2)αdm(z)

)1/2

, (7)

where

Pα(x) =
1

Γ(α + 2)

k

∑
l=0

Ck
l

( k

∏
s=l+1

s
)

xl(1 − x)k−lΓ(α + k + l + 2). (8)



626 S. Stević

Proof. By using the definition of the Hilbert-Schmidt norm, the monotone con-
vergence theorem, Lemma 1 and formula (5), we obtain

‖CϕDk‖2
HS =

∞

∑
n=0

‖CϕDk(en)‖2
2,α =

∞

∑
n=0

c2
n,α

( k−1

∏
j=0

(n − j)
)2

‖ϕn−k‖2
2,α

= (α + 1)
∞

∑
n=k

c2
n,α

( k−1

∏
j=0

(n − j)
)2 ∫

D

|ϕ(z)|2n−2k(1 − |z|2)αdm(z)

= (α + 1)
∫

D

Pα(|ϕ(z)|2)

(1 − |ϕ(z)|2)α+2+2k
(1 − |z|2)αdm(z),

from which the result follows.

Corollary 1. The Hilbert-Schmidt norm of the operator CϕD on A2
α, α > −1 is

‖CϕD‖HS =

(

(α + 1)(α + 2)
∫

D

1 + (α + 2)|ϕ(z)|2

(1 − |ϕ(z)|2)α+4
(1 − |z|2)αdm(z)

)1/2

. (9)

Moreover, the operator CϕD : A2
α → A2

α is Hilbert-Schmidt if and only if

∫

D

(1 − |z|2)α

(1 − |ϕ(z)|2)α+4
dm(z) < ∞. (10)

Proof. Theorem 1 and Lemma 1 with k = 1, imply formula (9). Since
1 ≤ 1 + (α + 2)|ϕ(z)|2 ≤ α + 3 we get that the integrals in (9) and (10) are com-
parable, from which the second statement follows.

The next corollary can be proved in the same way. Hence we omit its proof.

Corollary 2. The Hilbert-Schmidt norm of the operator CϕD2 on A2
α, α > −1 is

‖CϕD2‖HS =

(

Cα

∫

D

2 + (4α + 12)|ϕ(z)| + (α2 + 5α + 6)|ϕ(z)|2

(1 − |ϕ(z)|2)α+6
dmα(z)

)1/2

,

where Cα = (α + 1)(α + 2)(α + 3).
Moreover, the operator CϕD2 : A2

α → A2
α is Hilbert-Schmidt if and only if

∫

D

(1 − |z|2)α

(1 − |ϕ(z)|2)α+6
dm(z) < ∞. (11)

Similarly, by Lemma 1 with the case α = −1, we can prove the following
theorem (for the case k = 1 the proof is close to the proof of Theorem 3.3 in [19]):

Theorem 2. The Hilbert-Schmidt norm of the operator CϕDk on H2 is

‖CϕDk‖HS =

(

sup
0≤r<1

1

2π

∫ 2π

0

P−1(|ϕ(reiθ)|2)

(1 − |ϕ(reiθ)|2)2k+1
dθ

)1/2

,
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where P−1(x) is polynomial (8) with α = −1.

Corollary 3. The Hilbert-Schmidt norm of the operator CϕD on H2 is

‖CϕD‖HS =

(

sup
0≤r<1

1

2π

∫ 2π

0

1 + |ϕ(reiθ)|2

(1 − |ϕ(reiθ)|2)3
dθ

)1/2

.

Moreover, the operator CϕD : H2 → H2 is Hilbert-Schmidt if and only if

sup
0≤r<1

∫ 2π

0

dθ

(1 − |ϕ(reiθ)|2)3
< ∞.

3 Hilbert-Schmidt norm of DCϕ : A2
α → A2

α

Here we consider the operator DCϕ. We will not consider the general case DkCϕ,
k ∈ N since the corresponding formulae are not written in a simple way.

Theorem 3. The Hilbert-Schmidt norm of the operator DCϕ on A2
α, α > −1 is

‖DCϕ‖HS =

(

(α + 1)(α + 2)
∫

D

1 + (α + 2)|ϕ(z)|2

(1 − |ϕ(z)|2)α+4
|ϕ′(z)|2(1 − |z|2)αdm(z)

)1/2

.

Proof. We have

‖DCϕ‖
2
HS =

∞

∑
n=0

‖DCϕ(en)‖2
2,α =

∞

∑
n=0

c2
n,αn2‖ϕn−1ϕ′‖2

2,α

= (α + 1)
∞

∑
n=0

c2
n,αn2

∫

D

|ϕ(z)|2n−2|ϕ′(z)|2(1 − |z|2)αdm(z).

From this, by using the monotone convergence theorem and Lemma 1 with k = 1
the result follows.

For the case α = −1, the following result holds true.

Theorem 4. The Hilbert-Schmidt norm of the operator DCϕ on H2 is

‖DCϕ‖HS =

(

sup
0≤r<1

1

2π

∫ 2π

0

1 + |ϕ(reiθ)|2

(1 − |ϕ(reiθ)|2)3
|ϕ′(reiθ)|2dθ

)1/2

.

Proof. We have

‖DCϕ‖
2
HS =

∞

∑
n=0

‖DCϕ(en)‖2
H2 =

∞

∑
n=0

sup
0≤r<1

1

2π

∫ 2π

0
n2|ϕ(reiθ)2n−2(ϕ′(reiθ))2|dθ.

From this, since the supremum and sum can interchange their positions (in view
of the positivity and continuity of the integral means appearing there), using the
monotone convergence theorem and Lemma 1 (case α = −1) the formula follows.
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4 Continuity with respect to symbols of composition operators

By Theorem 1, similar to the proof of Theorem 1 in [27], the following theorem
can be proved. We omit the proof.

Theorem 5. Let α ≥ −1, Qα,k(x) = Pα(x)/(1− x)α+2+2k , ϕ be an analytic self-map of
D and suppose that (ϕn)n∈N is a sequence of analytic self-maps of D such that ϕn → ϕ
a.e. on D,

∫

D

Q(|ϕ(z)|2)dmα(z) < ∞, (12)

and

lim
n→∞

∫

D

Q(|ϕn(z)|2)dmα(z) =
∫

D

Q(|ϕ(z)|2)dmα(z). (13)

Then the sequence (Cϕn Dk)n∈N of Hilbert-Schmidt composition operators converges in

Hilbert-Schmidt norm to the composition operator CϕDk.

Remark 2. Note that in view of equation (7) Theorem 1 can be written in the
following form: Let ϕ be an analytic self-map of D and suppose that (ϕn)n∈N is a
sequence of analytic self-maps of D such that CϕDk and (Cϕn Dk)n∈N are Hilbert-

Schmidt operators, ϕn → ϕ a.e. on D, and limn→∞ ‖Cϕn Dk‖HS = ‖CϕDk‖HS.

Then limn→∞ ‖Cϕn Dk − CϕDk‖HS = 0.

Theorem 6. If CϕDk is a Hilbert-Schmidt operator, then

lim
n→∞

‖Cϕn Dk − CϕDk‖HS = 0 (14)

if and only if ‖Cϕn Dk‖HS → ‖CϕDk‖HS and ‖ϕn − ϕ‖2,α → 0 as n → ∞.

Proof. If (14) holds, then clearly ‖Cϕn Dk‖HS → ‖CϕDk‖HS as n → ∞. On the
other hand,

‖ϕn − ϕ‖2,α = C‖(Cϕn Dk − CϕDk)(zk+1)‖2,α

≤ ‖Cϕn Dk − CϕDk‖ ‖zk+1‖2,α

≤ C‖Cϕn Dk − CϕDk‖HS,

from which it follows that ‖ϕn − ϕ‖2,α → 0.
Now assume ‖Cϕn Dk‖HS → ‖CϕDk‖HS and ‖ϕn − ϕ‖2,α → 0 as n → ∞, but

‖Cϕn Dk − CϕDk‖HS 6→ 0.

Then there are a subsequence (Cϕnj
Dk)j∈N and an ε0 > 0 such that

‖Cϕnj
Dk − CϕDk‖HS ≥ ε0 > 0, j ∈ N.

Since ‖ϕnj
− ϕ‖2,α → 0, as j → ∞, there is a subsequence (ϕnjl

)l∈N converging to

ϕ a.e. By Theorem 5 we have

lim
l→∞

‖Cϕnjl
Dk − CϕDk‖HS = 0,
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which is a contradiction.

Theorem 7. Let ϕ be an analytic self-map of D and suppose that (ϕn)n∈N is a sequence
of analytic self-maps of D such that ‖ϕn − ϕ‖2,α → 0 as n → ∞. If there is a measurable
function χ : D → [0, 1] such that for every n ∈ N, |ϕn| ≤ |χ| a.e. on D and

∫

D

Qα,k(|χ(z)|2)dmα(z) < ∞,

then the sequence (Cϕn Dk)n∈N converges in Hilbert-Schmidt norm to CϕDk.

The proof of Theorem 7 is similar to the proof of Theorem 3 in [27] and is
omitted.

The next theorem is proved similar to Theorem 4 in [27].

Theorem 8. For every pair of distinct symbols ϕ, ψ, let χ = max{|ϕ|, |ψ|}. Then the
following upper estimates hold

‖CϕDk − CψDk‖HS ≤ M

(

∫

D

Qα,k(|χ(z)|2)dmα(z)

)1/2

‖ϕ − ψ‖∞,

where the constant M is independent of ϕ and ψ. Therefore, for each R > 0, the map
ϕ → CϕDk is Lipschitz continuous on the set

SR =

{

ϕ

∣

∣

∣

∣

∫

D

Qα,k(|χ(z)|2)dmα(z) ≤ R

}

.

5 A characterization of the boundedness and compactness of

CϕDk

Here we characterize the boundedness and compactness of CϕDk : A2
α → A2

α in
terms of the generalized Nevanlinna counting function. Before we formulate the
main result in this section, we need some notation and an auxiliary result.

In view of the following asymptotic relationship

1 − |z| ≍ ln(1/|z|), |z| → 1, (15)

it is easy to see that the Bergman space A
p
α is equivalent with the space of all

f ∈ H(D) such that

‖ f‖
p
p,α,1 =

∫

D

| f (z)|p
(

ln
1

|z|

)α
dm(z) < ∞.

The generalized Nevanlinna counting function Nϕ,γ, γ > 0 for ϕ, is defined
as follows

Nϕ,γ(w) = ∑
z∈ϕ−1(w)

[

ln(1/|z|)
]γ

, w ∈ D \ {ϕ(0)}.
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It is introduced by Shapiro in [21] to study composition operators from a
weighted Bergman space to itself.

By a well known characterization of the Bergman space (see, for example,
[22, 23, 30]) and the asymptotics in (15) it follows that

‖ f‖2
A2

α
≍ | f (0)|2 +

∫

D

| f ′(z)|2
(

ln
1

|z|

)α+2
dm(z).

From this and by applying the Stanton’s formula

‖ f ◦ ϕ‖
p
Hp = | f (ϕ(0))|p +

p2

2

∫

D

| f (w)|p−2| f ′(w)|2Nϕ,1(w)dm(w),

with p = 2, on the dilations fr(z) = f (rz), r ∈ (0, 1), it follows that

‖ f ◦ ϕ‖2
A2

α
≍ | f (ϕ(0))|2 +

∫

D

| f ′(w)|2Nϕ,α+2(w)dm(w). (16)

It is also known ([21]) that if ϕ is an analytic self-map of D with ϕ(0) 6= 0,
α ≥ 1 and if 0 < r < |ϕ(0)|, then

Nϕ,α(0) ≤
1

r2

∫

|z|≤r
Nϕ,α(z)dm(z). (17)

The following result is proved in a standard way (see, for example, the proofs
of the corresponding results in [2, 6, 24, 25, 26]).

Lemma 2. The operator CϕDk : A2
α → A2

α is compact if and only if CϕDk : A2
α → A2

α

is bounded and for any bounded sequence ( fn)n∈N in A2
α converging to zero uniformly

on compacts of D as n → ∞, we have limn→∞ ‖CϕDk fn‖A2
α
= 0.

Theorem 9. Let ϕ be an analytic self-map of D, k ∈ N and α > −1. Then

(a) CϕDk : A2
α → A2

α is bounded if and only if

Nϕ,α+2(w) = O
(

[

ln(1/|w|)
]α+2+2k

)

. (18)

(b) CϕDk : A2
α → A2

α is compact if and only if

Nϕ,α+2(w) = o
(

[

ln(1/|w|)
]α+2+2k

)

, as |w| → 1. (19)

Proof. (a) For u ∈ D set

fu(z) =
(1 − |u|2)

α+2
2

(1 − ūz)α+2
, z ∈ D. (20)
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It is known that ‖ fu‖A2
α
= 1, for each u ∈ D. By using (16) we have

‖CϕDk‖2 ≥ ‖CϕDk fu‖
2
A2

α
= ‖ f

(k)
u ◦ ϕ‖2

A2
α

≍ | f
(k)
u (ϕ(0))|2 +

∫

D

| f
(k+1)
u (w)|2Nϕ,α+2(w)dm(w)

≥ C
∫

D

(1 − |u|2)α+2

|1 − ūw|2α+6+2k
|u|2(k+1)Nϕ,α+2(w)dm(w).

By the change

w = ϕu(z) =
u − z

1 − ūz

and (17) we obtain

‖CϕDk‖2 ≥ C
∫

D

|1 − ūz|2α+2+2k

(1 − |u|2)α+2+2k
|u|2(k+1)Nϕ,α+2(ϕu(z))dm(z)

≥ C
∫

|z|≤1/2

|1 − ūz|2α+2+2k

(1 − |u|2)α+2+2k
|u|2(k+1)Nϕ,α+2(ϕu(z))dm(z)

≥ C
|u|2(k+1)

(1 − |u|2)α+2+2k

∫

|z|≤1/2
Nϕ,α+2(ϕu(z))dm(z)

≥ C
|u|2(k+1)

(1 − |u|2)α+2+2k
Nϕ,α+2(u), (21)

when when |ϕu(ϕ(0))| > 1/2, which holds for |u| sufficiently close to 1.
From (21) and (15) we obtain (18).
Now assume that (18) holds. Then for each r ∈ (0, 1), there is M > 0 such that

sup
r<|w|<1

Nϕ,α+2(w)
/[

ln(1/|w|)
]α+2+2k

≤ M. (22)

We have

‖CϕDk f‖2 ≍ | f (k)(ϕ(0))|2 +
∫

D

| f (k+1)(w)|2Nϕ,α+2(w)dm(w)

= | f (k)(ϕ(0))|2 +

(

∫

D\rD

+
∫

rD

)

| f (k+1)(w)|2Nϕ,α+2(w)dm(w).

(23)

By a well known estimate (see, e.g., [7]), we have that

| f (k)(ϕ(0))|2 ≤
C

(1 − |ϕ(0)|)α+2+2k
‖ f‖2

A2
α
. (24)

Since Nϕ,α+2 is bounded on rD, similarly we obtain

∫

rD

| f (k+1)(w)|2Nϕ,α+2(w)dm(w) ≤ C sup
|w|≤r

| f (k+1)(w)|2 (25)

≤
C

(1 − |ϕ(0)|)α+4+2k
‖ f‖2

A2
α
. (26)
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Let f (z) = ∑
∞
n=0 anzn, then we have

∫

D\rD

| f (k+1)(w)|2Nϕ,α+2(w)dm(w)

≤ sup
r<|w|<1

Nϕ,α+2(w)
[

ln(1/|w|)
]α+2+2k

∫

D\rD

| f (k+1)(w)|2
(

ln
1

|w|

)α+2+2k
dm(w)

≤ M
∞

∑
n=k+1

k

∏
j=0

(n − j)2|an|
2
∫ 1

0
r2n−2k−1

(

ln
1

r

)α+2+2k
dr

≤ M
∞

∑
n=k+1

n2+2k|an|
2
∫ 1

0
tn−k−1

(

ln
1

t

)α+2+2k
dt

≤ M
∞

∑
n=k+1

n2+2k|an|
2
∫ ∞

0
e−(n−k)ssα+2+2kds

= M
∞

∑
n=k+1

n2+2k|an|
2 Γ(α + 3 + 2k)

(n − k)α+3+2k
≤ CM

∞

∑
n=0

|an|2

nα+1
, (27)

where we have used the changes t = r2 and e−s = t.
On the other hand, by a direct calculation and Stirling’s formula, we have

‖ f‖2
A2

α
=

∞

∑
n=0

|an|2

c2
n,α

≍
∞

∑
n=0

|an|2

nα+1
. (28)

From (24), (26), (27) and (28) the boundedness of CϕDk : A2
α → A2

α follows.
(b) Assume that |un| → 1 as n → ∞. Then it is clear that fun(z) is a bounded

sequence in A2
α converging to zero uniformly on compacts. Hence

lim
n→∞

‖CϕDk fun‖ = 0.

On the other hand as in (21) it follows that

‖CϕDk fun‖
2 ≥ C

|un|2(k+1)

(1 − |un|2)α+2+2k
Nϕ,α+2(un), (29)

from which (19) holds.
Now assume that (19) holds and that ( fn)n∈N is a bounded sequence in A2

α

converging to zero on compacts of D. Then by Cauchy’s inequality it follows that
f ′n → 0 uniformly on compacts of D. We also have that for every ε > 0 there is
an r such that (22) holds where instead of M is ε, whenever |w| > r. On the other

hand, we have that | f
(k+1)
n (ϕ(0))| → 0 as n → ∞, and from (25)

lim
n→∞

∫

rD

| f
(k+1)
n (w)|2Nϕ,α+2(w)dm(w) ≤ C lim

n→∞
max
|w|≤r

| f
(k+1)
n (w)| = 0.

Applying (23) to the function fn, letting in such obtained inequality n → ∞, and
using above mentioned facts, it follows that

lim sup
n→∞

‖CϕDk fn‖
2 ≤ Cε.

Hence this limit is zero, and consequently the operator CϕDk : A2
α → A2

α is com-
pact.
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