# $\left(\mathbf{M}, \mathrm{cr}^{\imath}, \delta\right)$-minimizing curve regularity 

Thomas Meinguet


#### Abstract

This is a new proof that $\left(\mathbf{M}, \mathrm{Cr}^{\gamma}, \delta\right)$-minimizing sets $S$ are pieces of $\mathcal{C}^{1, \gamma / 2}$ curves, $0<\gamma \leqslant 1$. To obtain this result, the almost monotonicity property is established for balls centered on $S$ or not. Furthermore it is proved that almost minimizing sets fulfill the epiperimetric inequality.


## 1 Introduction

The $\xi$-almost minimizers with respect to a finite boundary set $B, \xi(r)$ being a nondecreasing function tending to 0 as $r \rightarrow 0$, are compact connected 1-rectifiable sets $S$ such that

$$
\mathcal{H}^{1}(S \cap B(x, r)) \leqslant(1+\xi(r)) \mathcal{H}^{1}(C \cap B(x, r))
$$

whenever
(a) $B(x, r) \cap B=\varnothing$,
(b) C is a compact connected 1-rectifiable set with $S \backslash B(x, r)=C \backslash B(x, r)$.

We assume $r<\delta$ and notation $B(x, r)$ indicates an open ball.
This definition slightly differs from that given by Almgren [1] in what we do not require comparison sets to be Lipschitz images of the original set.

There is an interesting class of such $\xi$-almost minimizers. Consider a function $\alpha: \mathbb{R}^{n} \rightarrow \mathbb{R}$ uniformly continuous and bounded below by some $\alpha_{0}>0$. For each Borel set $S \subset \mathbb{R}^{n}$ we put

$$
E_{\alpha}(S):=\int_{S} \alpha d \mathcal{H}^{1} .
$$

Received by the editors May 2008.
Communicated by J. Mawhin.
2000 Mathematics Subject Classification : 49Q10.
Key words and phrases : Minimal, almost minimal, almost monotonicity, epiperimetry.

If $B \subset \mathbb{R}^{n}$ is finite we claim that there exists a compact connected 1-rectifiable set $S^{*} \subset \mathbb{R}^{n}$ containing $B$ and such that

$$
E_{\alpha}\left(S^{*}\right)=\inf \left\{E_{\alpha}(S): B \subset S \subset \mathbb{R}^{n}, B \text { is compact, connected and 1-rectifiable }\right\} .
$$

This follows from the Blaschke selection principle [4, Theorem 3.16] together with a restricted lower semicontinuity property of $E_{\alpha}$ analogous to [4, Theorem 3.18]. It is then easy to check that $S^{*}$ is $\xi$-almost minimizing with respect to $B$ where

$$
\xi(r)=\frac{\omega_{\alpha}(r)}{\alpha_{0}}
$$

$\omega_{\alpha}(r):=\sup \left\{\operatorname{diam}(\alpha(B(x, r))): x \in \mathbb{R}^{n}\right\}$ being the modulus of continuity of $\alpha$.
Another large class of $\xi$-almost minimizers consists of the simple $\mathcal{C}^{1, \gamma}$ curves themselves $(0<\gamma \leqslant 1)$. They can be described by an arclength parametrization $\lambda:[a, b] \rightarrow \mathbb{R}^{n}$ such that

$$
\left|\lambda^{\prime}\left(t_{1}\right)-\lambda^{\prime}\left(t_{2}\right)\right|_{2} \leqslant C\left|t_{1}-t_{2}\right|^{\gamma}
$$

Then one can check (see [2]) that $\lambda([a, b])$ is $\xi$-almost minimizing with respect to $B=\{\lambda(a), \lambda(b)\}$, where $\xi(r)=C^{\prime} r^{2 \gamma}$.

Moreover, solutions of other variational problems, like networks of bubbles in the plane (see [1]), meet also the requirements of $\xi$-almost minimizing sets.

We give a new look at the regularity of $\xi$-almost minimizers. The main result is the following.

Theorem 1. Let $S \subset \mathbb{R}^{n}$ be compact connected 1-rectifiable. Assume that $y \in S$. Let $0<\gamma \leqslant 1$ and $C>0$. Then the following conditions are equivalent:
(A) $\Theta^{1}(S, y)=1$ and, in a neighborhood of $y, S$ is $\xi$-almost minimizing with $\xi(r) \leqslant$ $\mathrm{Cr}^{\gamma}$,
(B) in a neighborhood of $y, S$ is a simple $\mathcal{C}^{1, \frac{\gamma}{2}}$ curve.

The present paper provides a new method for proving $(A) \Rightarrow(B)$, the first one being due to Morgan [6], and $(B) \Rightarrow(A)$ can be found in [2] for example.

## 2 Sketch of proof

First we show that $\mathrm{Cr}^{\gamma}$-almost minimizers $S$ are almost monotonic near $y$. This means that there exists $R>0$ such that for $x \in B(y, R)$ and $0<r \leqslant R$ the function

$$
\begin{equation*}
e^{C_{r} \gamma} \frac{\mathcal{H}^{1}(S \cap B(x, r))}{2 r} \tag{1}
\end{equation*}
$$

is nondecreasing. Through this paper the constant $C$ is allowed to increase from one estimate to another but only depends on $\gamma$.

Notice that the monotonicity formula of J. Taylor in [8] is actually obtained for balls centered on $S$. In this way this result is significantly different.

The next step is to improve inequality (1) for points $x \in S \cap B(y, R)$. The socalled epiperimetry property is the following. For $x \in S \cap B(y, R)$ and $0<r \leqslant R$ we have that

$$
\begin{equation*}
\left|\frac{\mathcal{H}^{1}(S \cap B(x, r))}{2 r}-1\right| \leqslant C r^{\gamma} . \tag{2}
\end{equation*}
$$

Next we study $\mathrm{Cr}^{\gamma}$-almost minimizers taking into account the epiperimetry property. Let $S$ be such a set. Let $x \in S \cap B(y, R)$ and $0<r \leqslant R$. Then there exists a line $L_{x, r}$ through the origin which is a good approximation of $S$ in $B(x, r)$ in the sense that

$$
\begin{equation*}
d_{\mathcal{H}}\left(S \cap B(x, r),\left(x+L_{x, r}\right) \cap B(x, r)\right) \leqslant C r^{1+\frac{\gamma}{2}} \tag{3}
\end{equation*}
$$

where $d_{\mathcal{H}}$ is the Hausdorff distance. It is a Reifenberg-like property (see [7]). Notice that the exponent $\frac{\gamma}{2}$ instead of $\gamma$ follows the use of Pythagoras' Formula. This explains why we get $\mathcal{C}^{1, \frac{\gamma}{2}}$-regularity at the end.

Thanks to (3) we obtain that
(i) the approximation lines $L_{x, r}$ stabilize to a unique line $L_{x}$ whenever $r \rightarrow 0$,
(ii) $d_{\mathcal{H}}\left(L_{x_{1}} \cap B(0,1), L_{x_{2}} \cap B(0,1)\right) \leqslant C\left|x_{1}-x_{2}\right|_{2}^{\frac{\gamma}{2}}$.

Finally, for $r>0$ small enough, $S \cap B(0, r)$ is the graph of a function $u$ over $L_{0}$. Observing that $L_{x}$ is also the tangent line to $\operatorname{graph}(u)$ in the sense of the classical derivative, the fact that $u$ is $\mathcal{C}^{1, \frac{\gamma}{2}}$ follows from (ii).

The fact that almost monotonicity together with epiperimetry imply regularity near points of density 1 has been observed in [2]. The novelty here is the fact that the epiperimetric inequality (2) follows in dimension 1 from a comparison argument.

## 3 Almost minimizing sets

The first definition is just a convenient abbreviation. The second one sets the class of objects of our interest.

Definition 1. A gauge is a nondecreasing function $\xi: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}_{+}$such that $\lim _{r \rightarrow 0^{+}} \xi(r)=0$.

Definition 2. Given a gauge $\xi$ we say that a compact connected 1-rectifiable set $S \subset \mathbb{R}^{n}$ is $\xi$-almost minimizing with respect to a finite set $B \subset \mathbb{R}^{n}$ provided that the following conditions hold:
(a) $B \subset S$,
(b) for every $r>0$ and $x \in \mathbb{R}^{n}$ with $B(x, r) \cap B=\varnothing$ one has

$$
\begin{equation*}
\mathcal{H}^{1}(S \cap B(x, r)) \leqslant(1+\xi(r)) \mathcal{H}^{1}(C \cap B(x, r)) \tag{4}
\end{equation*}
$$

whenever $C \subset \mathbb{R}^{n}$ is a compact connected 1-rectifiable set such that

$$
S \backslash B(x, r)=C \backslash B(x, r)
$$

In case $\xi$ vanishes identically we simply say that $S$ is minimizing with respect to $B$.
We have an immediate geometric information about these sets.
Proposition 1. Let $S \subset \mathbb{R}^{n}$ be $\xi$-almost minimizing with respect to $B, x \in S$ and $0<r<\operatorname{dist}(x, B)$. Then $\operatorname{card}[S \cap \partial B(x, r)] \geqslant 2$.

Proof. The connectedness of $S$ implies that $X=S \cap \partial B(x, r)$ is not empty. Assuming if possible that $X$ were a singleton, the almost minimizing property (4) applied with $C:=(S \backslash B(x, r)) \cup X$ would yield

$$
0<r \leqslant \mathcal{H}^{1}(S \cap B(x, r)) \leqslant(1+\xi(r)) \mathcal{H}^{1}(C \cap B(x, r))=(1+\xi(r)) \mathcal{H}^{1}(X)=0
$$

a contradiction.

## 4 Almost monotonic measures

We introduce here the concept of almost monotonic measure.
Definition 3. Given an open set $U \subset \mathbb{R}^{n}$, a Radon measure $\phi$ on $U$ and a gauge $\zeta$, we say that $\phi$ is $\zeta$-almost monotonic in $U$ if for every $x \in U$ the function

$$
] 0, \operatorname{dist}\left(x, \mathbb{R}^{n} \backslash U\right)\left[\rightarrow \mathbb{R}_{+}: r \mapsto e^{\zeta(r)} \frac{\phi(B(x, r))}{2 r}\right.
$$

is nondecreasing. In case $\zeta$ vanishes identically we simply say that $\phi$ is monotonic in U.

The purpose of this section is to show that if $S$ is $\xi$-almost minimizing with respect to $B$ then $\mathcal{H}^{1}\left\llcorner S\right.$ is $\zeta$-almost monotonic in $\mathbb{R}^{n} \backslash B$ with respect a gauge $\zeta$ depending on $\xi$ (if $\xi(r)=\mathrm{Cr}^{\gamma}, 0<\gamma \leqslant 1$, then $\zeta$ will be a multiple of $\xi$ ).

Lemma 1. If $S$ is $\xi^{\text {-almost minimizing }}$ with respect to $B$ then for every $x \in \mathbb{R}^{n} \backslash B$ and every $\rho \in] 0$, dist $(x, B)[$ one has

$$
\mathcal{H}^{1}(S \cap B(x, \rho)) \leqslant(1+\xi(\rho)) \rho \operatorname{card}[S \cap \partial B(x, \rho)]
$$

Proof. Fix $\rho \in] 0, \operatorname{dist}(x, B)\left[\right.$, set $l:=\operatorname{card}[S \cap \partial B(x, \rho)]$, and let $c_{1}, \ldots, c_{l}$ be the members of $S \cap \partial B(x, \rho)$. If $\left[x, c_{i}\right]$ denotes the closed line segment joining $x$ and $c_{i}$, then (4) applied with $C:=(S \backslash B(x, \rho)) \cup \bigcup_{i=1}^{l}\left[x, c_{i}\right]$ yields the inequality.
Lemma 2. If $S$ is 1-rectifiable and $\mathcal{H}^{1}(S)<\infty$ then for every $x \in \mathbb{R}^{n}$ and $\mathcal{H}^{1}$-almost every $\rho>0$ one has

$$
\frac{d}{d \rho} \mathcal{H}^{1}(S \cap B(x, \rho)) \geqslant \operatorname{card}[S \cap \partial B(x, \rho)]
$$

Proof. Fix $x \in \mathbb{R}^{n}$ an define $\varphi(\rho):=\mathcal{H}^{1}(S \cap B(x, \rho)), \rho>0$. The coarea formula $[5,3.2 .22]$ applied to the set $S$ and the function $\delta_{x}(y):=|y-x|$ shows that

$$
\varphi_{a c}^{\prime}(\rho)=\sum_{y \in S \cap \partial B(x, \rho)} \frac{1}{J_{1} \delta_{x}(y)} \geqslant \sum_{y \in S \cap \partial B(x, \rho)} 1=\operatorname{card}[S \cap \partial B(x, \rho)]
$$

where $\varphi_{a c}$ is the absolutely continuous part of $\varphi$ in its Lebesgue decomposition as nondecreasing function. Since $\varphi^{\prime}(\rho)=\varphi_{a c}^{\prime}(\rho)$ for $\mathcal{H}^{1}$-almost every $\rho>0$ the conclusion follows.

We are now able to proof the expected result.
Proposition 2. If $S$ is $\xi$-almost minimizing with respect to $B$ then $\mathcal{H}^{1}\llcorner S$ is $\zeta$-almost monotonic in $\mathbb{R}^{n} \backslash B$ where

$$
\zeta(r):=\int_{0}^{r} \frac{\xi(\rho)}{\rho} d \rho, \text { provided that } \lim _{r \rightarrow 0^{+}} \int_{r}^{1} \frac{\xi(\rho)}{\rho} d \rho<+\infty .
$$

Proof. Let $x \in \mathbb{R}^{n} \backslash B$. Define $\varphi(\rho):=\mathcal{H}^{1}(S \cap B(x, \rho)), 0<\rho<\operatorname{dist}(x, B)$. By Lemmas 1 and 2, we have that

$$
\varphi(\rho) \leqslant(1+\xi(\rho)) \rho \varphi^{\prime}(\rho)
$$

whenever $\varphi^{\prime}(\rho)$ is defined. Consequently, for such $\rho$,

$$
\frac{d}{d \rho}\{\ln [\varphi(\rho)]\} \geqslant \frac{(1-\xi(\rho))}{\rho}=\frac{d}{d \rho}\left\{\ln \left[\rho e^{-\zeta(\rho)}\right]\right\}
$$

Thus, for $0<r<R<\operatorname{dist}(x, B)$, we obtain

$$
\int_{r}^{R} \frac{d}{d \rho}\left\{\ln \left[\rho e^{-\zeta(\rho)}\right]\right\} d \rho \leqslant \int_{r}^{R} \frac{d}{d \rho}\{\ln [\varphi(\rho)]\} d \rho
$$

and

$$
e^{\zeta(r)} \frac{\varphi(r)}{2 r} \leqslant e^{\zeta(R)} \frac{\varphi(R)}{2 R} .
$$

This shows that the function

$$
] 0, \operatorname{dist}(x, B)\left[\rightarrow \mathbb{R}: \rho \mapsto e^{\zeta(\rho)} \frac{\mathcal{H}^{1}(S \cap B(x, \rho))}{2 \rho}\right.
$$

is nondecreasing.

## 5 Epiperimetry

The regularity study of almost minimal sets is based on the epiperimetry property.

Definition 4. Let $\phi$ be a gauge and let $R>0$. We say that a compact connected 1rectifiable set $S \subset \mathbb{R}^{n} S$ has the epiperimetry property at scales less than $R$ about $y \in S$ with respect to $\phi$ iffor every $x \in S \cap B(y, R)$ and every $0<r<R$ the inequality

$$
\left|\frac{\mathcal{H}^{1}(S \cap B(x, r))}{2 r}-1\right| \leqslant \phi(r)
$$

is satisfied.

The aim is to show that an almost minimizing set $S$ has the epiperimetry property about points $y \in S$ with $\Theta^{1}(S, y)=1$. This will follow from the properties of almost minimality and almost monotonicity.

Proposition 3. If $S$ is an almost minimizing set with respect to $B$, then for every $x \in$ $S \backslash B$ the density $\Theta^{1}(S, x)$ exists and is larger than 1.

Proof. Recall from Section 4 that $\mathcal{H}^{1}\left\llcorner S\right.$ is almost monotonic in $\mathbb{R}^{n} \backslash B$. This easily imply that $x \mapsto \Theta^{1}(S, x)$ is upper semicontinuous in $\mathbb{R}^{n} \backslash B$, see e.g. [3, Lemma 3.3]. On the other hand 1-rectifiable sets have their 1-density $\mathcal{H}^{1}$-almost everywhere equal to 1 . As $\mathcal{H}^{1}$-negligible sets have empty interior, this completes the proof.

We will now count the number of intersection points of an almost minimizing set $S$ and circles centered on $S$.

Lemma 3. Let $S$ be a $\xi$-almost minimizing set with respect to $B$, let $x \in S \backslash B$ and $0<r_{0}<\operatorname{dist}(x, B)$. Assume that $\xi\left(r_{0}\right)<1 / 8$ and that $\operatorname{card}\left[S \cap \partial B\left(x, r_{0}\right)\right] \leqslant 2$. Then

$$
\mathcal{L}^{1}\left(\left\{\rho \in\left[0, r_{0}\right]: \operatorname{card}[S \cap \partial B(x, \rho)] \geqslant 3\right\}\right)<\frac{3}{4} r_{0} .
$$

Proof. Tchebysheff's inequality yields

$$
\begin{aligned}
& \mathcal{L}^{1}\left(\left\{\rho \in\left[0, r_{0}\right]: \operatorname{card}[S \cap \partial B(x, \rho)] \geqslant 3\right\}\right) \\
& \leqslant \frac{1}{3} \int_{\left\{\rho \in\left[0, r_{0}\right]: \operatorname{card}[S \cap \partial B(x, \rho)] \geqslant 3\right\}} \operatorname{card}[S \cap \partial B(x, \rho)] d \rho
\end{aligned}
$$

Next it follows from coarea formula that

$$
\begin{aligned}
\int_{\left\{\rho \in\left[0, r_{0}\right]: \operatorname{card}[S \cap \partial B(x, \rho)] \geqslant 3\right\}} \operatorname{card}[S \cap \partial B(x, \rho)] d \rho & \leqslant \int_{0}^{r_{0}} \operatorname{card}[S \cap \partial B(x, \rho)] d \rho \\
& \leqslant \mathcal{H}^{1}\left(S \cap B\left(x, r_{0}\right)\right) .
\end{aligned}
$$

Finally letting $\left\{c_{1}, c_{2}\right\}$ be the members of $S \cap \partial B\left(x, r_{0}\right)$ and applying the almost minimizing property (4) with $C:=\left(S \backslash B\left(x, r_{0}\right)\right) \cup\left(\left[x, c_{1}\right] \cup\left[x, c_{2}\right]\right)$, we obtain

$$
\mathcal{H}^{1}\left(S \cap B\left(x, r_{0}\right)\right) \leqslant\left(1+\xi\left(r_{0}\right)\right) \operatorname{card}\left[S \cap \partial B\left(x, r_{0}\right)\right] r_{0} \leqslant\left(1+\xi\left(r_{0}\right)\right) 2 r_{0} .
$$

Consequently,

$$
\begin{aligned}
& \mathcal{L}^{1}\left(\left\{\rho \in\left[0, r_{0}\right]: \operatorname{card}[S \cap \partial B(x, \rho)] \geqslant 3\right\}\right) \leqslant \frac{1}{3}\left(1+\xi\left(r_{0}\right)\right) 2 r_{0} \\
&<\frac{1}{3}\left(1+\frac{1}{8}\right) 2 r_{0} \leqslant \frac{3}{4} r_{0}
\end{aligned}
$$

what was announced.
The importance of the last result lies in the existence of $\left.\rho \in] 0, r_{0}\right]$ such that card $[S \cap \partial B(x, \rho)] \leqslant 2$ for all $r_{0}$ less than a certain value independent of $x$. The next proposition summarizes this.

Proposition 4. Let $S$ be a $\xi$-almost minimizing set with respect to $B$, let $x \in S \backslash B$ and $0<r_{0}<\operatorname{dist}(x, B)$. Assume that $\xi\left(r_{0}\right)<1 / 8$ and that $\operatorname{card}\left[S \cap \partial B\left(x, r_{0}\right)\right] \leqslant 2$. Then there exists a sequence $\left(r_{j}\right)_{j \in \mathbb{N}^{*}}$ satisfying

$$
\lim _{j \rightarrow \infty} r_{j}=0, \quad \text { card }\left[S \cap \partial B\left(x, r_{j}\right)\right] \leqslant 2 \text { and } \frac{r_{j}}{8} \leqslant r_{j+1} \leqslant r_{j} .
$$

Proof. By Lemma 3, there exists $r_{1} \in\left[\frac{1}{8} r_{0}, \frac{7}{8} r_{0}\right]$ such that card $\left[S \cap \partial B\left(x, r_{1}\right)\right] \leqslant$ 2. Then we obtain $r_{2} \in\left[\frac{1}{8^{2}} r_{1}, \frac{7^{2}}{8^{2}} r_{1}\right]$ such that card $\left[S \cap \partial B\left(x, r_{2}\right)\right] \leqslant 2$. Continuing to apply recursively Lemma 3 completes the proof.

We have now obtained the existence of a sequence of "good radii" provided there is a good one to start with. The almost monotonicity will now give the existence of the starting "good radius".

Lemma 4. Let $\mu$ be a Radon measure $\zeta$-almost monotonic in $U$ with $\Theta_{*}^{1}(\mu, x) \geqslant 1$ for $\mu$-almost every $x \in U$. Assume that $\Theta^{1}(\mu, y)=1$. Then

$$
\begin{aligned}
& (\forall \delta>0)(\exists 0<t<1)\left(\exists 0<r_{0}<\frac{1}{3} \operatorname{dist}(y, B): \zeta\left(r_{0}\right) \leqslant \frac{1}{8}\right) \\
& \left(\forall x \in \operatorname{spt} \mu \cap B\left(y, t r_{0}\right)\right): \frac{\mu\left(B\left(x, r_{0}\right)\right)}{2 r_{0}} \leqslant 1+\delta .
\end{aligned}
$$

Proof. Let $\delta>0$. Assume that $0<t<1$ and $x \in \operatorname{spt} \mu \cap B\left(y, t r_{0}\right)$. Then we have

$$
\begin{aligned}
\frac{\mu\left(B\left(x, r_{0}\right)\right)}{2 r_{0}} & \leqslant \frac{\mu\left(B\left(y,|x-y|_{2}+r_{0}\right)\right)}{2 r_{0}} \\
& =\frac{\mu\left(B\left(y,|x-y|_{2}+r_{0}\right)\right)}{2\left(|x-y|_{2}+r_{0}\right)}\left(1+\frac{|x-y|_{2}}{r_{0}}\right) \\
& \leqslant e^{\zeta\left(t r_{0}+r_{0}\right)-\zeta\left(|x-y|_{2}+r_{0}\right) \frac{\mu\left(B\left(y, t r_{0}+r_{0}\right)\right)}{2\left(t r_{0}+r_{0}\right)}\left(1+\frac{t r_{0}}{r_{0}}\right)} \\
& \leqslant e^{\zeta\left((1+t) r_{0}\right) \frac{\mu\left(B\left(y,(1+t) r_{0}\right)\right)}{2\left((1+t) r_{0}\right)}(1+t) .}
\end{aligned}
$$

Letting $t$ tend to 0 , the last term becomes $e^{\zeta\left(r_{0}\right)}$ which is smaller than $1+\delta$ if $r_{0}$ is small enough.

Proposition 5. Let $S$ be a $\xi$-almost minimizing set with respect to $B$ and $y \in S \backslash B$ with $\Theta^{1}(S, y)=1$. Then

$$
\begin{aligned}
& (\exists 0<t<1)\left(\exists 0<r_{0}<\frac{1}{3} \operatorname{dist}(y, B): \zeta\left(r_{0}\right)<\frac{1}{8}\right) \\
& \left(\forall x \in S \cap B\left(y, t r_{0}\right)\right)\left(\exists r(x) \in\left[\frac{1}{4} r_{0}, r_{0}\right]\right): \operatorname{card}[S \cap \partial B(x, r(x))] \leqslant 2,
\end{aligned}
$$

$\zeta$ being the gauge associated with the almost monotonicity of $\mathcal{H}^{1}\left\llcorner S\right.$ in $\mathbb{R}^{n} \backslash B$.
Proof. Consider $\mu:=\mathcal{H}^{1}\left\llcorner S\right.$ in Lemma 4. Taking $\delta:=\frac{1}{8}$, we obtain $0<t<1$ and $0<r_{0}<\frac{1}{3} \operatorname{dist}(y, B)$ with $\zeta\left(r_{0}\right)<\frac{1}{8}$, such that

$$
\left(\forall x \in S \cap B\left(y, \gamma r_{0}\right)\right): \frac{\mathcal{H}^{1}\left(S \cap B\left(x, r_{0}\right)\right)}{2 r_{0}} \leqslant 1+\frac{1}{8}
$$

Let $x \in S \cap B\left(y, t r_{0}\right)$. Then Tchebysheff's inequality and coarea formula imply

$$
\begin{aligned}
\mathcal{L}^{1}\left(\left\{\rho \in\left[0, r_{0}\right]: \operatorname{card}[S \cap \partial B(x, \rho)] \geqslant 3\right\}\right) \leqslant \frac{1}{3} \int_{0}^{r_{0}} & \operatorname{card}[S \cap \partial B(x, \rho)] d \rho \\
& \leqslant \frac{1}{3} \mathcal{H}^{1}\left(S \cap B\left(x, r_{0}\right)\right)<\frac{3}{4} r_{0}
\end{aligned}
$$

Therefore there exists $r(x) \in\left[\frac{1}{4} r_{0}, r_{0}\right]$ such that card $[S \cap \partial B(x, r(x))] \leqslant 2$.
Here is the main result of this section.
Theorem 2. Assume $\xi(r)$ is a gauge such that $\xi(r) \leqslant C r^{\gamma}$ for $C>0$ and $0<\gamma \leqslant 1$. Then there exists a gauge $\phi(r)=C^{\prime} r^{\gamma}$ having the following property. If $S$ is a $\xi$-almost minimizing set with respect to $B$ and if $y \in S \backslash B$ with $\Theta^{1}(S, y)=1$, then there exists $0<R$ such that
(i) S has the epiperimetry property at scales lower than $R$ about $y$ with respect to the gauge $\phi(r)$,
(ii) for all $x \in S \cap B(y, R)$ and all $r \in] 0, R]: \operatorname{card}[S \cap \partial B(x, r)]=2$.

Proof. The second part follows from (i) and Proposition 1. It is thus enough to prove (i). Without loss of generality we can assume that $\xi(r)=\mathrm{Cr}^{\gamma}$. Set

$$
\zeta(r):=\int_{0}^{r} \frac{\xi(\rho)}{\rho} d \rho=\frac{C}{\gamma} r^{r}
$$

so that $\mathcal{H}^{1}\left\llcorner S\right.$ is $\zeta$-almost monotonic in $\mathbb{R}^{n} \backslash B$ (Section 4). Define $\phi(r):=\kappa \zeta(r)$ for $\kappa \geqslant 1$ to be determined.

As $\Theta^{1}(S, x)=1$, by Proposition 5, there exists $0<t<1$ and $0<r_{0}<$ $\frac{1}{3} \operatorname{dist}(y, B)$, with $\zeta\left(r_{0}\right)<\frac{1}{8}$, such that

$$
\left(\forall x \in S \cap B\left(y, t r_{0}\right)\right)\left(\exists r(x) \in\left[\frac{1}{4} r_{0}, r_{0}\right]\right): \operatorname{card}[S \cap \partial B(x, r(x))] \leqslant 2
$$

Set $R:=\min \left(t r_{0}, \frac{1}{4} r_{0}\right)$.
Let $x \in S \cap B(y, R)$ and show that, if $0<\rho \leqslant R$, then

$$
\begin{equation*}
-\phi(\rho) \leqslant \frac{\mathcal{H}^{1}(S \cap B(x, \rho))}{2 \rho}-1 \leqslant \phi(\rho) \tag{5}
\end{equation*}
$$

The left inequality in (5) is a consequence of almost monotonicity (Definition 3 ) and the fact that $\Theta^{1}(S, x) \geqslant 1$ (Proposition 3). Indeed

$$
1-\phi(\rho) \leqslant 1-\zeta(\rho) \leqslant e^{-\zeta(\rho)} \leqslant \frac{\mathcal{H}^{1}(S \cap B(x, \rho))}{2 \rho}
$$

Let us establish the right hand inequality of (5) for $0<\rho \leqslant r(x)$ (recall $r(x) \geqslant$ $R$ ). It suffices to show that $\mathcal{H}^{1}(S \cap B(x, \rho)) \leqslant(1+\zeta(\rho)) 2 \rho, 0<\rho \leqslant r(x)$. Proceeding toward a contradiction, assume there exists a "bad radius" $0<r^{*} \leqslant r(x)$ such that

$$
\begin{equation*}
\mathcal{H}^{1}\left(S \cap B\left(x, r^{*}\right)\right)>\left(1+\zeta\left(r^{*}\right)\right) 2 r^{*} \tag{6}
\end{equation*}
$$

Consider a sequence $\left(r_{j}\right)_{j \in \mathbb{N}}$ such that $\lim _{j \rightarrow \infty} r_{j}=0, \operatorname{card}\left[S \cap \partial B\left(x, r_{j}\right)\right] \leqslant 2$, $\frac{r_{j}}{8} \leqslant r_{j+1} \leqslant r_{j}$ and $r_{0}=r(x)$, for example that given by Proposition 4. The value $J:=\max \left\{j \in \mathbb{N} \mid r^{*} \leqslant r_{j}\right\}$ is such that $\frac{r_{I}}{8} \leqslant r^{*} \leqslant r_{J}$. Consequently, inequality (6), almost monotonicity, almost minimality and the fact that $\xi \leqslant \zeta$ imply that

$$
\begin{aligned}
e^{\zeta\left(r^{*}\right)}\left(1+\phi\left(r^{*}\right)\right) & <e^{\zeta\left(r^{*}\right)} \frac{\mathcal{H}^{1}\left(S \cap B\left(x, r^{*}\right)\right)}{2 r^{*}} \\
& \leqslant e^{\zeta\left(r_{J}\right)} \frac{\mathcal{H}^{1}\left(S \cap B\left(x, r_{J}\right)\right)}{2 r_{J}} \\
& \leqslant e^{\zeta\left(r_{J}\right)}\left(1+\xi\left(r_{J}\right)\right) \operatorname{card}\left[S \cap \partial B\left(x, r_{J}\right)\right] \\
& \leqslant e^{\zeta\left(r_{J}\right)}\left(1+\zeta\left(r_{J}\right)\right)
\end{aligned}
$$

a contradiction provided we choose $\kappa$ sufficiently large.

## 6 Regularity

### 6.1 Existence of approximation lines

Proposition 6. Let $\xi(r)$ be a gauge such that $\xi(r) \leqslant C r^{\gamma}$ for $C>0$ and $0<\gamma \leqslant 1$. Let $S \subset \mathbb{R}^{n}$ be a $\xi$-almost minimizing set with respect to $B$ and let $y \in S \backslash B$ with $\Theta^{1}(S, y)=1$. Let $R>0$ be the radius associated with the epiperimetry property of $S$ about $y$ with respect to the gauge $\phi$. Let $x \in S \cap B(y, R)$ and $0<r \leqslant R$. Assume that $\phi(r) \leqslant \frac{1}{5}$. Then there exists $L_{x, r} \in G(n, 1)$ such that

$$
d_{\mathcal{H}}\left(S \cap B(x, r),\left(x+L_{x, r}\right) \cap B(x, r)\right) \leqslant 8 r \sqrt{\phi(r)}
$$

Proof. Let $\left\{c_{1}, c_{2}\right\}$ be the members of $S \cap \partial B(x, r)$. We first show that

$$
\begin{equation*}
d_{\mathcal{H}}\left(S \cap B(x, r),\left[c_{1}, x\right] \cup\left[c_{2}, x\right]\right) \leqslant \sqrt{2} r \sqrt{\phi(r)} \tag{7}
\end{equation*}
$$

Let $S_{1}$ be the curve contained in $S \cap B(x, r)$ with endpoints $x$ and $c_{1}$ and $S_{2}$ with endpoints $x$ and $c_{1}$. We know that $\mathcal{H}^{1}\left(S_{1}\right) \leqslant(1+\phi(r)) 2 r-r=r+2 r \phi(r)$ since $\mathcal{H}^{1}\left(S_{2}\right) \geqslant r$. Let $z$ be a point of $S_{1}$ maximizing the distance to the line segment [ $\left.c_{1}, x\right]$ and let $h$ be this distance. Let $m$ be the middle of $\left[c_{1}, x\right]$. Let $y$ be a point of the plane $x c_{1} z$ at distance $h$ of $\left[c_{1}, x\right]$ whose projection on this line segment is $m$. Set $l:=\mathcal{H}^{1}\left([x, y] \cup\left[y, c_{1}\right]\right)$. We have

$$
l=\mathcal{H}^{1}\left([x, y] \cup\left[y, c_{1}\right]\right) \leqslant \mathcal{H}^{1}\left([x, z] \cup\left[z, c_{1}\right]\right) \leqslant \mathcal{H}^{1}\left(S_{1}\right) .
$$

Using Pythagoras' Theorem and the preceding inequalities,

$$
h=\frac{1}{2} \sqrt{l^{2}-r^{2}} \leqslant \frac{1}{2} \sqrt{(r+2 r \phi(r))^{2}-r^{2}}=r \sqrt{\phi(r)^{2}+\phi(r)} \leqslant \sqrt{2} r \sqrt{\phi(r)}
$$

(the last inequality happens since $0 \leqslant \phi(r) \leqslant 1$ ). As $h$ bounds the distance from any point of $\left[c_{1}, x\right]$ to $S_{1}$, we showed that $d_{\mathcal{H}}\left(S_{1},\left[c_{1}, x\right]\right) \leqslant \sqrt{2} r \sqrt{\phi(r)}$. Applying
again this argument to $S_{2}$, we obtain $d_{\mathcal{H}}\left(S_{2},\left[c_{2}, x\right]\right) \leqslant \sqrt{2} r \sqrt{\phi(r)}$. So the same conclusion is true for $d_{\mathcal{H}}\left(S \cap B(x, r),\left[c_{1}, x\right] \cup\left[c_{2}, x\right]\right)$. This proves (7).

Now set $L_{x, r}:=\operatorname{span}\left\{c_{1}-x\right\}$ and show this line satisfies the desired inequality. According to (7), we have

$$
d_{\mathcal{H}}\left(S \cap B(x, r),\left[c_{1}, x\right] \cup\left[c_{2}, x\right]\right) \leqslant \sqrt{2} r \sqrt{\phi(r)}
$$

Using this, let us estimate the quantity $d_{\mathcal{H}}\left(\left[c_{1}, x\right] \cup\left[c_{2}, x\right],\left(x+L_{x, r}\right) \cap B(x, r)\right)$.
Define $l:=\mathcal{H}^{1}\left(\left[c_{1}, c_{2}\right]\right)$. Notice that the inequality of almost minimality (4) implies that

$$
l=\mathcal{H}^{1}\left(\left[c_{1}, c_{2}\right]\right) \geqslant \frac{\mathcal{H}^{1}(S \cap B(x, r))}{1+\phi(r)} \geqslant \frac{2 r}{1+\phi(r)}
$$

In the rest of the proof, $\theta$ will be the angle opposite to $\left[c_{1}, c_{2}\right]$ in the triangle $x c_{1} c_{2}$ and will be $\beta=\pi-\theta$.

According to the "generalized Pythagoras' Formula",

$$
\cos \beta=\frac{l^{2}-2 r^{2}}{2 r^{2}} \geqslant \frac{\left(\frac{2 r}{1+\phi(r)}\right)^{2}-2 r^{2}}{2 r^{2}}=\frac{2-(1+\phi(r))^{2}}{(1+\phi(r))^{2}}
$$

Thus,
$\sin \beta=\sqrt{1-\cos ^{2} \beta} \leqslant \sqrt{1-\left(\frac{2-(1+\phi(r))^{2}}{(1+\phi(r))^{2}}\right)^{2}}=\frac{2 \sqrt{(1+\phi(r))^{2}-1}}{(1+\phi(r))^{2}} \leqslant 4 \sqrt{\phi(r)}$
(the last inequality comes from the fact that $(1+\phi(r))^{2} \geqslant 1$ and $0 \leqslant \phi(r) \leqslant \frac{1}{5}$ ). This implies that

$$
d_{\mathcal{H}}\left(\left[c_{1}, x\right] \cup\left[c_{2}, x\right],\left(x+L_{x, r}\right) \cap B(x, r)\right)=r \sin \beta \leqslant 4 r \sqrt{\phi(r)}
$$

and the statement follows from triangular inequality.

### 6.2 Behavior of the approximation lines

The behavior of the approximation lines is governed by the following two properties.

Proposition 7. Let $\xi(r)$ be a gauge such that $\xi(r) \leqslant C r^{\gamma}$ for $C>0$ and $0<\gamma \leqslant 1$. Let $S \subset \mathbb{R}^{n}$ be a $\xi$-almost minimizing set with respect to $B$ and let $y \in S \backslash B$ with $\Theta^{1}(S, y)=1$. Let $R>0$ be the radius associated with the epiperimetry property of $S$ about $y$ with gauge $\zeta$. Let $x \in S \cap B(y, R)$ and $0<r \leqslant R$. Assume that $\phi(R) \leqslant \frac{1}{5}$. Then the angle $\psi$ between the lines $L_{x, r}$ and $L_{x, R}$ satisfies

$$
|\sin \psi| \leqslant 8\left(1+\frac{R}{r}\right) \sqrt{\phi(R)}
$$

Proof. Let $y_{0} \in\left(x+L_{x, r}\right) \cap \partial B(x, r)$. Let us consider the right-angled triangle whose angle is $\psi$, the hypotenuse is $r$ and the side opposite to $\psi$ is dist $\left(y_{0}, x+L_{x, R}\right)$. By Proposition 6, there exists $x_{0} \in B(x, r) \cap S$ such that $\left|y_{0}-x_{0}\right|_{2} \leqslant 8 r \sqrt{\phi(r)}$ and $y_{1} \in\left(x+L_{x, R}\right) \cap B(x, r)$ such that $\left|y_{1}-x_{0}\right|_{2} \leqslant 8 R \sqrt{\phi(R)}$. This shows that $\operatorname{dist}\left(y_{0}, x+L_{x, R}\right) \leqslant 8 r \sqrt{\phi(r)}+8 R \sqrt{\phi(R)}$ and the conclusion follows.

Proposition 8. Let $\xi(r)$ be a gauge such that $\xi(r) \leqslant C r^{\gamma}$ for $C>0$ and $0<\gamma \leqslant 1$. Let $S \subset \mathbb{R}^{n}$ be a $\xi^{\xi}$-almost minimizing set with respect to $B$ and let $y \in S \backslash B$ with $\Theta^{1}(S, y)=$ 1. Let $R>0$ be the radius associated with the epiperimetry property of $S$ about $y$ with gauge $\phi$. Let $x \in S \cap B(y, R)$ and $0<r \leqslant R$. Assume that $\phi(r) \leqslant \frac{1}{5}$ and that that $B(x, r) \subset B(y, R)$. Then, for all $0<\rho \leqslant r$ and all $x_{1}, x_{2} \in(B(x, r) \cap S) \backslash U(x, \rho)$, the angle $\psi$ between the lines $L_{x_{1}, r}$ and $L_{x_{2}, r}$ satisfies

$$
|\sin \psi| \leqslant 32 \frac{r}{\rho} \sqrt{\phi(r)}
$$

Proof. Let $L$ be the line passing through $x_{1}$ and $x$. This line meets $x_{1}+L_{x_{1}, r}$ and $x+L_{x, r}$. If $\theta_{1}$ is the angle between $L$ and $x_{1}+L_{x_{1}, r}$, if $\theta_{2}$ is the angle between $L$ and $x+L_{x, r}$ and if $\psi_{1}$ is the angle between $L_{x_{1}, r}$ and $L_{x, r}$, we have that $\left|\psi_{1}\right| \leqslant\left|\theta_{1}\right|+\left|\theta_{2}\right|$. Consequently, $\left|\sin \psi_{1}\right| \leqslant\left|\sin \theta_{1}\right|+\left|\sin \theta_{2}\right|$. As $x_{1} \in B(x, r) \cap S$, by Proposition 6 , there exists $y_{1} \in x+L_{x, r}$ such that $\left|x_{1}-y_{1}\right|_{2} \leqslant 8 r \sqrt{\phi(r)}$. So, if $p\left(x_{1}\right)$ is the orthogonal projection of $x_{1}$ onto $x+L_{x, r}$,

$$
\left|\sin \theta_{1}\right|=\frac{\left|p(x)-x_{1}\right|_{2}}{\left|x-x_{1}\right|_{2}} \leqslant \frac{8 r \sqrt{\phi(r)}}{\left|x-x_{1}\right|_{2}} \leqslant \frac{8 r \sqrt{\phi(r)}}{\rho} .
$$

With same estimate on $\left|\sin \theta_{2}\right|$, we obtain that $\left|\sin \psi_{1}\right| \leqslant 16 \frac{r}{\rho} \sqrt{\phi(r)}$. Swapping $x_{1}$ and $x_{2}$, we find that $\left|\sin \psi_{2}\right| \leqslant 16 \frac{r}{\rho} \sqrt{\phi(r)}$, where $\psi_{2}$ is the angle between $L_{x_{2}, r}$ and $L_{x, r}$. Since $|\psi| \leqslant\left|\psi_{1}\right|+\left|\psi_{2}\right|$, we have $|\sin \psi| \leqslant\left|\sin \psi_{1}\right|+\left|\sin \psi_{2}\right|$ hence $|\sin \psi| \leqslant 32 \frac{r}{\rho} \sqrt{\phi(r)}$.

### 6.3 Limit lines

Here is the result claiming that the lines of approximation stabilize as the scale tends to 0 .

Proposition 9 (existence). Let $\xi(r)$ be a gauge such that $\xi(r) \leqslant C r^{\gamma}$ for $C>0$ and $0<\gamma \leqslant 1$. Let $S \subset \mathbb{R}^{n}$ be a $\xi$-almost minimizing set with respect to $B$ and let $y \in S \backslash B$ with $\Theta^{1}(S, y)=1$. Let $R>0$ be the radius associated with the epiperimetry property of $S$ about $y$ with respect to the gauge $\phi$. Let $x \in S \cap B(y, R)$. Then there exists $L_{x} \in G(n, 1)$ such that, for all $0<r \leqslant R$ with $\phi(r) \leqslant \frac{1}{5}$, we have

$$
d_{\mathcal{H}}\left(L_{x} \cap B(0,1), L_{x, r} \cap B(0,1)\right) \leqslant E r^{\frac{\gamma}{2}}
$$

$E>0$ being a real number depending only on $\gamma$.

Proof. Define the sequence $\left(r_{j}\right)_{j \in \mathbb{N}}$ by $r_{j}:=\frac{r}{2^{j}}$. Set $\phi(r)=C^{\prime} r^{\gamma}$ like in Theorem 2. Then Proposition 7 implies that

$$
\begin{equation*}
d_{\mathcal{H}}\left(L_{x, r_{j+l}} \cap B(0,1), L_{x, r_{j}} \cap B(0,1)\right) \leqslant 24 \sqrt{C^{\prime}} \sum_{k=j}^{j+l} r_{k}^{\frac{\gamma}{2}}=24 \sqrt{C^{\prime}} r^{\frac{\gamma}{2}} \sum_{k=j}^{j+l}\left(2^{-\frac{\gamma}{2}}\right)^{k} . \tag{8}
\end{equation*}
$$

Since $0<2^{-\frac{\gamma}{2}}<1,\left(L_{x, r_{j}} \cap B(0,1)\right)_{j \in \mathbb{N}}$ is a Cauchy sequence in $\left(\mathcal{K}(B(0,1)), d_{\mathcal{H}}\right)$ which is complete. So there exists $L_{x} \in G(n, 1)$ such that $\lim _{j \rightarrow \infty} L_{x, r_{j}}=L_{x}$. Finally, taking $j=0$ and letting $l \rightarrow \infty$, we obtain the result with $E:=\frac{24 \sqrt{C^{\prime}}}{1-2^{-\frac{\gamma}{2}}}$.

Proposition 10 (oscillations). Let $\xi(r)$ be a gauge such that $\xi(r) \leqslant C r^{\gamma}$ for $\mathrm{C}>0$ and $0<\gamma \leqslant 1$. Let $S \subset \mathbb{R}^{n}$ be a $\xi$-almost minimizing set with respect to $B$ and let $y \in S \backslash B$ with $\Theta^{1}(S, y)=1$. Let $R>0$ be the radius associated with the epiperimetry property of $S$ about $y$ with respect to the gauge $\phi$. Let $x_{1}, x_{2} \in S \cap B(y, R)$ and set $r:=\operatorname{dist}\left(x_{1}, x_{2}\right)$. Assume that $0<r \leqslant R$ and $\phi(r) \leqslant \frac{1}{5}$. Then

$$
d_{\mathcal{H}}\left(L_{x_{1}} \cap B(0,1), L_{x_{2}} \cap B(0,1)\right) \leqslant F\left|x_{1}-x_{2}\right|_{2}^{\frac{\gamma}{2}},
$$

$F>0$ being a real number depending only on $\gamma$.
Proof. By Proposition 8 applied with $r=\rho$ and $x=x_{1}$ and Proposition 9,

$$
\begin{aligned}
d_{\mathcal{H}}\left(L_{x_{1}} \cap B(0,1), L_{x_{2}} \cap B(0,1)\right) \leqslant & d_{\mathcal{H}}\left(L_{x_{1}} \cap B(0,1), L_{x_{1}, r} \cap B(0,1)\right) \\
& +d_{\mathcal{H}}\left(L_{x_{1}, r} \cap B(0,1), L_{x_{2}, r} \cap B(0,1)\right) \\
& +d_{\mathcal{H}}\left(L_{x_{2}, r} \cap B(0,1), L_{x_{2}} \cap B(0,1)\right) \\
\leqslant & E r^{\frac{\gamma}{2}}+32 r^{\frac{\gamma}{2}}+E r^{\frac{\gamma}{2}}, \\
= & F r^{\frac{\gamma}{2}}
\end{aligned}
$$

where $F:=2 E+32$.

### 6.4 Representation by a graph above the limit line

We will show that a minimizing set is the graph of a function of class $\mathcal{C}^{1, \frac{\gamma}{2}}$ above the "stabilized line" about each point of 1-density equal to 1 . We start by obtaining this function. The following definition will be useful in this way.

Definition 5. Given $S \subset \mathbb{R}^{n}, x_{0} \in S, r_{0}>0, \rho_{0}>0, \sigma>0$ and $W_{0} \in G(n, m)$ we set

$$
\begin{aligned}
&\left.G\left(S, x_{0}, r_{0}, \rho_{0}, \sigma, W_{0}\right):=\left\{x \in S \cap B\left(x_{0}, r_{0}\right) \mid \forall \rho \in\right] 0, \rho_{0}\right]: \\
&\left.S \cap B(x, \rho) \subset B\left(x+W_{0}, \sigma \rho\right)\right\}
\end{aligned}
$$

Lemma 5. Define $G:=G\left(S, x_{0}, r_{0}, \rho_{0}, \sigma, W_{0}\right)$. Choose $0<\sigma<1$ and $2 r_{0} \leqslant \rho_{0}$. Then there exists a function $u: p_{W_{0}}(G) \rightarrow W_{0}^{\perp}$ such that $G=\operatorname{graph}(u)$ and

$$
\operatorname{lip} u \leqslant \frac{\sigma}{\sqrt{1-\sigma^{2}}}
$$

Proof. See [3, Lemma 8.2].
Proposition 11. Let $\xi(r)$ be a gauge such that $\xi(r) \leqslant C r^{\gamma}$ for $C>0$ and $0<\gamma \leqslant 1$. Let $S \subset \mathbb{R}^{n}$ be a $\xi$-almost minimizing set with respect to $B$ and let $y \in S \backslash B$ with $\Theta^{1}(S, y)=1$. Let $R>0$ be the radius associated with the epiperimetry property of $S$ about $y$ with respect to the gauge $\phi$. Then, given $0<\sigma<1$, there exists $r_{0}=r_{0}(R, \gamma, \sigma)$ and $\rho_{0}=\rho_{0}(R, \gamma, \sigma) \geqslant 2 r_{0}$ such that for all $x_{0} \in S \cap B(y, R)$ :

$$
S \cap B\left(x_{0}, r_{0}\right)=G\left(S, x_{0}, r_{0}, \rho_{0}, \sigma, L_{x_{0}}\right) .
$$

Proof. Let $\phi$ be the gauge associated with the epiperimetry property. Take $0<\sigma<1$. Set

$$
r_{0}:=\frac{1}{2} \min \left(\left(\frac{\sigma}{H}\right)^{\frac{2}{\gamma}}, R, \inf \phi^{-1}\left(\left\{\frac{1}{5}\right\}\right)\right)
$$

where $H:=4+E+\frac{F}{2^{\frac{\gamma}{2}}}, E$ and $F$ being constants obtained at Section 6.3. Finally, simply set $\rho_{0}:=2 r_{0}$.

Choose $x_{0} \in S \cap B(y, R), x \in S \cap B\left(x_{0}, r_{0}\right)$ and $\left.\left.\rho \in\right] 0, \rho_{0}\right]$. We are going to show that $S \cap B(x, \rho) \subset B\left(x+L_{x_{0}}, \sigma \rho\right)$. We have that

$$
\begin{aligned}
& d_{\mathcal{H}}\left(L_{x, \rho} \cap B(0,1), L_{x_{0}} \cap B(0,1)\right) \\
& \leqslant d_{\mathcal{H}}\left(L_{x, \rho} \cap B(0,1), L_{x} \cap B(0,1)\right)+d_{\mathcal{H}}\left(L_{x} \cap B(0,1), L_{x_{0}} \cap B(0,1)\right) \\
& \leqslant E \rho^{\frac{\gamma}{2}}+F\left|x-x_{0}\right|_{2}^{\frac{\gamma}{2}} \\
& \leqslant E \rho_{0}^{\frac{\gamma}{2}}+F r_{0}^{\frac{\gamma}{2}} \\
& =\left(E+\frac{F}{2^{\frac{\gamma}{2}}}\right) \rho_{0}^{\frac{\gamma}{2}} .
\end{aligned}
$$

In $B(x, \rho)$, this yields

$$
d_{\mathcal{H}}\left(\left(x+L_{x, \rho}\right) \cap B(x, \rho),\left(x+L_{x_{0}}\right) \cap B(x, \rho)\right) \leqslant\left(E+\frac{F}{2^{\frac{\gamma}{2}}}\right) \rho \rho_{0}^{\frac{\gamma}{2}} .
$$

Moreover, Proposition 6 says that

$$
d_{\mathcal{H}}\left(S \cap B(x, \rho),\left(x+L_{x, \rho}\right) \cap B(x, \rho)\right) \leqslant 4 \rho^{1+\frac{\gamma}{2}} \leqslant 4 \rho \rho_{0}^{\frac{\gamma}{2}}
$$

But then

$$
\begin{aligned}
& d_{\mathcal{H}}\left(S \cap B(x, \rho),\left(x+L_{x_{0}}\right) \cap B(x, \rho)\right) \\
& \leqslant d_{\mathcal{H}}\left(S \cap B(x, \rho),\left(x+L_{x, \rho}\right) \cap B(x, \rho)\right) \\
& \quad+d_{\mathcal{H}}\left(\left(x+L_{x, \rho}\right) \cap B(x, \rho),\left(x+L_{x_{0}}\right) \cap B(x, \rho)\right) \\
& \leqslant\left(4+E+\frac{F}{2^{\frac{\gamma}{2}}}\right) \rho \rho_{0}^{\frac{\gamma}{2}} \\
& =H \rho \rho_{0}^{\frac{\gamma}{2}} \\
& \leqslant H \rho\left(\left(\frac{\sigma}{H}\right)^{\frac{2}{\gamma}}\right)^{\frac{\gamma}{2}} \\
& =\rho \sigma .
\end{aligned}
$$

Therefore

$$
S \cap B(x, \rho) \subset B\left(\left(x+L_{x_{0}}\right) \cap B(x, \rho), \sigma \rho\right)
$$

and, consequently, $S \cap B(x, \rho) \subset B\left(\left(x+L_{x_{0}}\right), \sigma \rho\right)$.
We need the following lemma whose easy proof is left to the reader.
Lemma 6. Let $\Omega \subset \mathbb{R}$ be open. Given $u: \Omega \rightarrow \mathbb{R}^{N}$ such that

- lip $u<+\infty$,
- there exists $C>0$ and $0<\eta \leqslant 1$ such that, if $u$ is derivable at $t_{1}, t_{2} \in \Omega$, we have

$$
\left|u^{\prime}\left(t_{1}\right)-u^{\prime}\left(t_{2}\right)\right|_{2} \leqslant C\left|t_{1}-t_{2}\right|^{\eta}
$$

then $u$ is $\mathcal{C}^{1, \eta}$ on $\Omega$.
Now let us proof the main result.
Theorem 3. Let $S \subset \mathbb{R}^{n}$ be compact, connected and 1-rectifiable. Assume that there exists a finite set $B \subset \mathbb{R}^{n}$ and a gauge $\xi(r) \leqslant C r^{\gamma}, C>0$ and $0<\gamma \leqslant 1$, such that $S$ is $\xi$-almost minimizing with respect to $B$. Let $x \in S \backslash B$ with $\Theta^{1}(S, x)=1$. Then there exists $r>0$ such that $S \cap B(x, r)$ is a simple curve of class $\mathcal{C}^{1, \frac{\gamma}{2}}$.

Proof. Let $R>0$ be the radius associated with the epiperimetry property of $S$ about $x$. Choose $\sigma \in] 0,1\left[\right.$ and consider the radius $r_{0}>0$ given by preceding proposition. So we have that $S \cap B\left(x, r_{0}\right)=G\left(S, x, r_{0}, \rho_{0}, \sigma, L_{x}\right)$ for a certain $\rho_{0}$.

According to Lemma 5, there exists a function

$$
u: p_{L_{x}}\left(S \cap B\left(x, r_{0}\right)\right) \rightarrow L_{x}^{\perp}
$$

such that $S \cap B\left(x, r_{0}\right)=\operatorname{graph}(u)$ and $\operatorname{lip} u$ is a finite constant which depends only on $\sigma$.

By Rademacher's Theorem [5, 3.1.6], the function $u$ is derivable almost everywhere.

If $u^{\prime}(t)$ exists, then it is easy to see that $\left(1, u^{\prime}(t)\right) \in L_{(t, u(t))}$. Consequently, if $u$ is derivable at $t_{1}$ and $t_{2}$, we have

$$
\begin{aligned}
\left|u^{\prime}\left(t_{1}\right)-u^{\prime}\left(t_{2}\right)\right|_{2} & \leqslant\left(1+(\operatorname{lip} u)^{2}\right) d_{\mathcal{H}}\left(L_{\left(t_{1}, u\left(t_{1}\right)\right)} \cap B(0,1), L_{\left(t_{2}, u\left(t_{2}\right)\right)} \cap B(0,1)\right) \\
& \leqslant\left(1+(\operatorname{lip} u)^{2}\right) F\left|\left(t_{1}, u\left(t_{1}\right)\right)-\left(t_{2}, u\left(t_{2}\right)\right)\right|_{2}^{\frac{\gamma}{2}} \\
& \leqslant\left(1+(\operatorname{lip} u)^{2}\right)^{1+\frac{\gamma}{4}} F\left|t_{1}-t_{2}\right|^{\frac{\gamma}{2}} .
\end{aligned}
$$

Moreover the definition domain of $u, p_{L_{x}}\left(S \cap B\left(x, r_{0}\right)\right)$, is a closed bounded interval, say $\left[a_{1}, a_{2}\right]$. So, thanks to Lemma 6 applied to the $n-1$ components of $u, u$ has class $\mathcal{C}^{1, \frac{\gamma}{2}}$ on $] a_{1}, a_{2}[$.

A short computation shows that

$$
\left(1+(\operatorname{lip} u)^{2}\right)^{-\frac{1}{2}} r_{0} \leqslant\left|p_{L_{x}}(x)-a_{i}\right| \leqslant r_{0}, 1 \leqslant i \leqslant 2
$$

Setting $\Delta:=\left(1+(\operatorname{lip} u)^{2}\right)^{-\frac{1}{2}} r_{0}$, value which depends only on $R$ and $\gamma$, we get that

$$
S \cap B(x, \Delta) \subset \operatorname{graph}\left(\left.u\right|_{\left[p_{L_{x}}(x)-\Delta, p_{L_{x}}(x)+\Delta\right]}\right)
$$

is the graph of a function of class $\mathcal{C}^{1, \frac{\gamma}{2}}$. Then it suffices to put $r:=\min (R, \Delta)$.

## 7 Acknowledgment

I thank T. De Pauw for his advices throughout the writing of this paper.

## References

[1] F.J. Almgren, Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc. 4 number 165 (1976).
[2] T. DE PAUW, Concentrated, nearly monotonic, epiperimetric measures in euclidean space, Preprint UCL, 2005.
[3] T. De Pauw, Nearly flat almost monotone measures are big pieces of Lipschitz graphs, J. Geom. Anal. 12 (2002) 29-61.
[4] K.J. Falconer, The geometry of fractal sets, Cambridge University Press, 1985.
[5] H. Federer, Geometric Measure Theory, Springer, 1969.
[6] F. Morgan, $(M, \varepsilon, \delta)$-minimal curve regularity, Proc. Amer. Math. Soc. 120 (1994) 667-686.
[7] E. R. Reifenberg, Solution of the Plateau problem for m-dimensional surfaces of varying topological type, Acta Mathematica 104 (1960) 1-92.
[8] J. E. TAYLOR, The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Annals of Mathematics 103 (1976) 489-539.

Dpartement de mathmatique
Universit catholique de Louvain
Chemin du cyclotron 2
1348 Louvain-La-Neuve (Belgium)
email:thomas.meinguet@uclouvain.be

