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Abstract

Let B be a Banach space and T a bounded linear operator on B. A cele-
brated theorem of Ansari says that whenever T is hypercyclic so is any power
Tn. We provide a very natural proof of this theorem by building on an ap-
proach by Bourdon. We also explore an extension to a non linear setting of a
theorem of León-Saavedra and Müller which says that for λ ∈ C and |λ| = 1
the operator λT is hypercyclic whenever T is.

1 Introduction

A continuous linear operator T in a Fréchet space F is hypercyclic if there exists
x ∈ F such that Orb(T, x) := {Tkx : k = 0, 1, 2, . . .} is dense in F. The properties
of this type of operators have been intensively studied in the last decade. The
Oberwolfach report [16] gives a good sample of results recently obtained in the
area. It illustrates also the speed with which some of the main problems have
been resolved and new ones are investigated. At the writing of the report one of
the main problems was whether every hypercyclic operator satisfies the Hyper-
cyclicity Criterion; soon after a paper by De la Rosa and Read [8] answered it in
the negative. However, the importance of the Hypercyclicity Criterion is that if
an operator satisfies it then it is hypercyclic. The first version of it was given by
Kitai in [13] and by Gethner and Shapiro in [9].

In [1] Ansari solved a question posed in [13] by proving her beautiful theorem:
If an operator T is hypercyclic so is every power Tn for any n ∈ N. Bourdon [5]
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was inspired by this result and in trying to find a less mysterious way of proving
it, he was able to prove it in a more transparent way when n = 2. In the next
section we show how to push his method for the general case n ∈ N. The proof
is valid for Fréchet spaces.

Once we have a hypercyclic operator, Ansari’s theorem provides us with a
plethora of them. Also, as was shown in [20], when combined with other argu-
ments it might give different classes of hypercyclic operators. For instance, the
spectral mapping theorem might show that Tn and Tm are not similar to each
other whenever n 6= m.

Let T = {α : α ∈ C, |α| = 1}. León-Saavedra and Müller proved in [14] that if
T is a hypercyclic Banach space operator, then the operator λT is also hypercyclic
whenever λ is in the unit circle T. This motivates the question in Section 3. This
last section shows some partial answer to the question; our setting is the infinite
torus.

2 Iterates of a map with a dense orbit

Let X be a topological space and let T : X −→ X be continuous. For an integer
n ≥ 1, we denote by Tn the nth iterate of T: T ◦ T ◦ · · · ◦ T, n times, and take T0

to be the identity map. A subset A of X is called invariant under T if T(A) ⊆ A.
The following theorem is the key for our proof of Theorem 2.2.

Theorem 2.1 (Separation Theorem for prime n). Let T : X −→ X be a continuous
map. Assume that there exists x ∈ X such that Orb(T, x) is dense in X. Suppose also
that

D := {y ∈ X : Orb(T, y) is dense in X}

is invariant under T. If Orb(Tn, x) is not dense in X for some prime n ≥ 2, then D is
separated by n pairwise disjoint open sets Gi, that is,

D =
n⋃

i=1

(D ∩ Gi),

and T(D ∩ Gi) ⊆ D ∩ Gi+1 for 1 ≤ i ≤ n − 1, T(D ∩ Gn) ⊆ D ∩ G1. Consequently,
each D ∩ Gi is invariant under Tn, i = 1, 2, . . . , n.

Proof. Observe that Orb(T, x) ⊆ D since T(D) ⊆ D and x ∈ D. Thus D is dense
in X. For i = 1, 2, . . . , n, let Ci be the closure of the set Orb(Tn, Ti−1x). Thus
C1 6= X but

X = Orb(T, x) =
n⋃

i=1

Orb(Tn, Ti−1x) =
n⋃

i=1

Ci.

It would be tempting to define Gi as the interior of Ci. A modification of this
idea will work.

Step 1. The continuity of T implies

T(Ci) ⊆ Ci+1 for i = 1, 2, . . . , n − 1 and T(Cn) ⊆ C1. (1)
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By applying (1) appropriately 1, 2, . . . , n − 1, n times we have, respectively,

T(Cn) ⊆ C1, T2(Cn−1) ⊆ C1, . . . , Tn−1(C2) ⊆ C1 and Tn(C1) ⊆ C1.

That is,
Tr(Cn−r+1) ⊆ C1, r = 1, 2, . . . , n. (2)

Using the same arguments we obtain

Tn(Ci) ⊆ Ci, i = 1, 2 . . . , n.

Hence it is clear that for m = 0, 1, 2, . . .,

Tmn(Ci) ⊆ Ci for i = 1, 2, . . . , n. (3)

Step 2. We will show that

D ∩ C1 ∩ C2 · · · ∩ Cn = ∅. (4)

Assume that z ∈ D∩C1 ∩C2 · · · ∩Cn. Let k = mn + r be a nonnegative integer
with 0 ≤ r < n. Since z ∈ Cn−r+1 for r > 0 and T0z = z ∈ C1, by (2) Trz ∈ C1,
and this together with (3) implies that Tkz = Tmn(Trz) ∈ C1 for k = 0, 1, 2, . . ..

Thus we obtain X = Orb(T, z) ⊆ C1, which is a contradiction.

Step 3. There exist an integer r ∈ [1, n− 1] and A ⊂ {1, 2, . . . n} with Card(A)=
r such that

D ∩ (
⋂

i∈A

Ci) 6= ∅ but D ∩ (
⋂

i∈B

Ci) = ∅ (5)

whenever B ⊂ {1, 2, . . . , n} and Card(B)> r.
The set

M := {s : s ≤ n and D ∩ (
⋂

i∈B

Ci) = ∅ whenever Card(B) = s}

satisfies that n ∈ M because of (4), and 1 /∈ M since x ∈ C1 ∩ D. Thus, we have
obtained

r = min M − 1.

According to equation (5) let z ∈ D ∩ (
⋂

i∈A1
Ci) with A1 ⊂ {1, 2, . . . , n} and

Card (A1) = r. In the next step we will need the following.

Fact: For i = 1, 2, . . . , n the sets Ai := {s + i− 1 (mod n) : s ∈ A1} are all different.
Since card(A1)=r < n, the sets A1 and A2 are different.
Define the maps Lj : {A1, A2, . . . , An} −→ {A1, A2, . . . , An} by Lj(Ak) :=

Ak+j (mod n). The cyclic group {Lj : j = 0, 1, 2, . . . , n − 1}, where Lj1 ∗ Lj2 =

Lj1+j2 (mod n), has more than one element since L1(A1) = A2 6= L0(A1) = A1.
Since (L1)n = L0 is the identity of the group, the order of L1 divides n and

therefore is n since n is prime. On the other hand, the map L1 is one-to-one
and so is onto, and consequently Lj is bijective for all j. Thus we can consider
{Lj : j = 0, 1, 2, . . . , n − 1} as a subgroup of the group of permutations Sm, where
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m =Card{A1, A2, . . . An}. Consequently, by Lagrange’s theorem, n = order(L1)
divides m!, and therefore m = n.

This means that the sets Ai are all different for i = 1, 2, . . . , n.

Step 4. With Ai as above, let us define

Ki :=
⋂

j∈Ai

Cj

with i = 1, 2, . . . , n. Then by (1) we have

T(Ki) ⊆ Ki+1 for i = 1, 2, . . . , n − 1 and T(Kn) ⊆ K1, (6)

and recall that z ∈ D ∩ K1.
Therefore the invariance of D under T and (6) imply that Ti−1z ∈ D ∩ Ki for

i = 1, 2, . . . , n. Since (3) implies that TmnKi ⊂ Ki for m = 0, 1, 2, . . ., we deduce
that Orb(T, z) ⊆

⋃n
i=1 Ki. Then since each Ki is closed

X =
n⋃

i=1

Ki (7)

and thus D =
⋃n

i=1(D ∩ Ki).
Furthermore, since Card(Ai ∪ Aj) > r for i 6= j, (5) implies that

D ∩ Ki ∩ Kj = ∅. (8)

So we have obtained a partition of D in n non-empty relatively closed sets.

Step 5. We are finally ready to obtain the promised open sets Gi. Set

Gi := X \
⋃

j 6=i

Kj

for i = 1, 2, . . . , n. Due to (7),

Gi = Ki \
⋃

j 6=i

Kj, i = 1, 2, . . . , n. (9)

Then Gi is open and for i 6= j
Gi ∩ Gj = ∅.

For i = 1, 2, . . . , n we have by (8) and (9),

D ∩ Gi = D ∩ Ki. (10)

Thus

D =
n⋃

i=1

(D ∩ Ki) =
n⋃

i=1

(D ∩ Gi).

Finally, equations (6) and (10) imply

T(D ∩ G1) ⊆ D ∩ G2, T(D ∩ G2) ⊆ D ∩ G3, . . . , T(D ∩ Gn) ⊆ D ∩ G1.

It follows that every set D ∩ Gi is nonempty and invariant under Tn.
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Note that if X is T1 and without isolated points, then D is invariant under T.

Remark. We remark that Theorem 2.1 can also be obtained as a consequence of
a result of Banks, Theorem 2.3 in [2]; however, the derivation of Theorem 2.1 in
this way requires basically the same effort as obtaining it directly.

It is intriguing to speculate why Bourdon’s approach in [5] was not pursued
by other people. A possible explanation is that he and Feldman proved in [6]
another beautiful and more encompassing theorem which also implies results
previously obtained by Costakis [7] and by Peris [18]. Moreover, in [23] Wengen-
roth extended the results of [6] to non-locally convex topological vector spaces.
We wrote the preceding speculations in the original version of this paper, but the
referee informs us that Bourdon’s approach has very recently been pursued by
Grosse-Erdmann, León-Saavedra and Piqueras-Lerena [10]

As a consequence of the Separation Theorem we recover, in a more general
setting but which is also contained in [6], Ansari’s Theorem. For a continuous
linear map T on a Fréchet space X, let

HT := {x : Orb(T, x) = X}.

Theorem 2.2 (Ansari). Let X be a Fréchet space and let T be a continuous linear map
acting on X. If T is hypercyclic, then so is Tn for all n ∈ N. Moreover, the sets of
hypercyclic vectors for T and Tn coincide; i.e, HT = HTn .

Proof. For prime n, we argue as in Theorem 3.4 of [5]. Assume that the vector
x is hypercyclic for T but not for Tn. We keep (until we get a contradiction) the
notation for D and Gi of Theorem 2.1. Let z ∈ D ∩ G1. Since z ∈ D the set

E = {p(T)(z) : p is a polynomial} \ {0}

is also contained in D and is connected, see [4] for the complex case and [3] for the
real case. On the other hand, Ti−1z ∈ E ∩ (Gi ∩ D), i = 1, 2, . . . , n. Thus the G′

i s,
with i = 1, 2, . . . , n, separate not only D but also E, which is impossible. Thus we
have proved that D = HT ⊆ HTn . Since the other inclusion is immediate because
Orb(Tn, x) ⊂ Orb(T, x), we have equality HT = HTn for n prime.

The general case follows from Theorem 2.4 of [2]. We provide a proof for the
sake of completeness. Assume by induction that HT = HTl whenever 1 ≤ l < n.
Then we need to consider only the case in which n is not prime. Let n = mp with
p prime. Since m < n we deduce that HT = HTm , but since Tn = (Tm)p we
conclude that HT = HTm = H(Tm)p = HTn .

The example in p. 1580 of [5] can be extended to the general case when p is
prime by considering p different circles in the complex plane which are tangent
in one point. Concretely, let X =

⋃p
k=1 Ck where Ck = {−k + 1 + kz : z ∈ T} for

k = 1, 2, . . . , p. (Recall that T is the unit circle.) Let f : X −→ X be defined in
Ck as f (−k + 1 + kz) = −k + (k + 1)z2 for 1 ≤ k < p and f (−p + 1 + pz) = z2.
Calculations show that f (Ck) = Ck+1 for 1 ≤ k < p and f (Cp) = C1 and also
f p(Ck) ⊂ Ck for k = 1, 2, . . . , p.

Thus for each p prime there is a connected metric space X without isolated
points and a function f : X −→ X with a dense orbit but f p doesn’t have a dense
orbit.
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For a map T : X −→ X there is another concept related to having dense orbit,
which is (topological) transitivity. Actually for a compact metric space, transi-
tivity is defined in p. 127 [22] as having a dense orbit. Another, more common
definition, is the one given in [2]: given two nonempty open sets U, V there is
k > 0 such that Tk(U) ∩ V 6= ∅. We point out that Lemma 1.1 in [2] is not correct
with this definition, but it becomes correct if k is allowed to be 0. Peris showed
in [17] that if T is transitive on a Baire subspace X with at most one point of
discontinuity, then T still has a dense orbit.

In [19] there is an example of a linear but unbounded operator T which is hy-
percyclic but neither T2 nor −T is hypercyclic, which shows that neither theorem
mentioned in the abstract is valid for unbounded operators.

3 The infinite torus

The theorem of León-Saavedra and Müller [14] mentioned in the introduction is
true also in the context of composition operators Cϕ on H(U) = {holomorphic
functions on U}, where ϕ is a holomorphic self map on the open unit disk U.
Shapiro showed in [21] that Cϕ is hypercyclic if and only if ϕ is univalent and
doesn’t have a fixed point in U. Moreover, he showed that these operators are
chaotic, which means that they have in addition a dense set of periodic points.
In [24] Yousefi and Rezaei studied hypercyclicity for weighted composition op-
erators M f Cϕ on H(U), where f ∈ H(U). In particular, they showed that when
λ ∈ T and Cϕ is hypercyclic so is λCϕ.

Question: Suppose that a topological space X admits a multiplication
M : T × X −→ X, defined by M(λ, x) = λx such that 1x = x and (λµ)x = λ(µx)
which is a continuous mapping in both variables. Let f : X −→ X be a map with
a dense orbit. What are the conditions on X and f for which λ f has also a dense
orbit for all λ ∈ T?

An example of such an X is when it is a subset of a topological vector space over
the complex numbers and such that it is invariant under multiplying by λ for all
λ ∈ T.
Another example is the regular 2-torus since it can be seen as T × T. (The unit
circle T is the 1-torus.) More generally we can consider the n-torus and the infinite
torus

Tn = T × · · · × T
︸ ︷︷ ︸

n

and T∞ = ∏
j∈J

Xj,

with J an infinite countable set, Xj = T for all j ∈ J, and T∞ is equipped with the
product topology. Thus T∞ is an abelian topological group with multiplication
coordinate-wise and with normalized Haar measure. In the sequel, until the last
comments, we assume that the index set J is N.

An easy example showing that the answer to the question is not always pos-
itive is the map f : T −→ T defined by f (z) = αz, where α = e2πti is such
that t ∈ R \ Q. The fact that f has a dense orbit was already known to Dirichlet
in 1845, p. 157 in [11]; but α−1 f = I, which doesn’t have a dense orbit. More
generally, we have
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Proposition 3.1. For each j ∈ N, let αj = e2πtji be such that the sets {1, t1, . . . , tn}
are linearly independent over Q for all n ∈ N. Let f : T∞ −→ T∞ be defined as

f (z1, z2, . . .) = (α1z1, α2z2, . . .). Then f has a dense orbit but α−1
j f doesn’t have a dense

orbit for all j ∈ N.

Proof. We claim that the point (1, 1, . . .) has a dense orbit under f . Let

(z1, z2, . . . , zm, zm+1, . . .)

be a point of T∞. Let ǫ > 0. Since T∞ has the product topology, it is enough to
find an n such that |αn

j − zj| < ǫ for j = 1, 2, . . . , m. But this is what Kroenecker’s

theorem says, p. 158 in [11] or p. 381 in [12].

An affine map in T∞ is of the form L(z) = aB(z), where a ∈ T∞ is fixed and
B is a continuous endomorphism. If B is the identity, the map is called a rotation.
The map in the proposition above is a rotation with a = (α1, α2, . . .).

Let (X,M, µ) be a probability space and let V be a measure-preserving map
on X, i.e., µ(V−1(A)) = µ(A) for every measurable set A ∈ M. Recall that V is
called ergodic if whenever A ∈ M is invariant under V then µ(A) is either 0 or 1.
Theorem 1.11 of [22] says that if X is a connected, metric, compact abelian group,
µ is its normalized Haar measure and V is an affine map, then V being ergodic is
equivalent to having a point with dense orbit, in which case the set of points with
dense orbit has measure 1. Thus the map in the proposition above is ergodic with
respect to the Haar measure in T∞.

It is well-known that the only continuous endomorphisms of the unit circle T

are of the form ϕ(z) = zn with n ∈ Z. In the sequel we only consider continuous
endomorphisms of either Tn or T∞. In p. 15 of [22] the endomorphisms of the
n-torus Tn are characterized in terms of n × n matrices with integers entries. This
comes from identifying Tn with Rn/Zn by the map

In(e2πt1 , . . . , eeπtn) = (t1, . . . , tn); (11)

observe that In is an isomorphism. A homomorphism of Tn is an epimorphism if
the determinant of the corresponding matrix is non zero. It is an automorphism
if the determinant is either 1 or −1. The ergodic endomorphisms are the epimor-
phisms for which the associated matrices don’t have unit roots as eigenvalues.
In particular for T, if |n| > 1 then ϕ(z) = zn is ergodic. So, in the case of T

the automorphisms are not ergodic; however, starting with the regular torus T2,
automorphisms can be ergodic. An example is the map B(z1, z2) = (z3

1z7
2, z2

1z5
2),

whose associated matrix is

A =

(
3 7
2 5

)

.

Several properties of ergodic endomorphisms of T∞ have been studied, see
for instance Lind [15]. We now characterize the endomorphisms of the infinite
torus in a similar way by identifying the associated infinite matrices with integer
entries. For instance the endomorphism

B(z1, z2, z3, . . .) = (z2
1, z1z4

3, z−2
1 z4, . . .)
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has the associated matrix

A =







2 0 0 0 0 · · ·
1 0 4 0 0 · · ·
−2 0 0 1 0 · · ·
· · · · · · · · · · · · · · · · · ·







.

We start out by identifying the characters of T∞, i.e., the homomorphisms of
T∞ into the unit circle T. Let ϕ be such a character and let

im(z1, . . . , zm) = (z1, . . . , zm, 1, 1, . . .) (12)

be the natural injection of Tm into T∞. Then ϕ ◦ im is a character of the m-torus.
In p. 14 of [22] these characters are identified, and therefore

ϕ(z1, . . . , zm, 1, 1, . . .) = ϕ ◦ im(z1, . . . , zm) =
m

∏
j=1

z
nj

j .

Since (z1, . . . , zm, 1, 1, . . .) goes to (z1, . . . , zm, zm+1, zm+2, . . .), the continuity of ϕ
implies

ϕ(z1, . . . , zm, zm+1, zm+2, . . .) =
∞

∏
j=1

z
nj

j ,

but the only way that this is possible is that there exists l such that 0 = nj for
l < j. Thus

ϕ(z1, . . . , zm, zm+1, zm+2, . . .) =
l

∏
j=1

z
nj

j . (13)

For our next results we need the projection of T∞ on the first n coordinates:

pn(z1, . . . , zn, zn+1, . . .) = (z1, . . . , zn). (14)

Proposition 3.2. Let B be an endomorphism of T∞ and let A be its associated matrix.
Then
(i) Each row of A has only a finite number of non-zero integer entries. Moreover, each
matrix with this property is the associated matrix of an endomorphism.
(ii) B is an epimorphism if and only if the set of rows of A is linearly independent.

Proof. To see (i) consider the projection on the m-th coordinate πm : T∞ −→ T,

πm(z1, . . . , zm
︸︷︷︸

m

, . . .) = zm.

Thus πm ◦ B is a character of T∞, and therefore by (13) there is k(m) ∈ N,

πm ◦ B(z1, . . . , zm, zm+1, zm+2, . . .) =
k(m)

∏
j=1

z
amj

j ,

but this means that the m row of A is (am1, am2, . . . , amk(m), 0, 0, . . .).
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We now prove (ii). Assume that the set of rows of A is linearly independent.
We want to show that given W ∈ T∞ there is Z ∈ T∞ such that B(Z) = W.
Consider the first n rows of A and let m = max{k(j) : j = 1, . . . , n} (where
ajk(j) 6= 0). Since the n rows are linearly independent, it follows that n ≤ m
and that the matrix Anm consisting of the first n rows and m columns of A is a
surjective linear transformation from Rm onto Rn. Let In(pn(W)) = Yn, where
In is given by equation (11) and pn(W) is given by (14) and so it has the first n
coordinates of W. Then there is a solution Anm(Xm) = Yn. Let Zm ∈ Tm be such
that Im(Zm) = Xm. Since the infinite torus is compact there is a sequence {mq}∞

q=1

such that imq(Zmq), given by equation (12), converges to a Z ∈ T∞. On the other
hand, inq(pnq(W)) goes to W and so does B(imq(Zmq)) since its first nq coordinates
are the same as the first nq coordinates of inq(pnqW). By continuity B(imq(Zmq))
converges to B(Z) = W.

For the converse, assume that among the first n rows there is one, say the i
row, which is linearly dependent on the remaining n − 1 rows. This means that
there exists W ∈ T∞, whose first n coordinates are 1 except the i coordinate,
which cannot be in B(T∞).

Proposition 3.3. Let B be a homomorphism such that its associated matrix A has (as a
partitioned matrix) the form

A =







A11 0 0 0 0 · · ·
A21 A22 0 0 0 · · ·
A31 A32 A33 0 0 · · ·
· · · · · · · · · · · · · · · · · ·







,

where Aii is a finite square matrix for each i ∈ N. Then
(i) B is an epimorphism if and only if each Aii has a non zero determinant.
(ii) B is an automorphism if and only if each Aii has a determinant which is either 1 or
−1.
(iii) B is ergodic if and only if it is an epimorphism and the eigenvalues of each Aii are
not roots of unit.

Proof. By using Proposition 3.2 we can prove (i). But (i), (ii) and (iii) can be proved
as a limit case of finite tori. We prove (iii) by using an argument similar to one
used in [9]. Specifically, we will show that B has a dense orbit, which by Theorem
1.11 of [22] means that B is ergodic. Actually, we will show that the set of points
with dense orbit is a Gδ dense set. Let {Vj : j = 1, 2, . . .} be a family of open sets
which is a basis for the topology of T∞ and for each j there is an Lj such that

Vj = pLj
(Vj)× T

︸︷︷︸

Lj+1

×T × · · · .

Set W(j, N) :=
⋃∞

n=N{x : Bn(x) ∈ Vj}. We will show that this set, which is
open because B is continuous, is also dense. Moreover

∞⋂

j,N=1

W(j, N) = {x : Orb(B, x) = T∞}
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is a Gδ dense set by Baire Category Theorem. Let Ai,i be a di × di matrix and
L = d1 + · · · + dq. Let BL = pL ◦ B ◦ iL, where pL is given by (14) and iL is given

by (12). Thus BL is the ergodic endomorphism of TL = pL(T∞) whose associated
matrix is

C =










A11 0 0 0 0 · · · 0
A21 A22 0 0 0 · · · 0
A31 A32 A33 0 0 · · · 0

· · · · · · · · · · · · · · ·
. . . 0

Aq1 Aq2 Aq3 Aq4 Aq5 · · · Aqq










,

(Observe that C is the northwest corner of A consisting of the first L rows and
columns.) Then pL ◦ Bn(x) = Bn

L ◦ pL(x) for every x ∈ T∞.
Given W(j, N) and Vk we want to find x ∈ T∞ such that x ∈ W(j, N) ∩Vk. Let

L =max{Lj, Lk}. The ergodicity of BL implies that there exists x ∈ T∞ such that
pL(x) ∈ pL(Vk) and Bn

L(pL(x)) ∈ pL(Vj) for some n > N. This implies that x ∈ Vk

and Bn(x) ∈ Vj, that is x ∈ W(j, N) ∩ Vk.

The following result can be compared to Proposition 2.4 of [24].

Proposition 3.4. Let B be an ergodic endomorphism of T∞ and a ∈ T∞. Assume further
that the endomorphism C defined by C(x) = x−1B(x) is surjective. Then the affine map
L = aB is also ergodic and in particular λL is ergodic for all λ ∈ T.

Proof. Since the infinite torus is a connected, metric, compact and abelian group,
we can use equivalence (ii) of Theorem 1.11 of [22]; (ii) (a) is satisfied as well as (ii)
(b), the first because B is ergodic, and the second because C is an epimorphism.

To conclude, we present some ergodic automorphisms of T∞ whose associ-
ated matrices are not as in Proposition 3.3. Let C be such that its associated matrix
is a permutation matrix with a number of finite or infinite cycles, each of which
is infinite.

In what follows we consider the infinite torus T∞ represented with the index
set J equal to Z. The right shift

B((. . . , z−1, z0
︸︷︷︸

0

, z1, z2, . . .)) = (. . . , z−2, z−1
︸︷︷︸

0

, z0, z1, . . .)

is ergodic. B is isomorphic to any C such that its associated matrix is a permuta-
tion matrix which has just one cycle. In the general case C is isomorphic to a right
shift of finite or infinite multiplicity acting either on T∞ = T∞ × · · · × T∞

︸ ︷︷ ︸

n

or on

T∞ = ∏
∞
j=1 Xj with Xj = T∞.
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