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Abstract

In this note we show that, for an arbitrary Hausdorff locally m-convex
topology on a subalgebra A of the algebra C(X), the boundedness radius β

is nothing but the uniform norm, whenever A is a Cb(X)-module and closed
under the complex conjugation. We then deduce a Theorem of Kaplansky-
Meyer type for subalgebras.

1 Introduction and Preliminaries

A well known result of I. Kaplansky ([4], p. 407) states the following : if X is a
locally compact Hausdorff space and C0(X) is the algebra of all complex or real
valued continuous functions on X vanishing at infinity, then every submultiplica-
tive norm on C0(X) is at least as large as the uniform norm. On the other hand,
B. Yood gives in [12] a condition on a topological space T so that the algebra
C(T) does not admit any algebra norm. He then conjectured that if C(T) admits
a submultiplicative norm, then T must be pseudo compact (i.e. every continuous
function on T must be bounded, in other words C(X) = Cb(X)). This conjecture
was later proved in [5] by M. J. Meyer for an arbitrary topological space T. It is
to be noted that Meyer’s result fails to hold if, instead of the whole C(T), one
takes an arbitrary subalgebra of it. This occurs, for instance, if T = C and A is the
algebra of all polynomial functions endowed with the norm

||P|| := sup{|P(z)|, |z| ≤ 1}, P ∈ A.
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This is an algebra norm on A; but T is not pseudo compact. The same algebra
A, seen as a subalgebra of C(T) for T = [0, 1], shows that an algebra norm on A
need not be larger than the uniform norm. Take for example the norm

||P|| := sup{|P(
1

n
)|, 1 ≤ n}, P ∈ A.

In this note, we show analogs of Kaplansky’s and Meyer’s Theorems for a large
class of subalgebras of C(T) including in particular the Nachbin algebras as in
[7]. To this purpose, we first give the expression of the boundedness radius β,
as defined in [1], in a subalgebra A of C(T). Namely, we show that, for every
Hausdorff locally m-convex topology on A, β is nothing but the uniform norm,
whenever A is a Cb(T)-module and closed under the complex conjugation.

Henceforth, a topological algebra will be any algebra A on the field
K (= R or C) endowed with a linear topology τ such that the multiplication of
A is separately continuous with respect to τ. We will say that (A, τ) is a locally
convex algebra (l. c. a.) if (A, τ) is, in addition, a locally convex space. A l. c. a.
(A, τ) will be said to be locally m-convex (l. m. c. in short) if the topology τ can
be given by a family P of submultiplicative seminorms (see [6]); this is to say,

∀P ∈ P, P(xy) ≤ P(x)P(y), x, y ∈ A.

Following [1], if (A, τ) is a topological algebra and x ∈ A, the boundedness ra-
dius of x is the quantity

β(x) := inf

{
α > 0 :

(
xn

αn

)

n

tends to zero as n tends to ∞

}
, with inf ∅ = +∞.

It is known [1, 9] that

β(x) = inf

{
α > 0 :

(
xn

αn

)

n

is bounded

}

= sup
U∈U

lim sup
n≥1

(PU(xn))
1
n ,

where U denotes any pseudo base of 0-neighborhoods for τ and PU the gauge
functional of U. The element x is said to be bounded if β(x) is finite.

2 Boundedness radius in m-convex subalgebras of C(X)

From now on, X will denote a topological space, υX the Hewitt realcompactifi-
cation of X and βX its Stone-Čech compactification [3]. It is known that υX is a
realcompact Hausdorff completely regular space, while βX is even compact. By
δ we mean the Dirac transformation. This is a continuous function from X into
both υX and βX whose range δ(X) is dense. Notice that, whenever X is Haus-
dorff and completely regular, it can be seen as a dense topological subspace of υX
as well as of βX.
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Let C(X) (resp. Cb(X)) denote the algebra of all K-valued continuous (resp. con-
tinuous and bounded) functions on X. For each f ∈ C(X), there is one unique
f υ ∈ C(υX), namely the Gelfand transform of f , such that f = f υ ◦ δ. Similarly,
if f ∈ Cb(X), there is one unique, again the Gelfand transform of f , f β ∈ C(βX)
such that f = f β ◦ δ. Let ϕ denote both the mappings f 7→ f υ and f 7→ f β. This is
an isomorphism from C(X) onto C(υX) as well as from Cb(X) onto C(βX). Since
δ(X) is dense in both υX and βX, we have

|| f ||u = || f υ||u, ∀ f ∈ C(X), and || f ||u = || f β||u, ∀ f ∈ Cb(X).

where || ||u denotes the uniform norm.
Our main result is the following:

Theorem 2.1. Let X be a Hausdorff completely regular space and A a subalgebra of
C(X) which is either a Cb(X)-module or closed under the complex conjugation. If τ is a
locally m-convex Hausdorff topology on A and β the corresponding boundedness radius.
Then

β( f ) = ‖ f‖u, ∀ f ∈ A.

As a consequence, we get the following Kaplansky-Meyer type theorem :

Theorem 2.2. Let X be an arbitrary topological space and A a unitary subalgebra of
C(X) which is either a Cb(X)-module or closed under the complex conjugation. Then
there exists an algebra norm on A if and only if A ⊂ Cb(X). In this case, every algebra
norm on A is at least as large as the uniform norm.

Proof : It is clear that, whenever A ⊂ Cb(X), there exists an algebra norm on
C(X), namely the uniform norm. For the converse, assume that ‖ ‖ is an algebra
norm on A. Then ϕ(A) is a subalgebra of C(υX) satisfying the conditions of
Theorem 2.1. Moreover the quantity ‖ϕ( f )‖ := ‖ f‖ defines an algebra norm on
ϕ(A). Hence, since υX is completely regular and Hausdorff, by Theorem 2.1,
β(ϕ( f )) = ‖ϕ( f )‖u , for every f ∈ A. But in any normed algebra, β is less than or
equal to the norm. Hence β(ϕ( f )) ≤ ‖ϕ( f )‖. Whereby

‖ f‖u = ‖ϕ( f )‖u = β(ϕ( f )) ≤ ‖ϕ( f )‖ := ‖ f‖, f ∈ A.

Since, for every f ∈ A, ‖ f‖ < ∞, it follows that f is bounded on X and then that
A ⊂ Cb(X). The second part of the proof is due to Theorem 2.1 and again to the
fact that, in a normed algebra β is less than or equal to the norm.

In order to prove Theorem 2.1, we need some additional results. The following
lemma is taken from [7].

Lemma 2.3. Let X be a Hausdorff completely regular space and A a subalgebra of C(X)
which is either a Cb(X)-module or closed under the complex conjugation. Then every
character on A is an evaluation at some point of βX.

Lemma 2.4. Let X be a Hausdorff completely regular space, A ⊂ C(X) a unitary algebra
which is both a Cb(X)-module and closed under the complex conjugation. If τ is a locally
m-convex Hausdorff topology on A, then every open set U ⊂ βX contains, at least, some
xU the evaluation at which is continuous on A.
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Proof : Under our hypothesis, X is (identified to) a topological subspace of
βX. Let U ⊂ βX be an open set and fix x0 ∈ U ∩ X. Since A is a Cb(X)-module,
we can choose g ∈ A so that g(X) ⊂ [0, 1], g(x0) = 0 and g ≡ 1 identically
on the complement Uc of U. Replacing, if necessary, g by 2 max(1

2 , g) − 1, we

may assume that g vanishes on an open neighborhood V of x0. If Â denotes the

completion of (A, τ), then g cannot be invertible in Â. Indeed, if g had an inverse

f in Â, then for any non zero h ∈ Cb(X) vanishing outside of V, we would have

h = h(g f ) = (hg) f = 0

which is a contradiction. Now, since Â is a commutative complete locally m-

convex algebra with identity, there is some continuous character χ on Â such that
χ(g) = 0. But the restriction to A of χ is, by Lemma 2.3, the evaluation at some
point xU of βX. From g(xU) = 0 derives xU ∈ U and the proof is achieved.

In the following the spectrum Sp(x) of an element x of a real algebra A is
defined as the spectrum of x in the complexification AC of A, namely:

Sp(x) := {λ ∈ C \ {0} :
x

λ
is not quasi − invertible in AC} ∪ O

O being the empty set or the singleton {0} according to whether x is invertible in
A or not. The spectral radius of x is then defined as

ρ(x) := sup{|λ|, λ ∈ Sp(x)} with sup ∅ = 0.

Lemma 2.5. Let A be a subalgebra of C(X) which is a Cb(X)-module. Then, for every

f ∈ A, the spectrum of f is contained in the closure f (X) of f (X). In particular

ρ( f ) ≤ ‖ f‖u, ∀ f ∈ A,

Proof : Assume that λ is a spectral point of f with λ 6∈ f (X). Then there is
some ǫ > 0 so that

| f (x) − λ| > ǫ, ∀x ∈ X.

Since A is a Cb(X)-module, the case λ = 0 cannot occur, for

1

f
=

1

f 2
f

would belong to A and this contradicts the fact that λ belongs to the spectrum of
f . Assume then that λ 6= 0. Since again A is a Cb(X)-module,

f

f − λ
∈ AC.

This means that
f

λ
is quasi invertible in AC which is also a contradiction. Whence

the result.
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Proof of Theorem 2.1 : Since in a complex locally m-convex algebra β ≤ ρ
(see for example [1] or [9]), we get β ≤ || ||u by Lemma 2.5. In order to show
the equality, it is enough to show that, for every x0 ∈ X and every f ∈ A, the
inequality | f (x0)| ≤ β( f ) holds. Fix then x0 ∈ X and choose a fundamental
system U of open neighborhoods of x0 in βX. By Lemma 2.4, for every U ∈ U ,
there exists xU ∈ U such that the evaluation at xU is continuous on A. Therefore
there exists a continuous submultiplicative seminorm PU such that

|χxU ( f )| = | f β(xU)| ≤ PU( f ), f ∈ A.

Hence, for every f ∈ A and every n ∈ N, we have

| f β(xU)| ≤ (PU( f n))
1
n .

This leads to

| f β(xU)| ≤ lim sup
n→∞

(PU( f n))
1
n ≤ β( f ).

Whereby

| f β(xU)| ≤ β( f ), f ∈ A, U ∈ U .

But the net (xU)U∈U converges in βX to x0. Hence

| f (x0)| ≤ β( f ), f ∈ A.

Since a pseudo complete locally A-convex algebra (A, τ) can be equipped with a
locally m-convex topology M(τ) stronger than τ and having the same m-bounded
sets as τ (see [8]), we also get:

Corollary 2.6. If A is as in Theorem 2.1 and τ is a pseudo complete locally A-convex
Hausdorff topology on A. Then

β( f ) = || f ||u, ∀ f ∈ A.

Remark 2.7. 1. Theorem 2.1 fails to hold if the topology τ is not assumed to
be Hausdorff. For such an example, equip C(X) with the topology of uniform
convergence on a given compact subset K ⊂ X with K 6= X.

2. Theorem 2.1 fails also to hold if A is not assumed to be a Cb(X)-module.
Actually, if A consists of all polynomial functions on [0, 1] endowed with the
algebra norm

|| f || = sup{| f (
1

n
)|, n ≥ 2},

then, for f : x 7→ x, we have β( f ) ≤ || f || = 1
2 , while || f ||u = 1. Hence || ||u does

not agree with β.
3. The boundedness radius β is a submultiplicative seminorm in any commu-

tative locally m-convex algebra. However, it need be neither subadditive nor sub-
multiplicative in a general topological algebra. The following proposition gives
conditions under which β is submultiplicative or subadditive.
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Proposition 2.8. Let (A, τ) be a topological algebra and x, y ∈ A. If xy = yx and the
product of any two idempotent bounded sets is bounded, then

β(xy) ≤ β(x)β(y), here 0∞ = ∞.

If, in addition, the convex hull of an idempotent bounded set is bounded, then

β(x + y) ≤ β(x) + β(y).

Proof : If β(x) = +∞ or β(y) = +∞, the result is trivial. Assume then that x
and y are bounded. The first assertion derives from the fact that, for any positive
numbers r and s, we have

{
(xy)n

(rs)n
, n ∈ N

}
⊂

{
xn

rn
, n ∈ N

} {
yn

sn
, n ∈ N

}
.

The second assertion is a consequence of the following :

(x + y)n =
n

∑
p=0

C
p
nrpsn−p xp

rp

yn−p

sn−p ∈ (r + s)nB,

here B denotes the convex hull of the idempotent bounded set

{
xn

rn
, n ∈ N

} {
yn

sn
, n ∈ N

}
.

It is clear that the product of any two idempotent bounded sets is bounded when-
ever the multiplication of A is sequentially continuous. Actually, this is also the
case whenever (A, τ) is a commutative pseudo complete locally convex algebra
[1]. By a similar proof as in [1], one can easily show that this remains also true
if (A, τ) is pseudo-barrelled. This means that every idempotent bounded set is
contained in a barrelling idempotent bounded disc, where a disc B is said to be
barrelling if the linear hull AB of B endowed with the gauge of B is a barrelled
space.

Typical algebras satisfying the conditions of Theorem 2.1 are the Nachbin
ones. In order to give applications of our results, we recall some notions con-
nected to such algebras. A Nachbin family on a Hausdorff completely regular
space X is any collection V of non negative upper semicontinuous functions on
X such that:

∀v1, v2 ∈ V, x ∈ X, λ > 0, ∃v ∈ V : v(x) > 0 and λvi ≤ v, i = 1, 2.

With each Nachbin family V on X is associated the so-called weighted locally
convex space

CV(X) := { f ∈ C(X) : | f |v := sup
x∈X

v(x)| f (x)| < +∞, v ∈ V}

with its natural topology given by the seminorms (| |v)v∈V . In general, this space
need not be an algebra, but it always contains many interesting ones. It is shown
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in [7] that the largest locally convex algebra (with respect to the relative topology
induced by CV(X) and the pointwise multiplication) is

CℓV(X) := { f ∈ CV(X) : ∀v ∈ V, ∃u ∈ V with | f (x)|v(x) ≤ u(x), x ∈ X}.

Such an algebra and some of its subalgebras are called Nachbin algebras (see [7]
for examples). They are Cb(X)-modules and closed under complex conjugation
so that we can apply Theorem 2.2. We then get:

Proposition 2.9. If CℓV(X) is unitary, the following three conditions are equivalent:
1. There is an algebra norm on CℓV(X).
2. CℓV(X) ⊂ Cb(X).
3. CℓV(X) is a uniformly locally A-convex algebra.

Proof : The implication 1. =⇒ 2. is due to Theorem 2.2, while 2. =⇒ 3. is
obvious. As to 3. =⇒ 1., it is a consequence of Theorem 4 (1) of [7] and the fact
that the uniform norm is an algebra norm on Cb(X).

Acknowledgment : Recently the author discovered that, the same year and in
the same issue of Studia Mathematica as by M. J. Meyer, Yood’s conjecture was
solved also by Alexander R. Pruss [11]. Theorem 2.2 could then be named of
Kaplansky-Meyer-Pruss type.
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