$(\mathbf{M}, cr^{\gamma}, \delta)$ -minimizing curve regularity

Thomas Meinguet

Abstract

This is a new proof that $(\mathbf{M}, Cr^{\gamma}, \delta)$ -minimizing sets *S* are pieces of $\mathcal{C}^{1,\gamma/2}$ curves, $0 < \gamma \leq 1$. To obtain this result, the almost monotonicity property is established for balls centered on *S* or not. Furthermore it is proved that almost minimizing sets fulfill the epiperimetric inequality.

1 Introduction

The ξ -almost minimizers with respect to a finite boundary set *B*, $\xi(r)$ being a nondecreasing function tending to 0 as $r \to 0$, are compact connected 1-rectifiable sets *S* such that

$$\mathcal{H}^1(S \cap B(x,r)) \leq (1 + \xi(r))\mathcal{H}^1(C \cap B(x,r))$$

whenever

- (a) $B(x,r) \cap B = \emptyset$,
- (b) *C* is a compact connected 1-rectifiable set with $S \setminus B(x, r) = C \setminus B(x, r)$.

We assume $r < \delta$ and notation B(x, r) indicates an open ball.

This definition slightly differs from that given by Almgren [1] in what we do not require comparison sets to be Lipschitz images of the original set.

There is an interesting class of such ξ -almost minimizers. Consider a function $\alpha : \mathbb{R}^n \to \mathbb{R}$ uniformly continuous and bounded below by some $\alpha_0 > 0$. For each Borel set $S \subset \mathbb{R}^n$ we put

$$E_{\alpha}(S) := \int_{S} \alpha d\mathcal{H}^{1}.$$

Received by the editors May 2008.

Bull. Belg. Math. Soc. Simon Stevin 16 (2009), 577-591

Communicated by J. Mawhin.

²⁰⁰⁰ Mathematics Subject Classification : 49Q10.

Key words and phrases : Minimal, almost minimal, almost monotonicity, epiperimetry.

If $B \subset \mathbb{R}^n$ is finite we claim that there exists a compact connected 1-rectifiable set $S^* \subset \mathbb{R}^n$ containing *B* and such that

$$E_{\alpha}(S^*) = \inf\{E_{\alpha}(S) : B \subset S \subset \mathbb{R}^n, B \text{ is compact, connected and 1-rectifiable}\}$$

This follows from the Blaschke selection principle [4, Theorem 3.16] together with a restricted lower semicontinuity property of E_{α} analogous to [4, Theorem 3.18]. It is then easy to check that S^* is ξ -almost minimizing with respect to B where

$$\xi(r) = rac{\omega_{lpha}(r)}{lpha_0}$$
 ,

 $\omega_{\alpha}(r) := \sup \{ \operatorname{diam}(\alpha(B(x, r))) : x \in \mathbb{R}^n \}$ being the modulus of continuity of α .

Another large class of ξ -almost minimizers consists of the simple $C^{1,\gamma}$ curves themselves ($0 < \gamma \leq 1$). They can be described by an arclength parametrization $\lambda : [a, b] \to \mathbb{R}^n$ such that

$$|\lambda'(t_1) - \lambda'(t_2)|_2 \leq C |t_1 - t_2|^{\gamma}.$$

Then one can check (see [2]) that $\lambda([a, b])$ is ξ -almost minimizing with respect to $B = \{\lambda(a), \lambda(b)\}$, where $\xi(r) = C' r^{2\gamma}$.

Moreover, solutions of other variational problems, like networks of bubbles in the plane (see [1]), meet also the requirements of ξ -almost minimizing sets.

We give a new look at the regularity of ξ -almost minimizers. The main result is the following.

Theorem 1. Let $S \subset \mathbb{R}^n$ be compact connected 1-rectifiable. Assume that $y \in S$. Let $0 < \gamma \leq 1$ and C > 0. Then the following conditions are equivalent:

- (A) $\Theta^1(S, y) = 1$ and, in a neighborhood of y, S is ξ -almost minimizing with $\xi(r) \leq Cr^{\gamma}$,
- (B) in a neighborhood of y, S is a simple $C^{1,\frac{\gamma}{2}}$ curve.

The present paper provides a new method for proving $(A) \Rightarrow (B)$, the first one being due to Morgan [6], and $(B) \Rightarrow (A)$ can be found in [2] for example.

2 Sketch of proof

First we show that Cr^{γ} -almost minimizers *S* are almost monotonic near *y*. This means that there exists *R* > 0 such that for $x \in B(y, R)$ and $0 < r \leq R$ the function

$$e^{Cr^{\gamma}} \frac{\mathcal{H}^1(S \cap B(x,r))}{2r} \tag{1}$$

is nondecreasing. Through this paper the constant *C* is allowed to increase from one estimate to another but only depends on γ .

Notice that the monotonicity formula of J. Taylor in [8] is actually obtained for balls centered on *S*. In this way this result is significantly different.

The next step is to improve inequality (1) for points $x \in S \cap B(y, R)$. The socalled epiperimetry property is the following. For $x \in S \cap B(y, R)$ and $0 < r \leq R$ we have that

$$\left|\frac{\mathcal{H}^1(S \cap B(x,r))}{2r} - 1\right| \leqslant Cr^{\gamma}.$$
(2)

Next we study Cr^{γ} -almost minimizers taking into account the epiperimetry property. Let *S* be such a set. Let $x \in S \cap B(y, R)$ and $0 < r \leq R$. Then there exists a line $L_{x,r}$ through the origin which is a good approximation of *S* in B(x, r) in the sense that

$$d_{\mathcal{H}}\left(S \cap B(x,r), (x+L_{x,r}) \cap B(x,r)\right) \leqslant Cr^{1+\frac{1}{2}},\tag{3}$$

where $d_{\mathcal{H}}$ is the Hausdorff distance. It is a Reifenberg-like property (see [7]). Notice that the exponent $\frac{\gamma}{2}$ instead of γ follows the use of Pythagoras' Formula. This explains why we get $\mathcal{C}^{1,\frac{\gamma}{2}}$ -regularity at the end.

Thanks to (3) we obtain that

- (i) the approximation lines $L_{x,r}$ stabilize to a unique line L_x whenever $r \to 0$,
- (ii) $d_{\mathcal{H}}(L_{x_1} \cap B(0,1), L_{x_2} \cap B(0,1)) \leq C|x_1 x_2|_2^{\frac{\gamma}{2}}$.

Finally, for r > 0 small enough, $S \cap B(0, r)$ is the graph of a function u over L_0 . Observing that L_x is also the tangent line to graph(u) in the sense of the classical derivative, the fact that u is $C^{1,\frac{\gamma}{2}}$ follows from (ii).

The fact that almost monotonicity together with epiperimetry imply regularity near points of density 1 has been observed in [2]. The novelty here is the fact that the epiperimetric inequality (2) follows in dimension 1 from a comparison argument.

3 Almost minimizing sets

The first definition is just a convenient abbreviation. The second one sets the class of objects of our interest.

Definition 1. A gauge is a nondecreasing function $\xi : \mathbb{R}^*_+ \to \mathbb{R}_+$ such that $\lim_{r\to 0^+} \xi(r) = 0$.

Definition 2. Given a gauge ξ we say that a compact connected 1-rectifiable set $S \subset \mathbb{R}^n$ is ξ -almost minimizing with respect to a finite set $B \subset \mathbb{R}^n$ provided that the following conditions hold:

- (a) $B \subset S$,
- (b) for every r > 0 and $x \in \mathbb{R}^n$ with $B(x, r) \cap B = \emptyset$ one has

$$\mathcal{H}^1(S \cap B(x,r)) \leqslant (1+\xi(r))\mathcal{H}^1(C \cap B(x,r)) \tag{4}$$

whenever $C \subset \mathbb{R}^n$ is a compact connected 1-rectifiable set such that

$$S \setminus B(x,r) = C \setminus B(x,r).$$

In case ξ vanishes identically we simply say that *S* is minimizing with respect to *B*.

We have an immediate geometric information about these sets.

Proposition 1. Let $S \subset \mathbb{R}^n$ be ξ -almost minimizing with respect to $B, x \in S$ and $0 < r < \operatorname{dist}(x, B)$. Then $\operatorname{card} [S \cap \partial B(x, r)] \ge 2$.

Proof. The connectedness of *S* implies that $X = S \cap \partial B(x, r)$ is not empty. Assuming if possible that *X* were a singleton, the almost minimizing property (4) applied with $C := (S \setminus B(x, r)) \cup X$ would yield

$$0 < r \leq \mathcal{H}^{1}\left(S \cap B(x,r)\right) \leq (1 + \xi(r))\mathcal{H}^{1}\left(C \cap B(x,r)\right) = (1 + \xi(r))\mathcal{H}^{1}\left(X\right) = 0,$$

a contradiction.

4 Almost monotonic measures

We introduce here the concept of almost monotonic measure.

Definition 3. *Given an open set* $U \subset \mathbb{R}^n$ *, a Radon measure* ϕ *on* U *and a gauge* ζ *, we say that* ϕ *is* ζ *-almost monotonic in* U *if for every* $x \in U$ *the function*

]0, dist
$$(x, \mathbb{R}^n \setminus U)$$
[$\to \mathbb{R}_+ : r \mapsto e^{\zeta(r)} \frac{\phi(B(x, r))}{2r}$

is nondecreasing. In case ζ *vanishes identically we simply say that* ϕ *is* monotonic in *U*.

The purpose of this section is to show that if *S* is ξ -almost minimizing with respect to *B* then $\mathcal{H}^1 \sqcup S$ is ζ -almost monotonic in $\mathbb{R}^n \setminus B$ with respect a gauge ζ depending on ξ (if $\xi(r) = Cr^{\gamma}$, $0 < \gamma \leq 1$, then ζ will be a multiple of ξ).

Lemma 1. If *S* is ξ -almost minimizing with respect to *B* then for every $x \in \mathbb{R}^n \setminus B$ and every $\rho \in]0$, dist (x, B)[one has

$$\mathcal{H}^{1}(S \cap B(x,\rho)) \leq (1+\xi(\rho)) \rho \operatorname{card} \left[S \cap \partial B(x,\rho)\right].$$

Proof. Fix $\rho \in [0, \text{dist}(x, B)[$, set $l := \text{card}[S \cap \partial B(x, \rho)]$, and let c_1, \ldots, c_l be the members of $S \cap \partial B(x, \rho)$. If $[x, c_i]$ denotes the closed line segment joining x and c_i , then (4) applied with $C := (S \setminus B(x, \rho)) \cup \bigcup_{i=1}^{l} [x, c_i]$ yields the inequality.

Lemma 2. If *S* is 1-rectifiable and $\mathcal{H}^1(S) < \infty$ then for every $x \in \mathbb{R}^n$ and \mathcal{H}^1 -almost every $\rho > 0$ one has

$$\frac{d}{d\rho}\mathcal{H}^1(S \cap B(x,\rho)) \ge \operatorname{card}\left[S \cap \partial B(x,\rho)\right].$$

Proof. Fix $x \in \mathbb{R}^n$ an define $\varphi(\rho) := \mathcal{H}^1(S \cap B(x,\rho)), \rho > 0$. The coarea formula [5, 3.2.22] applied to the set *S* and the function $\delta_x(y) := |y - x|$ shows that

$$\varphi_{ac}'(\rho) = \sum_{y \in S \cap \partial B(x,\rho)} \frac{1}{J_1 \delta_x(y)} \ge \sum_{y \in S \cap \partial B(x,\rho)} 1 = \operatorname{card} \left[S \cap \partial B(x,\rho) \right]$$

where φ_{ac} is the absolutely continuous part of φ in its Lebesgue decomposition as nondecreasing function. Since $\varphi'(\rho) = \varphi'_{ac}(\rho)$ for \mathcal{H}^1 -almost every $\rho > 0$ the conclusion follows.

We are now able to proof the expected result.

Proposition 2. If *S* is ξ -almost minimizing with respect to *B* then $\mathcal{H}^1 \sqcup S$ is ζ -almost monotonic in $\mathbb{R}^n \setminus B$ where

$$\zeta(r) := \int_0^r \frac{\xi(\rho)}{\rho} \, d\rho \,, \text{ provided that } \lim_{r \to 0^+} \int_r^1 \frac{\xi(\rho)}{\rho} \, d\rho < +\infty.$$

Proof. Let $x \in \mathbb{R}^n \setminus B$. Define $\varphi(\rho) := \mathcal{H}^1(S \cap B(x, \rho)), 0 < \rho < \text{dist}(x, B)$. By Lemmas 1 and 2, we have that

$$\varphi(
ho) \leqslant (1 + \xi(
ho)) \,
ho \varphi'(
ho)$$

whenever $\varphi'(\rho)$ is defined. Consequently, for such ρ ,

$$\frac{d}{d\rho}\left\{\ln\left[\varphi(\rho)\right]\right\} \geqslant \frac{(1-\xi(\rho))}{\rho} = \frac{d}{d\rho}\left\{\ln\left[\rho e^{-\zeta(\rho)}\right]\right\}.$$

Thus, for 0 < r < R < dist(x, B), we obtain

$$\int_{r}^{R} \frac{d}{d\rho} \left\{ \ln \left[\rho e^{-\zeta(\rho)} \right] \right\} \, d\rho \leqslant \int_{r}^{R} \frac{d}{d\rho} \left\{ \ln \left[\varphi(\rho) \right] \right\} \, d\rho$$

and

$$e^{\zeta(r)}\frac{\varphi(r)}{2r}\leqslant e^{\zeta(R)}\frac{\varphi(R)}{2R}.$$

This shows that the function

$$|0, \operatorname{dist}(x, B)[\to \mathbb{R} : \rho \mapsto e^{\zeta(\rho)} \frac{\mathcal{H}^1(S \cap B(x, \rho))}{2\rho}$$

is nondecreasing.

5 Epiperimetry

The regularity study of almost minimal sets is based on the epiperimetry property.

Definition 4. Let ϕ be a gauge and let R > 0. We say that a compact connected 1rectifiable set $S \subset \mathbb{R}^n S$ has the epiperimetry property at scales less than R about $y \in S$ with respect to ϕ if for every $x \in S \cap B(y, R)$ and every 0 < r < R the inequality

$$\left|\frac{\mathcal{H}^1(S \cap B(x,r))}{2r} - 1\right| \leqslant \phi(r)$$

is satisfied.

The aim is to show that an almost minimizing set *S* has the epiperimetry property about points $y \in S$ with $\Theta^1(S, y) = 1$. This will follow from the properties of almost minimality and almost monotonicity.

Proposition 3. If *S* is an almost minimizing set with respect to *B*, then for every $x \in S \setminus B$ the density $\Theta^1(S, x)$ exists and is larger than 1.

Proof. Recall from Section 4 that $\mathcal{H}^1 {\llcorner} S$ is almost monotonic in $\mathbb{R}^n \setminus B$. This easily imply that $x \mapsto \Theta^1(S, x)$ is upper semicontinuous in $\mathbb{R}^n \setminus B$, see e.g. [3, Lemma 3.3]. On the other hand 1-rectifiable sets have their 1-density \mathcal{H}^1 -almost everywhere equal to 1. As \mathcal{H}^1 -negligible sets have empty interior, this completes the proof.

We will now count the number of intersection points of an almost minimizing set *S* and circles centered on *S*.

Lemma 3. Let *S* be a ξ -almost minimizing set with respect to *B*, let $x \in S \setminus B$ and $0 < r_0 < \text{dist}(x, B)$. Assume that $\xi(r_0) < 1/8$ and that $\text{card} [S \cap \partial B(x, r_0)] \leq 2$. Then

$$\mathcal{L}^1\left(\{\rho\in[0,r_0]: \operatorname{card}\left[S\cap\partial B(x,\rho)\right]\geqslant 3\}\right)<\frac{3}{4}r_0.$$

Proof. Tchebysheff's inequality yields

$$\mathcal{L}^{1}\left(\left\{\rho \in [0, r_{0}] : \operatorname{card}\left[S \cap \partial B(x, \rho)\right] \geq 3\right\}\right)$$

$$\leq \frac{1}{3} \int_{\left\{\rho \in [0, r_{0}] : \operatorname{card}\left[S \cap \partial B(x, \rho)\right] \geq 3\right\}} \operatorname{card}\left[S \cap \partial B(x, \rho)\right] d\rho.$$

Next it follows from coarea formula that

$$\int_{\{\rho \in [0,r_0]: \operatorname{card}[S \cap \partial B(x,\rho)] \ge 3\}} \operatorname{card} \left[S \cap \partial B(x,\rho)\right] d\rho \leqslant \int_0^{r_0} \operatorname{card} \left[S \cap \partial B(x,\rho)\right] d\rho$$
$$\leqslant \mathcal{H}^1(S \cap B(x,r_0)).$$

Finally letting $\{c_1, c_2\}$ be the members of $S \cap \partial B(x, r_0)$ and applying the almost minimizing property (4) with $C := (S \setminus B(x, r_0)) \cup ([x, c_1] \cup [x, c_2])$, we obtain

$$\mathcal{H}^{1}(S \cap B(x, r_{0})) \leqslant (1 + \xi(r_{0})) \text{card} \left[S \cap \partial B(x, r_{0})\right] r_{0} \leqslant (1 + \xi(r_{0})) 2r_{0}.$$

Consequently,

$$\mathcal{L}^{1}\left(\{\rho \in [0, r_{0}] : \operatorname{card}\left[S \cap \partial B(x, \rho)\right] \ge 3\}\right) \le \frac{1}{3}(1 + \xi(r_{0}))2r_{0}$$
$$< \frac{1}{3}\left(1 + \frac{1}{8}\right)2r_{0} \le \frac{3}{4}r_{0},$$

what was announced.

The importance of the last result lies in the existence of $\rho \in]0, r_0]$ such that card $[S \cap \partial B(x, \rho)] \leq 2$ for all r_0 less than a certain value independent of x. The next proposition summarizes this.

Proposition 4. Let *S* be a ξ -almost minimizing set with respect to *B*, let $x \in S \setminus B$ and $0 < r_0 < \text{dist}(x, B)$. Assume that $\xi(r_0) < 1/8$ and that $\text{card} [S \cap \partial B(x, r_0)] \leq 2$. Then there exists a sequence $(r_j)_{j \in \mathbb{N}^*}$ satisfying

$$\lim_{j\to\infty}r_j=0, \quad \text{card}\left[S\cap\partial B(x,r_j)\right]\leqslant 2 \quad and \quad \frac{r_j}{8}\leqslant r_{j+1}\leqslant r_j.$$

Proof. By Lemma 3, there exists $r_1 \in [\frac{1}{8}r_0, \frac{7}{8}r_0]$ such that card $[S \cap \partial B(x, r_1)] \leq 2$. Then we obtain $r_2 \in [\frac{1}{8^2}r_1, \frac{7^2}{8^2}r_1]$ such that card $[S \cap \partial B(x, r_2)] \leq 2$. Continuing to apply recursively Lemma 3 completes the proof.

We have now obtained the existence of a sequence of "good radii" provided there is a good one to start with. The almost monotonicity will now give the existence of the starting "good radius".

Lemma 4. Let μ be a Radon measure ζ -almost monotonic in U with $\Theta^1_*(\mu, x) \ge 1$ for μ -almost every $x \in U$. Assume that $\Theta^1(\mu, y) = 1$. Then

$$(\forall \delta > 0)(\exists 0 < t < 1) \left(\exists 0 < r_0 < \frac{1}{3} \operatorname{dist}(y, B) : \zeta(r_0) \leqslant \frac{1}{8} \right)$$
$$(\forall x \in \operatorname{spt} \mu \cap B(y, tr_0)) : \frac{\mu(B(x, r_0))}{2r_0} \leqslant 1 + \delta.$$

Proof. Let $\delta > 0$. Assume that 0 < t < 1 and $x \in \operatorname{spt} \mu \cap B(y, tr_0)$. Then we have

$$\begin{aligned} \frac{\mu(B(x,r_0))}{2r_0} &\leqslant \frac{\mu(B(y,|x-y|_2+r_0))}{2r_0} \\ &= \frac{\mu(B(y,|x-y|_2+r_0))}{2(|x-y|_2+r_0)} \left(1 + \frac{|x-y|_2}{r_0}\right) \\ &\leqslant e^{\zeta(tr_0+r_0) - \zeta(|x-y|_2+r_0)} \frac{\mu(B(y,tr_0+r_0))}{2(tr_0+r_0)} \left(1 + \frac{tr_0}{r_0}\right) \\ &\leqslant e^{\zeta((1+t)r_0)} \frac{\mu(B(y,(1+t)r_0))}{2((1+t)r_0)} (1+t). \end{aligned}$$

Letting *t* tend to 0, the last term becomes $e^{\zeta(r_0)}$ which is smaller than $1 + \delta$ if r_0 is small enough.

Proposition 5. Let *S* be a ξ -almost minimizing set with respect to *B* and $y \in S \setminus B$ with $\Theta^1(S, y) = 1$. Then

$$(\exists 0 < t < 1) \left(\exists 0 < r_0 < \frac{1}{3} \operatorname{dist}(y, B) : \zeta(r_0) < \frac{1}{8} \right)$$
$$(\forall x \in S \cap B(y, tr_0)) (\exists r(x) \in \left[\frac{1}{4}r_0, r_0\right]) : \operatorname{card}\left[S \cap \partial B(x, r(x))\right] \leq 2$$

 ζ being the gauge associated with the almost monotonicity of $\mathcal{H}^1 \sqcup S$ in $\mathbb{R}^n \setminus B$.

Proof. Consider $\mu := \mathcal{H}^1 \llcorner S$ in Lemma 4. Taking $\delta := \frac{1}{8}$, we obtain 0 < t < 1 and $0 < r_0 < \frac{1}{3} \operatorname{dist}(y, B)$ with $\zeta(r_0) < \frac{1}{8}$, such that

$$(\forall x \in S \cap B(y, \gamma r_0)) : \frac{\mathcal{H}^1(S \cap B(x, r_0))}{2r_0} \leqslant 1 + \frac{1}{8}.$$

Let $x \in S \cap B(y, tr_0)$. Then Tchebysheff's inequality and coarea formula imply

$$\mathcal{L}^{1}\left(\left\{\rho \in [0, r_{0}] : \operatorname{card}\left[S \cap \partial B(x, \rho)\right] \geqslant 3\right\}\right) \leqslant \frac{1}{3} \int_{0}^{r_{0}} \operatorname{card}\left[S \cap \partial B(x, \rho)\right] d\rho$$
$$\leqslant \frac{1}{3} \mathcal{H}^{1}(S \cap B(x, r_{0})) < \frac{3}{4} r_{0}.$$

Therefore there exists $r(x) \in \left[\frac{1}{4}r_0, r_0\right]$ such that card $[S \cap \partial B(x, r(x))] \leq 2$. Here is the main result of this section.

Theorem 2. Assume $\xi(r)$ is a gauge such that $\xi(r) \leq Cr^{\gamma}$ for C > 0 and $0 < \gamma \leq 1$. Then there exists a gauge $\phi(r) = C'r^{\gamma}$ having the following property. If *S* is a ξ -almost minimizing set with respect to *B* and if $y \in S \setminus B$ with $\Theta^1(S, y) = 1$, then there exists 0 < R such that

- (*i*) *S* has the epiperimetry property at scales lower than R about y with respect to the gauge $\phi(r)$,
- (ii) for all $x \in S \cap B(y, R)$ and all $r \in [0, R]$: card $[S \cap \partial B(x, r)] = 2$.

Proof. The second part follows from (i) and Proposition 1. It is thus enough to prove (i). Without loss of generality we can assume that $\xi(r) = Cr^{\gamma}$. Set

$$\zeta(r) := \int_0^r \frac{\xi(\rho)}{\rho} d\rho = \frac{C}{\gamma} r^{\gamma}$$

so that $\mathcal{H}^1 \sqcup S$ is ζ -almost monotonic in $\mathbb{R}^n \setminus B$ (Section 4). Define $\phi(r) := \kappa \zeta(r)$ for $\kappa \ge 1$ to be determined.

As $\Theta^1(S, x) = 1$, by Proposition 5, there exists 0 < t < 1 and $0 < r_0 < \frac{1}{3} \operatorname{dist}(y, B)$, with $\zeta(r_0) < \frac{1}{8}$, such that

$$(\forall x \in S \cap B(y, tr_0))(\exists r(x) \in \left[\frac{1}{4}r_0, r_0\right]) : \operatorname{card}\left[S \cap \partial B(x, r(x))\right] \leq 2$$

Set $R := \min\left(tr_0, \frac{1}{4}r_0\right)$.

Let $x \in S \cap B(y, R)$ and show that, if $0 < \rho \leq R$, then

$$-\phi(\rho) \leqslant \frac{\mathcal{H}^1(S \cap B(x,\rho))}{2\rho} - 1 \leqslant \phi(\rho).$$
(5)

The left inequality in (5) is a consequence of almost monotonicity (Definition 3) and the fact that $\Theta^1(S, x) \ge 1$ (Proposition 3). Indeed

$$1 - \phi(\rho) \leqslant 1 - \zeta(\rho) \leqslant e^{-\zeta(\rho)} \leqslant \frac{\mathcal{H}^1(S \cap B(x, \rho))}{2\rho}$$

Let us establish the right hand inequality of (5) for $0 < \rho \le r(x)$ (recall $r(x) \ge R$). It suffices to show that $\mathcal{H}^1(S \cap B(x,\rho)) \le (1+\zeta(\rho))2\rho$, $0 < \rho \le r(x)$. Proceeding toward a contradiction, assume there exists a "bad radius" $0 < r^* \le r(x)$ such that

$$\mathcal{H}^{1}(S \cap B(x, r^{*})) > (1 + \zeta(r^{*}))2r^{*}.$$
(6)

Consider a sequence $(r_j)_{j \in \mathbb{N}}$ such that $\lim_{j \to \infty} r_j = 0$, card $[S \cap \partial B(x, r_j)] \leq 2$, $\frac{r_j}{8} \leq r_{j+1} \leq r_j$ and $r_0 = r(x)$, for example that given by Proposition 4. The value $J := \max\{j \in \mathbb{N} \mid r^* \leq r_j\}$ is such that $\frac{r_j}{8} \leq r^* \leq r_j$. Consequently, inequality (6), almost monotonicity, almost minimality and the fact that $\xi \leq \zeta$ imply that

$$\begin{aligned} e^{\zeta(r^*)}(1+\phi(r^*)) &< e^{\zeta(r^*)}\frac{\mathcal{H}^1(S\cap B(x,r^*))}{2r^*} \\ &\leqslant e^{\zeta(r_J)}\frac{\mathcal{H}^1(S\cap B(x,r_J))}{2r_J} \\ &\leqslant e^{\zeta(r_J)}(1+\xi(r_J))\text{card}\left[S\cap \partial B(x,r_J)\right] \\ &\leqslant e^{\zeta(r_J)}(1+\zeta(r_J)), \end{aligned}$$

a contradiction provided we choose κ sufficiently large.

6 Regularity

6.1 Existence of approximation lines

Proposition 6. Let $\xi(r)$ be a gauge such that $\xi(r) \leq Cr^{\gamma}$ for C > 0 and $0 < \gamma \leq 1$. Let $S \subset \mathbb{R}^n$ be a ξ -almost minimizing set with respect to B and let $y \in S \setminus B$ with $\Theta^1(S, y) = 1$. Let R > 0 be the radius associated with the epiperimetry property of S about y with respect to the gauge ϕ . Let $x \in S \cap B(y, R)$ and $0 < r \leq R$. Assume that $\phi(r) \leq \frac{1}{5}$. Then there exists $L_{x,r} \in G(n, 1)$ such that

$$d_{\mathcal{H}}(S \cap B(x,r), (x+L_{x,r}) \cap B(x,r)) \leq 8r\sqrt{\phi(r)}.$$

Proof. Let $\{c_1, c_2\}$ be the members of $S \cap \partial B(x, r)$. We first show that

$$d_{\mathcal{H}}\left(S \cap B(x,r), [c_1,x] \cup [c_2,x]\right) \leqslant \sqrt{2}r\sqrt{\phi(r)}.$$
(7)

Let S_1 be the curve contained in $S \cap B(x, r)$ with endpoints x and c_1 and S_2 with endpoints x and c_1 . We know that $\mathcal{H}^1(S_1) \leq (1 + \phi(r))2r - r = r + 2r\phi(r)$ since $\mathcal{H}^1(S_2) \geq r$. Let z be a point of S_1 maximizing the distance to the line segment $[c_1, x]$ and let h be this distance. Let m be the middle of $[c_1, x]$. Let y be a point of the plane xc_1z at distance h of $[c_1, x]$ whose projection on this line segment is m. Set $l := \mathcal{H}^1([x, y] \cup [y, c_1])$. We have

$$l = \mathcal{H}^{1}\left([x, y] \cup [y, c_{1}]\right) \leqslant \mathcal{H}^{1}\left([x, z] \cup [z, c_{1}]\right) \leqslant \mathcal{H}^{1}\left(S_{1}\right).$$

Using Pythagoras' Theorem and the preceding inequalities,

$$h = \frac{1}{2}\sqrt{l^2 - r^2} \leqslant \frac{1}{2}\sqrt{(r + 2r\phi(r))^2 - r^2} = r\sqrt{\phi(r)^2 + \phi(r)} \leqslant \sqrt{2}r\sqrt{\phi(r)}$$

(the last inequality happens since $0 \le \phi(r) \le 1$). As *h* bounds the distance from any point of $[c_1, x]$ to S_1 , we showed that $d_{\mathcal{H}}(S_1, [c_1, x]) \le \sqrt{2r}\sqrt{\phi(r)}$. Applying

again this argument to S_2 , we obtain $d_{\mathcal{H}}(S_2, [c_2, x]) \leq \sqrt{2r}\sqrt{\phi(r)}$. So the same conclusion is true for $d_{\mathcal{H}}(S \cap B(x, r), [c_1, x] \cup [c_2, x])$. This proves (7).

Now set $L_{x,r}$:= span { $c_1 - x$ } and show this line satisfies the desired inequality. According to (7), we have

$$d_{\mathcal{H}}(S \cap B(x,r), [c_1, x] \cup [c_2, x]) \leqslant \sqrt{2}r\sqrt{\phi(r)}.$$

Using this, let us estimate the quantity $d_{\mathcal{H}}([c_1, x] \cup [c_2, x], (x + L_{x,r}) \cap B(x, r))$.

Define $l := \mathcal{H}^1([c_1, c_2])$. Notice that the inequality of almost minimality (4) implies that

$$l = \mathcal{H}^1([c_1, c_2]) \geqslant \frac{\mathcal{H}^1(S \cap B(x, r))}{1 + \phi(r)} \geqslant \frac{2r}{1 + \phi(r)}$$

In the rest of the proof, θ will be the angle opposite to $[c_1, c_2]$ in the triangle xc_1c_2 and will be $\beta = \pi - \theta$.

According to the "generalized Pythagoras' Formula",

$$\cos\beta = \frac{l^2 - 2r^2}{2r^2} \ge \frac{\left(\frac{2r}{1 + \phi(r)}\right)^2 - 2r^2}{2r^2} = \frac{2 - (1 + \phi(r))^2}{(1 + \phi(r))^2}.$$

Thus,

$$\sin\beta = \sqrt{1 - \cos^2\beta} \leqslant \sqrt{1 - \left(\frac{2 - (1 + \phi(r))^2}{(1 + \phi(r))^2}\right)^2} = \frac{2\sqrt{(1 + \phi(r))^2 - 1}}{(1 + \phi(r))^2} \leqslant 4\sqrt{\phi(r)}$$

(the last inequality comes from the fact that $(1 + \phi(r))^2 \ge 1$ and $0 \le \phi(r) \le \frac{1}{5}$). This implies that

$$d_{\mathcal{H}}\left([c_1, x] \cup [c_2, x], (x + L_{x, r}) \cap B(x, r)\right) = r \sin \beta \leqslant 4r \sqrt{\phi(r)}$$

and the statement follows from triangular inequality.

6.2 Behavior of the approximation lines

The behavior of the approximation lines is governed by the following two properties.

Proposition 7. Let $\xi(r)$ be a gauge such that $\xi(r) \leq Cr^{\gamma}$ for C > 0 and $0 < \gamma \leq 1$. Let $S \subset \mathbb{R}^n$ be a ξ -almost minimizing set with respect to B and let $y \in S \setminus B$ with $\Theta^1(S, y) = 1$. Let R > 0 be the radius associated with the epiperimetry property of S about y with gauge ζ . Let $x \in S \cap B(y, R)$ and $0 < r \leq R$. Assume that $\phi(R) \leq \frac{1}{5}$. Then the angle ψ between the lines $L_{x,r}$ and $L_{x,R}$ satisfies

$$|\sin\psi| \leq 8\left(1+\frac{R}{r}\right)\sqrt{\phi(R)}.$$

Proof. Let $y_0 \in (x + L_{x,r}) \cap \partial B(x, r)$. Let us consider the right-angled triangle whose angle is ψ , the hypotenuse is r and the side opposite to ψ is dist $(y_0, x + L_{x,R})$. By Proposition 6, there exists $x_0 \in B(x,r) \cap S$ such that $|y_0 - x_0|_2 \leq 8r\sqrt{\phi(r)}$ and $y_1 \in (x + L_{x,R}) \cap B(x,r)$ such that $|y_1 - x_0|_2 \leq 8R\sqrt{\phi(R)}$. This shows that dist $(y_0, x + L_{x,R}) \leq 8r\sqrt{\phi(r)} + 8R\sqrt{\phi(R)}$ and the conclusion follows.

Proposition 8. Let $\xi(r)$ be a gauge such that $\xi(r) \leq Cr^{\gamma}$ for C > 0 and $0 < \gamma \leq 1$. Let $S \subset \mathbb{R}^n$ be a ξ -almost minimizing set with respect to B and let $y \in S \setminus B$ with $\Theta^1(S, y) = 1$. Let R > 0 be the radius associated with the epiperimetry property of S about y with gauge ϕ . Let $x \in S \cap B(y, R)$ and $0 < r \leq R$. Assume that $\phi(r) \leq \frac{1}{5}$ and that that $B(x, r) \subset B(y, R)$. Then, for all $0 < \rho \leq r$ and all $x_1, x_2 \in (B(x, r) \cap S) \setminus U(x, \rho)$, the angle ψ between the lines $L_{x_1, r}$ and $L_{x_2, r}$ satisfies

$$|\sin\psi| \leqslant 32\frac{r}{\rho}\sqrt{\phi(r)}.$$

Proof. Let *L* be the line passing through x_1 and *x*. This line meets $x_1 + L_{x_1,r}$ and $x + L_{x,r}$. If θ_1 is the angle between *L* and $x_1 + L_{x_1,r}$, if θ_2 is the angle between *L* and $x + L_{x,r}$ and if ψ_1 is the angle between $L_{x_1,r}$ and $L_{x,r}$, we have that $|\psi_1| \le |\theta_1| + |\theta_2|$. Consequently, $|\sin \psi_1| \le |\sin \theta_1| + |\sin \theta_2|$. As $x_1 \in B(x,r) \cap S$, by Proposition 6, there exists $y_1 \in x + L_{x,r}$ such that $|x_1 - y_1|_2 \le 8r\sqrt{\phi(r)}$. So, if $p(x_1)$ is the orthogonal projection of x_1 onto $x + L_{x,r}$,

$$|\sin \theta_1| = \frac{|p(x) - x_1|_2}{|x - x_1|_2} \leqslant \frac{8r\sqrt{\phi(r)}}{|x - x_1|_2} \leqslant \frac{8r\sqrt{\phi(r)}}{\rho}.$$

With same estimate on $|\sin \theta_2|$, we obtain that $|\sin \psi_1| \leq 16\frac{r}{\rho}\sqrt{\phi(r)}$. Swapping x_1 and x_2 , we find that $|\sin \psi_2| \leq 16\frac{r}{\rho}\sqrt{\phi(r)}$, where ψ_2 is the angle between $L_{x_2,r}$ and $L_{x,r}$. Since $|\psi| \leq |\psi_1| + |\psi_2|$, we have $|\sin \psi| \leq |\sin \psi_1| + |\sin \psi_2|$ hence $|\sin \psi| \leq 32\frac{r}{\rho}\sqrt{\phi(r)}$.

6.3 Limit lines

Here is the result claiming that the lines of approximation stabilize as the scale tends to 0.

Proposition 9 (existence). Let $\xi(r)$ be a gauge such that $\xi(r) \leq Cr^{\gamma}$ for C > 0 and $0 < \gamma \leq 1$. Let $S \subset \mathbb{R}^n$ be a ξ -almost minimizing set with respect to B and let $y \in S \setminus B$ with $\Theta^1(S, y) = 1$. Let R > 0 be the radius associated with the epiperimetry property of S about y with respect to the gauge ϕ . Let $x \in S \cap B(y, R)$. Then there exists $L_x \in G(n, 1)$ such that, for all $0 < r \leq R$ with $\phi(r) \leq \frac{1}{5}$, we have

$$d_{\mathcal{H}}(L_x \cap B(0,1), L_{x,r} \cap B(0,1)) \leqslant Er^{\frac{\gamma}{2}},$$

E > 0 being a real number depending only on γ .

Proof. Define the sequence $(r_j)_{j \in \mathbb{N}}$ by $r_j := \frac{r}{2^j}$. Set $\phi(r) = C'r^{\gamma}$ like in Theorem 2. Then Proposition 7 implies that

$$d_{\mathcal{H}}\left(L_{x,r_{j+l}}\cap B(0,1), L_{x,r_{j}}\cap B(0,1)\right) \leqslant 24\sqrt{C'}\sum_{k=j}^{j+l}r_{k}^{\frac{\gamma}{2}} = 24\sqrt{C'}r^{\frac{\gamma}{2}}\sum_{k=j}^{j+l}\left(2^{-\frac{\gamma}{2}}\right)^{k}.$$
 (8)

Since $0 < 2^{-\frac{\gamma}{2}} < 1$, $(L_{x,r_j} \cap B(0,1))_{j \in \mathbb{N}}$ is a Cauchy sequence in $(\mathcal{K}(B(0,1)), d_{\mathcal{H}})$ which is complete. So there exists $L_x \in G(n,1)$ such that $\lim_{j\to\infty} L_{x,r_j} = L_x$. Finally, taking j = 0 and letting $l \to \infty$, we obtain the result with $E := \frac{24\sqrt{C'}}{1-2^{-\frac{\gamma}{2}}}$.

Proposition 10 (oscillations). Let $\xi(r)$ be a gauge such that $\xi(r) \leq Cr^{\gamma}$ for C > 0 and $0 < \gamma \leq 1$. Let $S \subset \mathbb{R}^n$ be a ξ -almost minimizing set with respect to B and let $y \in S \setminus B$ with $\Theta^1(S, y) = 1$. Let R > 0 be the radius associated with the epiperimetry property of S about y with respect to the gauge ϕ . Let $x_1, x_2 \in S \cap B(y, R)$ and set $r := \text{dist}(x_1, x_2)$. Assume that $0 < r \leq R$ and $\phi(r) \leq \frac{1}{5}$. Then

$$d_{\mathcal{H}}(L_{x_1} \cap B(0,1), L_{x_2} \cap B(0,1)) \leq F|x_1 - x_2|_2^{\frac{\gamma}{2}},$$

F > 0 being a real number depending only on γ .

Proof. By Proposition 8 applied with $r = \rho$ and $x = x_1$ and Proposition 9,

$$\begin{array}{rcl} d_{\mathcal{H}} \left(L_{x_{1}} \cap B(0,1), L_{x_{2}} \cap B(0,1) \right) & \leqslant & d_{\mathcal{H}} \left(L_{x_{1}} \cap B(0,1), L_{x_{1},r} \cap B(0,1) \right) \\ & & + d_{\mathcal{H}} \left(L_{x_{1},r} \cap B(0,1), L_{x_{2},r} \cap B(0,1) \right) \\ & & + d_{\mathcal{H}} \left(L_{x_{2},r} \cap B(0,1), L_{x_{2}} \cap B(0,1) \right) \\ & \leqslant & Er^{\frac{\gamma}{2}} + 32r^{\frac{\gamma}{2}} + Er^{\frac{\gamma}{2}}, \\ & = & Fr^{\frac{\gamma}{2}} \end{array}$$

where F := 2E + 32.

6.4 Representation by a graph above the limit line

We will show that a minimizing set is the graph of a function of class $C^{1,\frac{\gamma}{2}}$ above the "stabilized line" about each point of 1-density equal to 1. We start by obtaining this function. The following definition will be useful in this way.

Definition 5. *Given* $S \subset \mathbb{R}^n$, $x_0 \in S$, $r_0 > 0$, $\rho_0 > 0$, $\sigma > 0$ and $W_0 \in G(n, m)$ we set

$$G(S, x_0, r_0, \rho_0, \sigma, W_0) := \{ x \in S \cap B(x_0, r_0) \mid \forall \rho \in]0, \rho_0] :$$

$$S \cap B(x, \rho) \subset B(x + W_0, \sigma\rho) \}.$$

Lemma 5. Define $G := G(S, x_0, r_0, \rho_0, \sigma, W_0)$. Choose $0 < \sigma < 1$ and $2r_0 \le \rho_0$. Then there exists a function $u : p_{W_0}(G) \to W_0^{\perp}$ such that G = graph(u) and

$$\lim u \leqslant \frac{\sigma}{\sqrt{1-\sigma^2}}$$

Proof. See [3, Lemma 8.2].

Proposition 11. Let $\xi(r)$ be a gauge such that $\xi(r) \leq Cr^{\gamma}$ for C > 0 and $0 < \gamma \leq 1$. Let $S \subset \mathbb{R}^n$ be a ξ -almost minimizing set with respect to B and let $y \in S \setminus B$ with $\Theta^1(S, y) = 1$. Let R > 0 be the radius associated with the epiperimetry property of S about y with respect to the gauge ϕ . Then, given $0 < \sigma < 1$, there exists $r_0 = r_0(R, \gamma, \sigma)$ and $\rho_0 = \rho_0(R, \gamma, \sigma) \geq 2r_0$ such that for all $x_0 \in S \cap B(y, R)$:

$$S \cap B(x_0, r_0) = G(S, x_0, r_0, \rho_0, \sigma, L_{x_0})$$

Proof. Let ϕ be the gauge associated with the epiperimetry property. Take $0 < \sigma < 1$. Set

$$r_0 := \frac{1}{2} \min\left(\left(\frac{\sigma}{H}\right)^{\frac{2}{\gamma}}, R, \inf \phi^{-1}\left(\left\{\frac{1}{5}\right\}\right)\right)$$

where $H := 4 + E + \frac{F}{2^{\frac{\gamma}{2}}}$, *E* and *F* being constants obtained at Section 6.3. Finally, simply set $\rho_0 := 2r_0$.

Choose $x_0 \in S \cap B(y, R)$, $x \in S \cap B(x_0, r_0)$ and $\rho \in]0, \rho_0]$. We are going to show that $S \cap B(x, \rho) \subset B(x + L_{x_0}, \sigma \rho)$. We have that

$$d_{\mathcal{H}} \left(L_{x,\rho} \cap B(0,1), L_{x_0} \cap B(0,1) \right) \\ \leq d_{\mathcal{H}} \left(L_{x,\rho} \cap B(0,1), L_x \cap B(0,1) \right) + d_{\mathcal{H}} \left(L_x \cap B(0,1), L_{x_0} \cap B(0,1) \right) \\ \leq E\rho^{\frac{\gamma}{2}} + F |x - x_0|_2^{\frac{\gamma}{2}} \\ \leq E\rho_0^{\frac{\gamma}{2}} + Fr_0^{\frac{\gamma}{2}} \\ = \left(E + \frac{F}{2^{\frac{\gamma}{2}}} \right) \rho_0^{\frac{\gamma}{2}}.$$

In $B(x, \rho)$, this yields

$$d_{\mathcal{H}}\left(\left(x+L_{x,\rho}\right)\cap B(x,\rho),\left(x+L_{x_{0}}\right)\cap B(x,\rho)\right)\leqslant\left(E+\frac{F}{2^{\frac{\gamma}{2}}}\right)\rho\rho_{0}^{\frac{\gamma}{2}}.$$

Moreover, Proposition 6 says that

$$d_{\mathcal{H}}\left(S\cap B(x,\rho), \left(x+L_{x,\rho}\right)\cap B(x,\rho)\right) \leqslant 4\rho^{1+\frac{\gamma}{2}} \leqslant 4\rho\rho_0^{\frac{\gamma}{2}}.$$

But then

$$\begin{split} d_{\mathcal{H}} \left(S \cap B(x,\rho), (x+L_{x_0}) \cap B(x,\rho) \right) \\ &\leqslant d_{\mathcal{H}} \left(S \cap B(x,\rho), (x+L_{x,\rho}) \cap B(x,\rho) \right) \\ &\quad + d_{\mathcal{H}} \left((x+L_{x,\rho}) \cap B(x,\rho), (x+L_{x_0}) \cap B(x,\rho) \right) \\ &\leqslant \left(4+E+\frac{F}{2^{\frac{\gamma}{2}}} \right) \rho \rho_0^{\frac{\gamma}{2}} \\ &= H \rho \rho_0^{\frac{\gamma}{2}} \\ &\leqslant H \rho \left(\left(\frac{\sigma}{H} \right)^{\frac{2}{\gamma}} \right)^{\frac{\gamma}{2}} \\ &= \rho \sigma. \end{split}$$

Therefore

$$S \cap B(x,\rho) \subset B((x+L_{x_0}) \cap B(x,\rho),\sigma\rho)$$

and, consequently, $S \cap B(x, \rho) \subset B((x + L_{x_0}), \sigma \rho)$.

We need the following lemma whose easy proof is left to the reader.

Lemma 6. Let $\Omega \subset \mathbb{R}$ be open. Given $u : \Omega \to \mathbb{R}^N$ such that

- $\lim u < +\infty$,
- there exists C > 0 and $0 < \eta \leq 1$ such that, if u is derivable at $t_1, t_2 \in \Omega$, we have

$$|u'(t_1) - u'(t_2)|_2 \leq C|t_1 - t_2|^{\eta}$$

then u is $\mathcal{C}^{1,\eta}$ on Ω .

Now let us proof the main result.

Theorem 3. Let $S \subset \mathbb{R}^n$ be compact, connected and 1-rectifiable. Assume that there exists a finite set $B \subset \mathbb{R}^n$ and a gauge $\xi(r) \leq Cr^{\gamma}$, C > 0 and $0 < \gamma \leq 1$, such that S is ξ -almost minimizing with respect to B. Let $x \in S \setminus B$ with $\Theta^1(S, x) = 1$. Then there exists r > 0 such that $S \cap B(x, r)$ is a simple curve of class $C^{1,\frac{\gamma}{2}}$.

Proof. Let R > 0 be the radius associated with the epiperimetry property of *S* about *x*. Choose $\sigma \in]0,1[$ and consider the radius $r_0 > 0$ given by preceding proposition. So we have that $S \cap B(x, r_0) = G(S, x, r_0, \rho_0, \sigma, L_x)$ for a certain ρ_0 .

According to Lemma 5, there exists a function

$$u: p_{L_x}(S \cap B(x, r_0)) \to L_x^{\perp}$$

such that $S \cap B(x, r_0) = \operatorname{graph}(u)$ and $\operatorname{lip} u$ is a finite constant which depends only on σ .

By Rademacher's Theorem [5, 3.1.6], the function *u* is derivable almost everywhere.

If u'(t) exists, then it is easy to see that $(1, u'(t)) \in L_{(t,u(t))}$. Consequently, if u is derivable at t_1 and t_2 , we have

$$\begin{aligned} \left| u'(t_1) - u'(t_2) \right|_2 &\leqslant \left(1 + (\lim u)^2 \right) d_{\mathcal{H}} \left(L_{(t_1, u(t_1))} \cap B(0, 1), L_{(t_2, u(t_2))} \cap B(0, 1) \right) \\ &\leqslant \left(1 + (\lim u)^2 \right) F|(t_1, u(t_1)) - (t_2, u(t_2))|_2^{\frac{\gamma}{2}} \\ &\leqslant \left(1 + (\lim u)^2 \right)^{1 + \frac{\gamma}{4}} F|t_1 - t_2|^{\frac{\gamma}{2}}. \end{aligned}$$

Moreover the definition domain of u, $p_{L_x}(S \cap B(x, r_0))$, is a closed bounded interval, say $[a_1, a_2]$. So, thanks to Lemma 6 applied to the n - 1 components of u, u has class $C^{1,\frac{\gamma}{2}}$ on $]a_1, a_2[$.

A short computation shows that

$$\left(1+(\lim u)^2\right)^{-\frac{1}{2}}r_0 \leqslant |p_{L_x}(x)-a_i| \leqslant r_0, \ 1\leqslant i\leqslant 2.$$

Setting $\Delta := \left(1 + (\lim u)^2\right)^{-\frac{1}{2}} r_0$, value which depends only on *R* and γ , we get that

$$S \cap B(x, \Delta) \subset \operatorname{graph}\left(u|_{[p_{L_x}(x) - \Delta, p_{L_x}(x) + \Delta]}\right)$$

is the graph of a function of class $C^{1,\frac{\gamma}{2}}$. Then it suffices to put $r := \min(R, \Delta)$.

590

7 Acknowledgment

I thank T. De Pauw for his advices throughout the writing of this paper.

References

- [1] F.J. ALMGREN, Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc. 4 number 165 (1976).
- [2] T. DE PAUW, Concentrated, nearly monotonic, epiperimetric measures in euclidean space, Preprint UCL, 2005.
- [3] T. DE PAUW, Nearly flat almost monotone measures are big pieces of Lipschitz graphs, J. Geom. Anal. **12** (2002) 29-61.
- [4] K.J. FALCONER, *The geometry of fractal sets*, Cambridge University Press, 1985.
- [5] H. FEDERER, Geometric Measure Theory, Springer, 1969.
- [6] F. MORGAN, (*M*, ε, δ)-minimal curve regularity, Proc. Amer. Math. Soc. 120 (1994) 667-686.
- [7] E. R. REIFENBERG, Solution of the Plateau problem for m-dimensional surfaces of varying topological type, Acta Mathematica **104** (1960) 1-92.
- [8] J. E. TAYLOR, *The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces*, Annals of Mathematics **103** (1976) 489-539.

Dpartement de mathmatique Universit catholique de Louvain Chemin du cyclotron 2 1348 Louvain-La-Neuve (Belgium) email:thomas.meinguet@uclouvain.be