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Abstract

We study the class field theory of curves defined over two dimensional
local fields. The approach used here is a combination of the work of Kato-
Saito and Yoshida where the base field is one dimensional

1 Introduction

Let k1 be a local field with finite residue field and let X be a proper smooth ge-
ometrically irreducible curve over k1. In order to investigate the fundamental
group πab

1 (X), Saito in [9] introduced the groups SK1 (X) and V(X) and then

constructed the maps σ : SK1 (X) −→ πab
1 (X) and τ : V(X) −→ πab

1 (X)géo,

where πab
1 (X)géo is defined by the exact sequence

0 −→ πab
1 (X)géo −→ πab

1 (X) −→ Gal(kab
1 /k1)−→0

The most important results in this context are the following.

1) The quotient of πab
1 (X) by the closure of the image of σ as well as the cok-

ernel of τ are isomorphic to Ẑr, where r is the rank of the curve.

2) For this integer r, there is an exact sequence

0 −→ (Q/Z)r −→ H3 (K, Q/Z (2)) −→ ⊕
v∈P

Q/Z −→ Q/Z −→0,
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where K = K (X) is the function field of X and P indicates the set of closed
points of X.

These results are obtained by Saito in [9]. Actually, Saito generalized previous
work by Bloch which dealt only with the good reduction case [9, Introduction].
The method of Saito is based upon the class field theory of two-dimensional local
ring having finite residue field. He shows these results for arbitrary curves except
for the p -primary part in chark = p > 0 [9, Section II-4]. The p -primary part has
been proved by Yoshida in [12].

Douai in [3] pointed out that these results can be obtained in a different way.
Indeed, one may consider, for any l prime to the residual characteristic, the group
Co ker σ as the dual of the group W0 of the monodromy weight filtration of
H1(X, Qℓ/Zℓ)

H1(X, Qℓ/Zℓ) = W2 ⊇ W1 ⊇ W0 ⊇ 0,

where X = X ⊗k1
k1 and k1 is an algebraic closure of k1. This allows one to extend

the preceding results to projective smooth surfaces [3].
The purpose of this paper is to use a combination of this approach and the

theory of the monodromy-weight filtration of degenerating abelian varieties on
local fields explained by Yoshida in his paper [12] to study curves over two-
dimensional local fields (section 3).

Let X be a projective smooth curve defined over a two dimensional local field
k. Let K be its function field and P be the set of closed points of X. For each v ∈ P,
k (v) denotes the residue field at v ∈ P. A finite etale covering Z → X of X is
called a c.s covering if for any closed point x of X, x ×X Z is isomorphic to a finite
sum of x. We denote by πc.s

1 (X) the quotient group of πab
1 (X) which classifies

abelian c.s coverings of X.
To study the class field theory of the curve X, we construct the generalized

reciprocity map

σ/ℓ : SK2 (X) /ℓ −→ πab
1 (X) /ℓ,

where SK2 (X) /ℓ = Co ker

{
K3 (K) /ℓ

⊕∂v−→ ⊕
v∈P

K2 (k (v)) /ℓ

}
and τ/l : V(X)/ℓ

−→ πab
1 (X)géo /ℓ for all ℓ prime to the residual characteristic. The group V(X)

is defined to be the kernel of the norm map N : SK2 (X) −→ K2(k) induced by

the norm map Nk(v)/kx : K2 (k(v)) −→ K2(k) for all v and πab
1 (X)géo by the exact

sequence

0 −→ πab
1 (X)géo −→ πab

1 (X) −→ Gal(kab/k)−→0

The cokernel of σ/ℓ is the quotient group of πab
1 (X) /ℓ that classifies completely

split coverings of X, that is, πc.s
1 (X) /ℓ.

We begin by proving the exactness of the following Kato-Saito sequence (Pro-
position 4.3)

0 −→ πc.s
1 (X) /ℓ −→ H4 (K, Z/ℓ (3))

−→ ⊕
v∈P

H3 (k (v) , Z/ℓ (2)) −→ Z/ℓ −→0

To determinate the group πc.s
1 (X) /ℓ, we need to consider a semi stable model of

the curve X (see Section 5) and the weight filtration on its special fiber. In fact,
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we will prove in (Proposition 5.1) that πc.s
1 (X)⊗ Qℓ admits a quotient of type Qr

l ,
where r is the rank of the first crane of this filtration.

Now, to investigate the group πab
1 (X)géo , we use class field theory of two-

dimensional local field and prove the vanishing of the group H2 (k, Q/Z) (theo-
rem 3.1 ). This gives the isomorphism

πab
1 (X)géo ≃ πab

1

(
X

)
Gk

Finally, using the Grothendieck weight filtration on the group πab
1

(
X

)
Gk

and

assuming the semi-stable reduction, we obtain the structure of the group

πab
1 (X)géo and some information about the map τ : V(X) −→ πab

1 (X)géo .
This paper is organized as follows. Section 2 is devoted to some notations.

Section 3 contains the proprieties of two-dimensional local field we need, such
as, duality and the vanishing of the second cohomology group. In section 4, we
construct the generalized reciprocity map and study the Bloch-Ogus complex as-
sociated to X. Finally, Section 5 is devoted to the group πc.s

1 (X) .

2 Notations

For an abelian group M, and a positive integer n ≥ 1, M/n denotes the group
M/nM. For a scheme Z, and a sheaf F over the étale site of Z, Hi (Z,F ) denotes
the i-th étale cohomology group. The group H1 (Z, Z/ℓ) is identified with the
group of all continues homomorphisms πab

1 (Z) −→ Z/ℓ. If ℓ is invertible on Z,
Z/ℓ(1) denotes the sheaf of l-th root of unity and for any integer i, we denote

Z/ℓ (i) = ( Z/ℓ (1))⊗i .
For a field L, Ki (L) is the i-th Milnor group. It coincides with the i−th Quillen

group for i ≤ 2. For ℓ prime to char L, there is a Galois symbol

hi
ℓ,L KiL/ℓ −→ Hi(L, Z/ℓ (i))

which is an isomorphism for i = 0, 1, 2 (i = 2 is Merkur’jev-Suslin).

3 On two-dimensional local field

A local field k is said to be n−dimensional local if there exists a sequence of fields
ki (1 ≤ i ≤ n) such that
(i) each ki is a complete discrete valuation field with ki−1 as the residue field of
the valuation ring Oki

of ki, and
(ii) k0 is a finite field.

For such a field, and for ℓ prime to Char(k), the well-known isomorphism

Hn+1 (k, Z/ℓ (n)) ≃ Z/ℓ (3.1)

holds. If in addition i ∈ {0, ..., n + 1}, we have the next perfect duality:

Hi(k, Z/ℓ(j)) × Hn+1−i(k, Z/ℓ(n − j) −→ Hn+1(k, Z/ℓ(n)) ≃ Z/ℓ (3.2)
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In the case n = 2, the class field theory for such fields is summarized as
follows: There is a map h : K2 (k) −→ Gal(kab/k) which generalizes the classi-
cal reciprocity map for usually local fields. This map induces an isomorphism
K2 (k) /NL/kK2 (L) ≃ Gal(L/k) for each finite abelian extension L of k. Further-
more, the canonical pairing

H1 (k, Ql/Zl) × K2(k) −→ H3 (k, Ql/Zl (2)) ≃ Ql/Zl (3.3)

induces the injective homomorphism

H1 (k, Ql/Zl) −→ Hom(K2(k), Ql/Zl) (3.4)

It is well-known that the group H2 (M, Q/Z) vanishes when M is a finite field
or usually local field. Next, we prove the same result for two-dimensional local
field.

Theorem 3.1. If k is a two-dimensional local field of characteristic zero, then the group
H2 (k, Q/Z) vanishes.

Proof. We proceed as in the proof of theorem 4 of [11]. It is enough to prove that
H2 (k, Ql/Zl) vanishes for all l and when k contains the group µl of l-th roots of
unity. First, we prove that multiplication by l is injective, that is, we have to show
that the coboundary map

H1 (k, Ql/Zl)
δ

−→ H2 (k, Z/lZ)

is injective.
By assumption on k, we have

H2 (k, Z/lZ) ≃ H2 (k, µl) ≃ Z/ℓ

The last isomorphism is well-known for one-dimensional local field and was
generalized to non archimedean and locally compact fields by Shatz in [7]. Now
we show that δ 6= 0;

By class field theory of two dimensional local field, the cohomology group
H1 (k, Ql/Zl) can be identified with the group of continuous homomorphisms

K2(k)
Φ

−→ Ql/Zl .
Now, δ(Φ) = 0 if and only if Φ is a l−th power. Moreover, Φ is a l−th power if

and only if Φ is trivial on µl . Thus, it is sufficient to construct an homomorphism
K2(k) −→ Ql/Zl which is non trivial on µl.

Let i be the maximal natural number such that k contains a primitive li−th root
of unity. Then, the image ξ of a primitive li−th root of unity under the composite
map

kx/kxl ≃ H1 (k, µl) ≃ H1 (k, Z/lZ) −→ H1 (k, Ql/Zl)

is not zero. Thus, the injectivity of the map

H1 (k, Ql/Zl) −→ Hom(K2(k), Ql/Zl)

gives rise to a character which is non trivial on µl.

Remark 3.2. This proof is somehow analogous to the proof of Proposition 7 in [5].
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4 Curves over two dimensional local field

Let k be a two dimensional local field of characteristic zero and X be a smooth
projective curve defined over k.
Recall that K = K (X) is the function field of X and P is set of closed points of X,
and for v ∈ P, k (v) is the residue field at v ∈ P.

The residue field of k is one-dimensional local field and is denoted by k1

Let n ≥ 1 and Hn (Z/ℓ (3)) be the Zariskien sheaf associated to the presheaf
U −→ Hn (U, Z/ℓ (3)). Its cohomology is calculated by the Bloch-Ogus resolu-
tion. So, we have the two exact sequences:

H3 (K, Z/ℓ (3)) −→ ⊕
v∈P

H2 (k (v) , Z/ℓ (2)) −→ H1
(

XZar,H3 (Z/ℓ (3))
)
−→ 0

(4.1)

0 −→ H0(XZar,H4(Z/ℓ(3))) −→ H4(K, Z/ℓ(3)) −→ ⊕
v∈P

H3(k(v), Z/ℓ(2))

(4.2)

4.1 The reciprocity map

We define the group SK2 (X) /ℓ by

SK2 (X) /ℓ = Co ker

{
K3 (K) /ℓ

⊕∂v−→ ⊕
v∈P

K2 (k (v)) /ℓ

}
,

where ∂v : K3 (K) −→ K2 (k (v)) is the boundary map in K-Theory. It will play a
key role in class field theory for X as observed by Saito in the introduction of [9].
In this section, we construct a map

σ/ℓ : SK2 (X) /ℓ −→ πab
1 (X) /ℓ

which describes the class field theory of X.
The definition of SK2 (X) /ℓ leads to the exact sequence

K3 (K) /ℓ −→ ⊕
v∈P

K2 (k (v)) /ℓ −→ SK2 (X) /ℓ −→ 0

On the other hand, it is known that the following diagram is commutative

K3 (K) /ℓ −→ ⊕
v∈P

K2 (k (v)) /ℓ

↓ h3 ↓ h2

H3 (K, Z/ℓ (3)) −→ ⊕
v∈P

H2 (k (v) , Z/ℓ (2)) ,

where h2, h3 are the Galois symbols. Taking in account the exact sequence (4.1),
we get the existence of a morphism

h : SK2 (X) /ℓ −→ H1
(

XZar,H
3 (Z/ℓ (2))

)
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This morphism fits in the following commutative diagram

0 −→ K3 (K) /ℓ −→ ⊕
v∈P

K2 (k (v)) /ℓ → SK2(X)/ℓ −→ 0

↓ h3 ↓ h2 ↓ h
0 −→ H3 (K, Z/ℓ (2)) −→ ⊕

v∈P
H2 (k (v) , Z/ℓ (2)) → H1

(
XZar ,H3(Z/ℓ (2)

)
) −→ 0

By Merkur’jev-Suslin, the map h2 is an isomorphism, which implies that h is sur-
jective. Furthermore, the spectral sequence

Hp (XZar,H
q(Z/ℓ (3))) ⇒ Hp+q(X, Z/ℓ (3))

induces the exact sequence

0 −→ H1
(

XZar,H3 (Z/ℓ (3))
)

e
−→ H4 (X, Z/ℓ (3)) (4.3)

−→ H0
(

XZar,H4 (Z/ℓ (3))
)
−→ H2

(
XZar,H3 (Z/ℓ (3))

)
= 0

Composing h and e, we get the map

SK2 (X) /ℓ −→ H4(X, Z/ℓ (3)).

Finally, the group H4(X, Z/ℓ (3)) is identified to the group πab
1 (X) /ℓ by the du-

ality [4,II, th 2.1]

H4(X, Z/ℓ (3))⊗ H1(X, Z/ℓ) −→ H5(X, Z/ℓ (3)) ≃ H3(k, Z/ℓ (2)) ≃ Z/ℓ

Hence, we obtain the map

σ/ℓ : SK2 (X) /ℓ −→ πab
1 (X) /ℓ

Remark 4.1. By the exact sequence (4.2), the group H0
(
XZar,H

4 (Z/ℓ (3))
)

coin-
cides with the kernel of the map

H4 (K, Z/ℓ (3)) −→ ⊕
v∈P

H3 (k (v) , Z/ℓ (2)) .

Besides, by (4.3) and localization in étale cohomology

⊕
v∈P

H2 (k (v) , Z/ℓ (2)) −→ H4 (X, Z/ℓ (3)) −→

H4 (K, Z/ℓ (3)) −→ ⊕
v∈P

H3 (k (v) , Z/ℓ (2))

we see that H1
(
XZar,H4(Z/ℓ (3)

)
) is the image of the Gysin map

⊕
v∈P

H2 (k (v) , Z/ℓ (2))
g

−→ H4 (X, Z/ℓ (3)) .

Consequently, the morphism g factorize through H1
(
XZar,H4(Z/ℓ (3)

)

⊕
v∈P

H2 (k (v) , Z/ℓ (2))
g

−→ H4 (X, Z/ℓ (3))

ց ր
H1

(
XZar,H4(Z/ℓ (3)

)
)
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Then, we derive the following commutative diagram

K3 (K) /ℓ → ⊕
v∈P

K2(k (v))/ℓ → SK2 (X) /ℓ −→ 0

↓ h3 ↓ h2 ↓ h
H3 (K, Z/ℓ (3)) → ⊕

v∈P
H2 (k (v) , Z/ℓ (2)) → H1

(
XZar ,H4(Z/ℓ (3)

)
) −→ 0

↓ g ւ e
πab

1 (X) /l = H4 (X, Z/ℓ (3))

The surjectivity of the map h implies that the cokernel of

σ/ℓ : SK2 (X) /ℓ −→ πab
1 (X) /ℓ

coincides with the cokernel of e which is H0
(
XZar,H4(Z/ℓ (3)

)
). Hence

Co ker σ/ℓ is the dual of the kernel of the map

H1 (X, Z/ℓ) −→ ∏
v∈P

H1 (k (v) , Z/ℓ) (4.4)

4.2 The Kato-Saito exact sequence

Definition 4.2. Let Z be a Noetherian scheme. A finite etale covering f : W → Z
is called a c.s covering if for any closed point z of Z , z ×Z W is isomorphic to
a finite scheme-theoretic sum of copies of z. We denote by πc.s

1 (Z) the quotient

group of πab
1 (Z) which classifies abelian c.s coverings of Z.

Hence, the group πc.s
1 (X) /ℓ is the dual of the kernel of the map

H1 (X, Z/ℓ) −→ ∏
v∈P

H1 (k (v) , Z/ℓ)

as in [9, section 2, definition and sentence just below]. Now, we are in position
to calculate the homologies of the Bloch-Ogus complex associated to X.

Generalizing [10, Theorem 7], we obtain the following.

Proposition 4.3. Let X be a projective smooth curve defined over k. Then for all ℓ, we
have the following exact sequence

0 −→ πc.s
1 (X) /ℓ −→ H4 (K, Z/ℓ (3))

−→ ⊕
v∈P

H3 (k (v) , Z/ℓ (2)) −→ Z/ℓ −→0.

Proof. Consider the localization sequence on X

⊕
v∈P

H2 (k (v) , Z/ℓ (2))
g

−→ H4 (X, Z/ℓ (3)) −→ H4 (K, Z/ℓ (3))

−→ ⊕
v∈P

H3 (k (v) , Z/ℓ (2)) −→ H5 (X, Z/ℓ (3)) −→ 0

We know that the cokernel of the Gysin map g coincides with πc.s
1 (X) /ℓ and we

use the isomorphism H5 (X, Z/ℓ (3)) ≃ Z/ℓ .
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5 The group πc.s
1 (X)

In his paper [9], Saito does not prove the p− primary part in the char k = p ⋗ 0
case. This case was done by Yoshida in [12]. His method is based on the theory
of monodromy-weight filtration of degenerating abelian varieties on local fields.
In the current paper, we use this approach to investigate the group πc.s

1 (X) . As
mentioned by Yoshida in [12, section 2] Grothendieck’s theory of monodromy-
weight filtration on Tate module of abelian varieties are valid where the residue
field is arbitrary perfect field.

We assume the semi-stable reduction and choose a regular model X of X over
SpecOk, by which we mean a two dimensional regular scheme with a proper bi-
rational morphism f : X −→ SpecOk such that X ⊗Ok

k ≃ X and if Xs designates
the special fiber X ⊗Ok

k1, then Y = (Xs)réd is a curve defined over the residue
field k1 such that any irreducible component of Y is regular and it has ordinary
double points as singularity.

Let Y = Y ⊗k1
k1, where k1 is an algebraic closure of k1 and Y

[p]
=

∪
i/<i1<···<ip

Yi/
∩ Yi1 ∩ · · · ∩ Yip

, (Yi)i∈I =collection of irreducible components of

Y.
Let

∣∣Γ
∣∣ be a realization of the dual graph Γ. The group H1

(∣∣Γ
∣∣ , Ql

)
coincides

with the group W0

(
H1

(
Y, Ql

))
of all elements of weight 0 for the filtration

H1(Y, Qℓ) = W1 ⊇ W0 ⊇ 0

of H1(Y, Qℓ) deduced from the spectral sequence

E
p,q
1 = Hq(Y

[p]
, Qℓ) =⇒ Hp+q(Y, Qℓ)

For details see [2], [3] and [6].
Now, if in addition we assume that the irreducible components and double

points of Y are defined over k1, then the dual graph Γ of Y goes down to k1 and
we obtain the injection

W0(H1
(
Y, Ql

)
) ⊆ H1 (Y, Ql) →֒ H1 (X, Ql)

Proposition 5.1. The group πc.s
1 (X)⊗ Ql admits a quotient of type Qr

l , where r is the

Ql − rank of the group H1
(∣∣Γ

∣∣ , Ql

)

Proof. We know (4.4) that πc.s
1 (X) ⊗ Ql is the dual of the kernel of the map

α : H1 (X, Ql) −→ ∏
v∈P

H1 (k (v) , Ql)

We will prove that W0(H1
(
Y, Ql

)
) ⊆ Kerα. The group W0 = W0(H1

(
Y, Ql

)
) is

calculated as the homology of the complex

H0(Y
[0]

, Qℓ) −→ H0(Y
[1]

, Qℓ) −→ 0

Hence

W0 = H0(Y
[1]

, Qℓ)/ Im{H0(Y
[0]

, Qℓ) −→ H0(Y
[1]

, Qℓ)}.
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Thus, it suffices to prove the vanishing of the composing map

H0(Y
[1]

, Qℓ) −→ W0 ⊆ H1 (Y, Ql) →֒ H1 (X, Ql) −→ H1 (k (v) , Ql)
for all v ∈ P.
Let zv be the 0− cycle in Y obtained by specializing v, which induces a map

z
[1]
v −→ Y

[1]
. Consequently, the map H0(Y

[1]
, Qℓ) −→ H1 (k (v) , Ql) factors as

follows

H0(Y
[1]

, Qℓ) −→ H1 (k (v) , Ql)
ց ր

H0(z
[1]
v , Qℓ)

But the trace z
[1]
v of Y

[1]
on zv is empty. This implies that H0(z

[1]
v , Qℓ) vanishes.

Let V(X) be the kernel of the norm map N : SK2 (X) −→ K2(k) induced by
the norm map Nk(v)/kx : K2 (k(v)) −→ K2(k) for all v . Then, we obtain a map τ/l

: V(X)/ℓ −→ πab
1 (X)géo /ℓ and a commutative diagram

V(X)/ℓ −→ SK2 (X) /ℓ → K2(k)/ℓ

↓ τ/l ↓ σ/ℓ ↓ h/l

πab
1 (X)géo /ℓ −→ πab

1 (X) /ℓ → Gal(kab/k)/l

where the map h/l : K2 (k) /l −→ Gal(kab/k)/l is the one obtained by class field
theory of k (section 3). From this diagram we see that the group Co ker τ/l is
isomorphic to the group Co ker σ/ℓ. Next, we investigate the map τ/l.

We start by the following result which is a consequence of the structure of the
two-dimensional local field k.

Lemma 5.2. There is an isomorphism

πab
1 (X)géo ≃ πab

1

(
X

)
Gk

,

where πab
1

(
X

)
Gk

is the group of coinvariants under Gk = Gal(kab/k).

Proof. As in the proof of Lemma 4.3 of [12], this is an immediate consequence of
(Theorem 3.1).

Finally, we are in position to infer the structure of the group πab
1 (X)géo

Theorem 5.3. The group πab
1 (X)géo ⊗Ql is isomorphic to Q̂l

r
and the map τ : V(X) −→

πab
1 (X)géo is a surjection onto (πab

1 (X)géo)tor.

Proof. By the preceding lemma, we have the isomorphism πab
1 (X)géo ≃ πab

1

(
X

)
Gk

.

On the other hand, the group πab
1

(
X

)
Gk

⊗ Qℓ admits the filtration [12,Lemma 4.1

and section 2]

W0(πab
1

(
X

)
Gk

⊗ Ql) = πab
1

(
X

)
Gk

⊗ Ql ⊇ W−1(πab
1

(
X

)
Gk

⊗ Ql) ⊇

W−2(πab
1

(
X

)
Gk

⊗ Ql)
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But, by the assumption, the curve X admits a semi-stable reduction, then the
group Gr0(πab

1

(
X

)
Gk

⊗ Ql) = W0(πab
1

(
X

)
Gk

⊗ Ql)/W−1(πab
1

(
X

)
Gk

⊗ Ql) has the

following structure

0 −→ Gr0(πab
1

(
X

)
Gk

⊗ Ql)tor −→ Gr0(πab
1

(
X

)
Gk

⊗ Ql) −→ Q̂l
r′

−→ 0,

where r′ is the k − rank of X. This is confirmed by Yoshida [12, section 2], inde-
pendently of the finiteness of the residue field of k considered in his paper. The
integer r′ is equal to the integer r = H1

(∣∣Γ
∣∣ , Ql

)
= H1 (|Γ| , Ql) by assuming that

the irreducible components and double points of Y are defined over k1.
Furthermore, the exact sequence

0 −→ W−1(πab
1

(
X

)
Gk

) −→ πab
1

(
X

)
Gk

−→ Gr0(πab
1

(
X

)
Gk

) −→ 0

and (Proposition 5.1) allow us to conclude that the group W−1(πab
1

(
X

)
Gk

) is fi-

nite and the map τ : V(X) −→ πab
1 (X)géo is a surjection onto (πab

1 (X)géo)tor as
established by Yoshida in [12] for curve over usually local fields.

Remark 5.4. If we use the same method of Saito to study curves over two-dimen-
sional local fields, we need class field theory of two-dimensional local ring having
a one-dimensional local field as residue field. This is already done in [1]. Hence,
one can follow Saito ’s method to obtain the same results.
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