The arithmetic of curves over two dimensional local fields

Belgacem Draouil

Abstract

We study the class field theory of curves defined over two dimensional local fields. The approach used here is a combination of the work of Kato-Saito and Yoshida where the base field is one dimensional

1 Introduction

Let k_1 be a local field with finite residue field and let X be a proper smooth geometrically irreducible curve over k_1 . In order to investigate the fundamental group $\pi_1^{ab}(X)$, Saito in [9] introduced the groups $SK_1(X)$ and V(X) and then constructed the maps $\sigma : SK_1(X) \longrightarrow \pi_1^{ab}(X)$ and $\tau : V(X) \longrightarrow \pi_1^{ab}(X)^{g\acute{o}}$, where $\pi_1^{ab}(X)^{g\acute{o}}$ is defined by the exact sequence

$$0 \longrightarrow \pi_1^{ab} (X)^{g\acute{eo}} \longrightarrow \pi_1^{ab} (X) \longrightarrow Gal(k_1^{ab}/k_1) {\longrightarrow} 0$$

The most important results in this context are the following.

- 1) The quotient of $\pi_1^{ab}(X)$ by the closure of the image of σ as well as the cokernel of τ are isomorphic to $\widehat{\mathbb{Z}}^r$, where *r* is the rank of the curve.
- 2) For this integer *r*, there is an exact sequence

$$0 \longrightarrow (\mathbb{Q}/\mathbb{Z})^r \longrightarrow H^3(K, \mathbb{Q}/\mathbb{Z}(2)) \longrightarrow \bigoplus_{v \in P} \mathbb{Q}/\mathbb{Z} \longrightarrow \mathbb{Q}/\mathbb{Z} \longrightarrow 0,$$

Received by the editors May 2007.

Bull. Belg. Math. Soc. Simon Stevin 16 (2009), 565-575

Communicated by M. Van den bergh.

¹⁹⁹¹ Mathematics Subject Classification : 11G25, 14H25.

Key words and phrases : Bloch-Ogus complex, Generalized reciprocity map, Higher local fields, Curves over local fields.

where K = K(X) is the function field of *X* and *P* indicates the set of closed points of *X*.

These results are obtained by Saito in [9]. Actually, Saito generalized previous work by Bloch which dealt only with the good reduction case [9, Introduction]. The method of Saito is based upon the class field theory of two-dimensional local ring having finite residue field. He shows these results for arbitrary curves except for the *p* -primary part in chark = p > 0 [9, Section II-4]. The *p* -primary part has been proved by Yoshida in [12].

Douai in [3] pointed out that these results can be obtained in a different way. Indeed, one may consider, for any *l* prime to the residual characteristic, the group *Co* ker σ as the dual of the group W_0 of the monodromy weight filtration of $H^1(\overline{X}, \mathbb{Q}_{\ell}/\mathbb{Z}_{\ell})$

$$H^1(\overline{X}, \mathbb{Q}_\ell/\mathbb{Z}_\ell) = W_2 \supseteq W_1 \supseteq W_0 \supseteq 0,$$

where $\overline{X} = X \otimes_{k_1} \overline{k_1}$ and $\overline{k_1}$ is an algebraic closure of k_1 . This allows one to extend the preceding results to projective smooth surfaces [3].

The purpose of this paper is to use a combination of this approach and the theory of the monodromy-weight filtration of degenerating abelian varieties on local fields explained by Yoshida in his paper [12] to study curves over twodimensional local fields (section 3).

Let *X* be a projective smooth curve defined over a two dimensional local field *k*. Let *K* be its function field and *P* be the set of closed points of *X*. For each $v \in P$, k(v) denotes the residue field at $v \in P$. A finite etale covering $Z \to X$ of *X* is called a c.s covering if for any closed point *x* of *X*, $x \times_X Z$ is isomorphic to a finite sum of *x*. We denote by $\pi_1^{c.s}(X)$ the quotient group of $\pi_1^{ab}(X)$ which classifies abelian c.s coverings of *X*.

To study the class field theory of the curve *X*, we construct the generalized reciprocity map

$$\sigma/\ell: SK_2(X)/\ell \longrightarrow \pi_1^{ab}(X)/\ell,$$

where $SK_2(X)/\ell = Co \ker \left\{ K_3(K)/\ell \xrightarrow{\oplus \partial_v} \bigoplus_{v \in P} K_2(k(v))/\ell \right\}$ and $\tau/l : V(X)/\ell$

 $\longrightarrow \pi_1^{ab}(X)^{g\acute{o}}/\ell$ for all ℓ prime to the residual characteristic. The group V(X) is defined to be the kernel of the norm map $N : SK_2(X) \longrightarrow K_2(k)$ induced by the norm map $N_{k(v)/k^x} : K_2(k(v)) \longrightarrow K_2(k)$ for all v and $\pi_1^{ab}(X)^{g\acute{o}}$ by the exact sequence

$$0 \longrightarrow \pi_1^{ab} \left(X \right)^{g\acute{eo}} \longrightarrow \pi_1^{ab} \left(X \right) \longrightarrow Gal(k^{ab}/k) {\longrightarrow} 0$$

The cokernel of σ/ℓ is the quotient group of $\pi_1^{ab}(X)/\ell$ that classifies completely split coverings of *X*, that is, $\pi_1^{c.s}(X)/\ell$.

We begin by proving the exactness of the following Kato-Saito sequence (Proposition 4.3)

$$0 \longrightarrow \pi_{1}^{c.s}(X) / \ell \longrightarrow H^{4}(K, \mathbb{Z}/\ell(3)) \longrightarrow \bigoplus_{v \in P} H^{3}(k(v), \mathbb{Z}/\ell(2)) \longrightarrow \mathbb{Z}/\ell \longrightarrow 0$$

To determinate the group $\pi_1^{c.s}(X) / \ell$, we need to consider a semi stable model of the curve *X* (see Section 5) and the weight filtration on its special fiber. In fact,

we will prove in (Proposition 5.1) that $\pi_1^{c.s}(X) \otimes \mathbb{Q}_\ell$ admits a quotient of type \mathbb{Q}_l^r , where *r* is the rank of the first crane of this filtration.

Now, to investigate the group $\pi_1^{ab}(X)^{g\acute{o}}$, we use class field theory of twodimensional local field and prove the vanishing of the group $H^2(k, \mathbb{Q}/\mathbb{Z})$ (theorem 3.1). This gives the isomorphism

$$\pi_1^{ab} \left(X \right)^{g\acute{eo}} \simeq \pi_1^{ab} \left(\overline{X} \right)_{G_k}$$

Finally, using the Grothendieck weight filtration on the group $\pi_1^{ab}(\overline{X})_{G_k}$ and assuming the semi-stable reduction, we obtain the structure of the group $\pi_1^{ab}(X)^{g\acute{eo}}$ and some information about the map $\tau: V(X) \longrightarrow \pi_1^{ab}(X)^{g\acute{eo}}$.

This paper is organized as follows. Section 2 is devoted to some notations. Section 3 contains the proprieties of two-dimensional local field we need, such as, duality and the vanishing of the second cohomology group. In section 4, we construct the generalized reciprocity map and study the Bloch-Ogus complex associated to *X*. Finally, Section 5 is devoted to the group $\pi_1^{c.s}(X)$.

2 Notations

For an abelian group M, and a positive integer $n \ge 1$, M/n denotes the group M/nM. For a scheme Z, and a sheaf \mathcal{F} over the étale site of Z, $H^i(Z, \mathcal{F})$ denotes the i-th étale cohomology group. The group $H^1(Z, \mathbb{Z}/\ell)$ is identified with the group of all continues homomorphisms $\pi_1^{ab}(Z) \longrightarrow \mathbb{Z}/\ell$. If ℓ is invertible on Z, $\mathbb{Z}/\ell(1)$ denotes the sheaf of *l*-th root of unity and for any integer *i*, we denote $\mathbb{Z}/\ell(i) = (\mathbb{Z}/\ell(1))^{\otimes i}$.

For a field *L*, $K_i(L)$ is the i-th Milnor group. It coincides with the *i*-th Quillen group for $i \le 2$. For ℓ prime to *char L*, there is a Galois symbol

$$h_{\ell,L}^{i} \quad K_{i}L/\ell \longrightarrow H^{i}(L, \mathbb{Z}/\ell(i))$$

which is an isomorphism for i = 0, 1, 2 (i = 2 is Merkur'jev-Suslin).

3 On two-dimensional local field

A local field *k* is said to be *n*-dimensional *local* if there exists a sequence of fields k_i $(1 \le i \le n)$ such that

(i) each k_i is a complete discrete valuation field with k_{i-1} as the residue field of the valuation ring O_{k_i} of k_i , and

(ii) k_0 is a finite field.

For such a field, and for ℓ prime to Char(k), the well-known isomorphism

$$H^{n+1}\left(k,\mathbb{Z}/\ell\left(n\right)\right)\simeq\mathbb{Z}/\ell\tag{3.1}$$

holds. If in addition $i \in \{0, ..., n + 1\}$, we have the next perfect duality:

$$H^{i}(k,\mathbb{Z}/\ell(j)) \times H^{n+1-i}(k,\mathbb{Z}/\ell(n-j) \longrightarrow H^{n+1}(k,\mathbb{Z}/\ell(n)) \simeq \mathbb{Z}/\ell$$
(3.2)

In the case n = 2, the class field theory for such fields is summarized as follows: There is a map $h : K_2(k) \longrightarrow Gal(k^{ab}/k)$ which generalizes the classical reciprocity map for usually local fields. This map induces an isomorphism $K_2(k) / N_{L/k}K_2(L) \simeq Gal(L/k)$ for each finite abelian extension *L* of *k*. Furthermore, the canonical pairing

$$H^{1}(k, \mathbb{Q}_{l}/\mathbb{Z}_{l}) \times K_{2}(k) \longrightarrow H^{3}(k, \mathbb{Q}_{l}/\mathbb{Z}_{l}(2)) \simeq \mathbb{Q}_{l}/\mathbb{Z}_{l}$$
(3.3)

induces the injective homomorphism

$$H^{1}(k, \mathbb{Q}_{l}/\mathbb{Z}_{l}) \longrightarrow Hom(K_{2}(k), \mathbb{Q}_{l}/\mathbb{Z}_{l})$$
(3.4)

It is well-known that the group $H^2(M, \mathbb{Q}/\mathbb{Z})$ vanishes when *M* is a finite field or usually local field. Next, we prove the same result for two-dimensional local field.

Theorem 3.1. If k is a two-dimensional local field of characteristic zero, then the group $H^2(k, \mathbb{Q}/\mathbb{Z})$ vanishes.

Proof. We proceed as in the proof of theorem 4 of [11]. It is enough to prove that $H^2(k, \mathbb{Q}_l / \mathbb{Z}_l)$ vanishes for all l and when k contains the group μ_l of l-th roots of unity. First, we prove that multiplication by l is injective, that is, we have to show that the coboundary map

$$H^1(k, \mathbb{Q}_l/\mathbb{Z}_l) \xrightarrow{\delta} H^2(k, \mathbb{Z}/l\mathbb{Z})$$

is injective.

By assumption on *k*, we have

$$H^2(k,\mathbb{Z}/l\mathbb{Z})\simeq H^2(k,\mu_l)\simeq \mathbb{Z}/\ell$$

The last isomorphism is well-known for one-dimensional local field and was generalized to non archimedean and locally compact fields by Shatz in [7]. Now we show that $\delta \neq 0$;

By class field theory of two dimensional local field, the cohomology group $H^1(k, \mathbb{Q}_l/\mathbb{Z}_l)$ can be identified with the group of continuous homomorphisms $K_2(k) \xrightarrow{\Phi} \mathbb{Q}_l/\mathbb{Z}_l$.

Now, $\delta(\Phi) = 0$ if and only if Φ is a l-th power. Moreover, Φ is a l-th power if and only if Φ is trivial on μ_l . Thus, it is sufficient to construct an homomorphism $K_2(k) \longrightarrow \mathbb{Q}_l/\mathbb{Z}_l$ which is non trivial on μ_l .

Let *i* be the maximal natural number such that *k* contains a primitive l^i —th root of unity. Then, the image ξ of a primitive l^i —th root of unity under the composite map

$$k^{x}/k^{xl} \simeq H^{1}(k,\mu_{l}) \simeq H^{1}(k,\mathbb{Z}/l\mathbb{Z}) \longrightarrow H^{1}(k,\mathbb{Q}_{l}/\mathbb{Z}_{l})$$

is not zero. Thus, the injectivity of the map

$$H^1(k, \mathbb{Q}_l/\mathbb{Z}_l) \longrightarrow Hom(K_2(k), \mathbb{Q}_l/\mathbb{Z}_l)$$

gives rise to a character which is non trivial on μ_l .

Remark 3.2. This proof is somehow analogous to the proof of Proposition 7 in [5].

4 Curves over two dimensional local field

Let *k* be a two dimensional local field of characteristic zero and *X* be a smooth projective curve defined over *k*.

Recall that K = K(X) is the function field of X and P is set of closed points of X, and for $v \in P$, k(v) is the residue field at $v \in P$.

The residue field of *k* is one-dimensional local field and is denoted by k_1 Let $n \ge 1$ and $\mathcal{H}^n(\mathbb{Z}/\ell(3))$ be the Zariskien sheaf associated to the presheaf $U \longrightarrow H^n(U, \mathbb{Z}/\ell(3))$. Its cohomology is calculated by the Bloch-Ogus resolution. So, we have the two exact sequences:

$$H^{3}(K, \mathbb{Z}/\ell(3)) \longrightarrow \bigoplus_{v \in P} H^{2}(k(v), \mathbb{Z}/\ell(2)) \longrightarrow H^{1}(X_{Zar}, \mathcal{H}^{3}(\mathbb{Z}/\ell(3))) \longrightarrow 0$$
(4.1)

$$0 \longrightarrow H^{0}(X_{Zar}, \mathcal{H}^{4}(\mathbb{Z}/\ell(3))) \longrightarrow H^{4}(K, \mathbb{Z}/\ell(3)) \longrightarrow \bigoplus_{v \in P} H^{3}(k(v), \mathbb{Z}/\ell(2))$$

$$(4.2)$$

4.1 The reciprocity map

We define the group $SK_2(X) / \ell$ by

$$SK_{2}(X) / \ell = Co \ker \left\{ K_{3}(K) / \ell \xrightarrow{\oplus \partial_{v}} \bigoplus_{v \in P} K_{2}(k(v)) / \ell \right\},\$$

where $\partial_v : K_3(K) \longrightarrow K_2(k(v))$ is the boundary map in K-Theory. It will play a key role in class field theory for *X* as observed by Saito in the introduction of [9]. In this section, we construct a map

$$\sigma/\ell : SK_2(X)/\ell \longrightarrow \pi_1^{ab}(X)/\ell$$

which describes the class field theory of *X*.

The definition of $SK_2(X) / \ell$ leads to the exact sequence

$$K_{3}(K) / \ell \longrightarrow \bigoplus_{v \in P} K_{2}(k(v)) / \ell \longrightarrow SK_{2}(X) / \ell \longrightarrow 0$$

On the other hand, it is known that the following diagram is commutative

$$\begin{array}{ccc} K_{3}\left(K\right)/\ell & \longrightarrow \bigoplus_{v \in P} & K_{2}\left(k\left(v\right)\right)/\ell \\ \downarrow h^{3} & \downarrow h^{2} \\ H^{3}\left(K, \mathbb{Z}/\ell\left(3\right)\right) & \longrightarrow \bigoplus_{v \in P} & H^{2}\left(k\left(v\right), \mathbb{Z}/\ell\left(2\right)\right), \end{array}$$

where h^2 , h^3 are the Galois symbols. Taking in account the exact sequence (4.1), we get the existence of a morphism

$$h: SK_{2}(X) / \ell \longrightarrow H^{1}\left(X_{Zar}, \mathcal{H}^{3}\left(\mathbb{Z}/\ell\left(2\right)\right)\right)$$

This morphism fits in the following commutative diagram

By Merkur'jev-Suslin, the map h^2 is an isomorphism, which implies that h is surjective. Furthermore, the spectral sequence

$$H^{p}(X_{Zar}, \mathcal{H}^{q}(\mathbb{Z}/\ell(3))) \Rightarrow H^{p+q}(X, \mathbb{Z}/\ell(3))$$

induces the exact sequence

$$0 \longrightarrow H^{1}\left(X_{Zar}, \mathcal{H}^{3}\left(\mathbb{Z}/\ell\left(3\right)\right)\right) \stackrel{e}{\longrightarrow} H^{4}\left(X, \mathbb{Z}/\ell\left(3\right)\right)$$

$$\longrightarrow H^{0}\left(X_{Zar}, \mathcal{H}^{4}\left(\mathbb{Z}/\ell\left(3\right)\right)\right) \longrightarrow H^{2}\left(X_{Zar}, \mathcal{H}^{3}\left(\mathbb{Z}/\ell\left(3\right)\right)\right) = 0$$

$$(4.3)$$

Composing *h* and *e*, we get the map

$$SK_2(X) / \ell \longrightarrow H^4(X, \mathbb{Z}/\ell(3)).$$

Finally, the group $H^4(X, \mathbb{Z}/\ell(3))$ is identified to the group $\pi_1^{ab}(X)/\ell$ by the duality [4,II, th 2.1]

$$H^{4}(X,\mathbb{Z}/\ell(3)) \otimes H^{1}(X,\mathbb{Z}/\ell) \longrightarrow H^{5}(X,\mathbb{Z}/\ell(3)) \simeq H^{3}(k,\mathbb{Z}/\ell(2)) \simeq \mathbb{Z}/\ell$$

Hence, we obtain the map

$$\sigma/\ell: SK_2(X)/\ell \longrightarrow \pi_1^{ab}(X)/\ell$$

Remark 4.1. By the exact sequence (4.2), the group $H^0(X_{Zar}, \mathcal{H}^4(\mathbb{Z}/\ell(3)))$ coincides with the kernel of the map

$$H^{4}(K,\mathbb{Z}/\ell(3)) \longrightarrow \bigoplus_{v \in P} H^{3}(k(v),\mathbb{Z}/\ell(2)).$$

Besides, by (4.3) and localization in étale cohomology

$$\underset{v \in P}{\oplus} H^{2}(k(v), \mathbb{Z}/\ell(2)) \longrightarrow H^{4}(X, \mathbb{Z}/\ell(3)) \longrightarrow$$
$$H^{4}(K, \mathbb{Z}/\ell(3)) \underset{v \in P}{\longrightarrow} H^{3}(k(v), \mathbb{Z}/\ell(2))$$

we see that $H^1(X_{Zar}, \mathcal{H}^4(\mathbb{Z}/\ell(3)))$ is the image of the Gysin map

$$\underset{v \in P}{\oplus} H^{2}\left(k\left(v\right), \mathbb{Z}/\ell\left(2\right)\right) \xrightarrow{g} H^{4}\left(X, \mathbb{Z}/\ell\left(3\right)\right).$$

Consequently, the morphism *g* factorize through $H^1(X_{Zar}, \mathcal{H}^4(\mathbb{Z}/\ell(3)))$

Then, we derive the following commutative diagram

$$\begin{array}{ccccc} K_{3}\left(K\right)/\ell & \to & \bigoplus_{v \in P} K_{2}(k\left(v\right))/\ell & \to & SK_{2}\left(X\right)/\ell \longrightarrow 0 \\ \downarrow h^{3} & \downarrow h^{2} & \downarrow h \\ H^{3}\left(K,\mathbb{Z}/\ell\left(3\right)\right) & \to & \bigoplus_{v \in P} H^{2}\left(k\left(v\right),\mathbb{Z}/\ell\left(2\right)\right) & \to & H^{1}\left(X_{Zar},\mathcal{H}^{4}(\mathbb{Z}/\ell\left(3\right)\right)\right) \longrightarrow 0 \\ & \downarrow g \\ \pi_{1}^{ab}\left(X\right)/l = H^{4}\left(X,\mathbb{Z}/\ell\left(3\right)\right) & \checkmark e \end{array}$$

The surjectivity of the map *h* implies that the cokernel of

$$\sigma/\ell: SK_2(X)/\ell \longrightarrow \pi_1^{ab}(X)/\ell$$

coincides with the cokernel of *e* which is $H^0(X_{Zar}, \mathcal{H}^4(\mathbb{Z}/\ell(3)))$. Hence *Co* ker σ/ℓ is the dual of the kernel of the map

$$H^{1}(X, \mathbb{Z}/\ell) \longrightarrow \prod_{v \in P} H^{1}(k(v), \mathbb{Z}/\ell)$$
(4.4)

4.2 The Kato-Saito exact sequence

Definition 4.2. Let *Z* be a Noetherian scheme. A finite etale covering $f : W \to Z$ is called a c.s covering if for any closed point *z* of *Z*, $z \times_Z W$ is isomorphic to a finite scheme-theoretic sum of copies of *z*. We denote by $\pi_1^{c.s}(Z)$ the quotient group of $\pi_1^{ab}(Z)$ which classifies abelian c.s coverings of *Z*.

Hence, the group $\pi_1^{c.s}(X) / \ell$ is the dual of the kernel of the map

$$H^{1}(X,\mathbb{Z}/\ell) \longrightarrow \prod_{v \in P} H^{1}(k(v),\mathbb{Z}/\ell)$$

as in [9, section 2, definition and sentence just below]. Now, we are in position to calculate the homologies of the Bloch-Ogus complex associated to *X*.

Generalizing [10, Theorem 7], we obtain the following.

Proposition 4.3. Let X be a projective smooth curve defined over k. Then for all ℓ , we have the following exact sequence

$$0 \longrightarrow \pi_1^{c.s}(X) / \ell \longrightarrow H^4(K, \mathbb{Z}/\ell(3)) \longrightarrow \bigoplus_{v \in P} H^3(k(v), \mathbb{Z}/\ell(2)) \longrightarrow \mathbb{Z}/\ell \longrightarrow 0.$$

Proof. Consider the localization sequence on *X*

$$\underset{v \in P}{\bigoplus} H^{2}(k(v), \mathbb{Z}/\ell(2)) \xrightarrow{g} H^{4}(X, \mathbb{Z}/\ell(3)) \longrightarrow H^{4}(K, \mathbb{Z}/\ell(3))$$
$$\longrightarrow \underset{v \in P}{\bigoplus} H^{3}(k(v), \mathbb{Z}/\ell(2)) \longrightarrow H^{5}(X, \mathbb{Z}/\ell(3)) \longrightarrow 0$$

We know that the cokernel of the Gysin map *g* coincides with $\pi_1^{c.s}(X) / \ell$ and we use the isomorphism $H^5(X, \mathbb{Z}/\ell(3)) \simeq \mathbb{Z}/\ell$.

5 The group $\pi_1^{c.s}(X)$

In his paper [9], Saito does not prove the p- primary part in the char $k = p \ge 0$ case. This case was done by Yoshida in [12]. His method is based on the theory of monodromy-weight filtration of degenerating abelian varieties on local fields. In the current paper, we use this approach to investigate the group $\pi_1^{c.s}(X)$. As mentioned by Yoshida in [12, section 2] Grothendieck's theory of monodromy-weight filtration on Tate module of abelian varieties are valid where the residue field is arbitrary perfect field.

We assume the semi-stable reduction and choose a regular model \mathcal{X} of X over $SpecO_k$, by which we mean a two dimensional regular scheme with a proper birational morphism $f : \mathcal{X} \longrightarrow SpecO_k$ such that $\mathcal{X} \otimes_{O_k} k \simeq X$ and if \mathcal{X}_s designates the special fiber $\mathcal{X} \otimes_{O_k} k_1$, then $Y = (\mathcal{X}_s)_{r\acute{e}d}$ is a curve defined over the residue field k_1 such that any irreducible component of Y is regular and it has ordinary double points as singularity.

Let $\overline{Y} = Y \otimes_{k_1} \overline{k_1}$, where $\overline{k_1}$ is an algebraic closure of k_1 and $\overline{Y}^{[p]} = \bigcup_{\substack{i_1 < i_1 < \cdots < i_p}} \overline{Y_{i_1}} \cap \overline{Y_{i_1}} \cap \cdots \cap \overline{Y_{i_p}}$, $(\overline{Y_i})_{i \in I}$ =collection of irreducible components of \overline{Y}

Let $|\overline{\Gamma}|$ be a realization of the dual graph $\overline{\Gamma}$. The group $H^1(|\overline{\Gamma}|, \mathbb{Q}_l)$ coincides with the group $W_0(H^1(\overline{Y}, \mathbb{Q}_l))$ of all elements of weight 0 for the filtration

$$H^1(\overline{Y}, \mathbb{Q}_\ell) = W_1 \supseteq W_0 \supseteq 0$$

of $H^1(\overline{Y}, \mathbb{Q}_\ell)$ deduced from the spectral sequence

$$E_1^{p,q} = H^q(\overline{Y}^{[p]}, \mathbb{Q}_\ell) \Longrightarrow H^{p+q}(\overline{Y}, \mathbb{Q}_\ell)$$

For details see [2], [3] and [6].

Now, if in addition we assume that the irreducible components and double points of \overline{Y} are defined over k_1 , then the dual graph $\overline{\Gamma}$ of \overline{Y} goes down to k_1 and we obtain the injection

$$W_0(H^1(\overline{Y}, \mathbb{Q}_l)) \subseteq H^1(Y, \mathbb{Q}_l) \hookrightarrow H^1(X, \mathbb{Q}_l)$$

Proposition 5.1. The group $\pi_1^{c.s}(X) \otimes \mathbb{Q}_l$ admits a quotient of type \mathbb{Q}_l^r , where *r* is the $\mathbb{Q}_l - rank$ of the group $H^1(|\overline{\Gamma}|, \mathbb{Q}_l)$

Proof. We know (4.4) that $\pi_1^{c.s}(X) \otimes \mathbb{Q}_l$ is the dual of the kernel of the map

$$\alpha: H^{1}(X, \mathbb{Q}_{l}) \longrightarrow \prod_{v \in P} H^{1}(k(v), \mathbb{Q}_{l})$$

We will prove that $W_0(H^1(\overline{Y}, \mathbb{Q}_l)) \subseteq Ker\alpha$. The group $W_0 = W_0(H^1(\overline{Y}, \mathbb{Q}_l))$ is calculated as the homology of the complex

$$H^0(\overline{Y}^{[0]}, \mathbb{Q}_\ell) \longrightarrow H^0(\overline{Y}^{[1]}, \mathbb{Q}_\ell) \longrightarrow 0$$

Hence

$$W_0 = H^0(\overline{Y}^{[1]}, \mathbb{Q}_\ell) / \operatorname{Im} \{ H^0(\overline{Y}^{[0]}, \mathbb{Q}_\ell) \longrightarrow H^0(\overline{Y}^{[1]}, \mathbb{Q}_\ell) \}.$$

Thus, it suffices to prove the vanishing of the composing map

$$H^{0}(\overline{Y}^{[1]}, \mathbb{Q}_{\ell}) \longrightarrow W_{0} \subseteq H^{1}(Y, \mathbb{Q}_{l}) \hookrightarrow H^{1}(X, \mathbb{Q}_{l}) \longrightarrow H^{1}(k(v), \mathbb{Q}_{l})$$

for all $v \in P$.

Let z_v be the 0- cycle in \overline{Y} obtained by specializing v, which induces a map $z_v^{[1]} \longrightarrow \overline{Y}^{[1]}$. Consequently, the map $H^0(\overline{Y}^{[1]}, \mathbb{Q}_\ell) \longrightarrow H^1(k(v), \mathbb{Q}_l)$ factors as follows

$$\begin{array}{cccc}
H^{0}(\overline{Y}^{[1]}, \mathbb{Q}_{\ell}) & \longrightarrow & H^{1}\left(k\left(v\right), \mathbb{Q}_{l}\right) \\
& \searrow & \swarrow & \\
& H^{0}(z_{v}^{[1]}, \mathbb{Q}_{\ell}) & & \end{array}$$

But the trace $z_v^{[1]}$ of $\overline{Y}^{[1]}$ on z_v is empty. This implies that $H^0(z_v^{[1]}, \mathbb{Q}_\ell)$ vanishes.

Let V(X) be the kernel of the norm map $N : SK_2(X) \longrightarrow K_2(k)$ induced by the norm map $N_{k(v)/k^x} : K_2(k(v)) \longrightarrow K_2(k)$ for all v. Then, we obtain a map τ/l $: V(X)/\ell \longrightarrow \pi_1^{ab}(X)^{g\acute{eo}}/\ell$ and a commutative diagram

$$\begin{array}{ccccc} V(X)/\ell & \longrightarrow & SK_2(X)/\ell & \to & K_2(k)/\ell \\ \downarrow \tau/l & \downarrow \sigma/\ell & \downarrow h/l \\ \pi_1^{ab}(X)^{g\acute{eo}}/\ell & \longrightarrow & \pi_1^{ab}(X)/\ell & \to & Gal(k^{ab}/k)/l \end{array}$$

where the map $h/l : K_2(k) / l \longrightarrow Gal(k^{ab}/k)/l$ is the one obtained by class field theory of *k* (section 3). From this diagram we see that the group $Co \ker \tau/l$ is isomorphic to the group $Co \ker \sigma/\ell$. Next, we investigate the map τ/l .

We start by the following result which is a consequence of the structure of the two-dimensional local field *k*.

Lemma 5.2. There is an isomorphism

$$\pi_1^{ab} \left(X \right)^{g\acute{eo}} \simeq \pi_1^{ab} \left(\overline{X} \right)_{G_k}$$

where $\pi_1^{ab}(\overline{X})_{G_k}$ is the group of coinvariants under $G_k = Gal(k^{ab}/k)$.

Proof. As in the proof of Lemma 4.3 of [12], this is an immediate consequence of (Theorem 3.1).

Finally, we are in position to infer the structure of the group $\pi_1^{ab}(X)^{g^{\acute{e}o}}$

Theorem 5.3. The group $\pi_1^{ab}(X)^{g\acute{eo}} \otimes \mathbb{Q}_l$ is isomorphic to $\widehat{\mathbb{Q}_l}^r$ and the map $\tau : V(X) \longrightarrow \pi_1^{ab}(X)^{g\acute{eo}}$ is a surjection onto $(\pi_1^{ab}(X)^{g\acute{eo}})_{tor}$.

Proof. By the preceding lemma, we have the isomorphism $\pi_1^{ab}(X)^{g\acute{eo}} \simeq \pi_1^{ab}(\overline{X})_{G_k}$. On the other hand, the group $\pi_1^{ab}(\overline{X})_{G_k} \otimes \mathbb{Q}_\ell$ admits the filtration [12,Lemma 4.1 and section 2]

$$W_{0}(\pi_{1}^{ab}\left(\overline{X}\right)_{G_{k}}\otimes\mathbb{Q}_{l})=\pi_{1}^{ab}\left(\overline{X}\right)_{G_{k}}\otimes\mathbb{Q}_{l}\supseteq W_{-1}(\pi_{1}^{ab}\left(\overline{X}\right)_{G_{k}}\otimes\mathbb{Q}_{l})\supseteq W_{-2}(\pi_{1}^{ab}\left(\overline{X}\right)_{G_{k}}\otimes\mathbb{Q}_{l})$$

But, by the assumption, the curve *X* admits a semi-stable reduction, then the group $Gr_0(\pi_1^{ab}(\overline{X})_{G_k} \otimes \mathbb{Q}_l) = W_0(\pi_1^{ab}(\overline{X})_{G_k} \otimes \mathbb{Q}_l)/W_{-1}(\pi_1^{ab}(\overline{X})_{G_k} \otimes \mathbb{Q}_l)$ has the following structure

$$0 \longrightarrow Gr_0(\pi_1^{ab}(\overline{X})_{G_k} \otimes \mathbb{Q}_l)_{tor} \longrightarrow Gr_0(\pi_1^{ab}(\overline{X})_{G_k} \otimes \mathbb{Q}_l) \longrightarrow \widehat{\mathbb{Q}_l}^{r'} \longrightarrow 0,$$

where r' is the k - rank of X. This is confirmed by Yoshida [12, section 2], independently of the finiteness of the residue field of k considered in his paper. The integer r' is equal to the integer $r = H^1(|\overline{\Gamma}|, \mathbb{Q}_l) = H^1(|\Gamma|, \mathbb{Q}_l)$ by assuming that the irreducible components and double points of \overline{Y} are defined over k_1 .

Furthermore, the exact sequence

$$0 \longrightarrow W_{-1}(\pi_1^{ab}(\overline{X})_{G_k}) \longrightarrow \pi_1^{ab}(\overline{X})_{G_k} \longrightarrow Gr_0(\pi_1^{ab}(\overline{X})_{G_k}) \longrightarrow 0$$

and (Proposition 5.1) allow us to conclude that the group $W_{-1}(\pi_1^{ab}(\overline{X})_{G_k})$ is finite and the map $\tau : V(X) \longrightarrow \pi_1^{ab}(X)^{g\acute{eo}}$ is a surjection onto $(\pi_1^{ab}(X)^{g\acute{eo}})_{tor}$ as established by Yoshida in [12] for curve over usually local fields.

Remark 5.4. If we use the same method of Saito to study curves over two-dimensional local fields, we need class field theory of two-dimensional local ring having a one-dimensional local field as residue field. This is already done in [1]. Hence, one can follow Saito 's method to obtain the same results.

References

- [1] Draouil, B. Cohomological Hasse principle for the ring $\mathbb{F}_p((t))[[X,Y]]$, Bull. Belg. Math. Soc. Simon Stevin 11, no. 2 (2004), pp 181–190
- [2] Draouil, B.,Douai, J. C. *Sur l'arithmétique des anneaux locaux de dimension 2 et* 3, Journal of Algebra (213) (1999), pp 499-512.
- [3] Douai, J. C. Monodromie et Arithmétique des Surfaces Birkhauser, Février (1993)
- [4] Douai, J. C. Le théorème de Tate-Poitou pour le corps des fonctions définies sur les corps locaux de dim N, Journal of Algebra Vol 125 Nº II August (15), (1989) ,pp 181-196.
- [5] Kato, K. Existence theorem for higher local fields Geometry and Topology Monographs Vol.3: Invitation to higher local fields pp 165-195
- [6] Morrisson, D. R. The Clemens-Schmid exact sequence and applications, in Annals of Mathematics Studies Vol. (106), , Princeton Univ. Press, Princeton NJ, pp 101-119
- [7] Shatz S. S. Cohomology of Artinian group schemes over local fields, Annals of Maths (2) (88), (1968), pp 492-517

- [8] Saito, S. Class field Theory for two-dimensional local rings Galois groups and their representations, Kinokuniya-North Holland Amsterdam, vol 12 (1987), pp 343-373
- [9] Saito, S. *Class field theory for curves over local fields*, Journal of Number theory 21 (1985), pp 44-80.
- [10] Saito, S. Some observations on motivic cohomology of arithmetic schemes. Invent.math. 98 (1989), pp 371-404.
- [11] Serre, J. P. Modular forms of weight one and Galois representations, Algebraic Number Theory, Academic Press, (1977), pp 193-268.
- [12] Yoshida, T. Finiteness theorems in the class field theory of varieties over local fields, Journal of Number Theory (101), (2003), pp 138-150.

Département de Mathématiques. Faculté des Sciences de Bizerte 7021, Zarzouna Bizerte. email:Belgacem.Draouil@fsb.rnu.tn