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Abstract

Tompa and Woll constructed a zero-knowledge proof of knowing a square
root of X mod N, where N is the product of two large, secret primes. In this
paper, we construct a zero-knowledge proof of knowing a square root of X1

or X2 mod N. Compared with the existing solution to this problem, ours is
significantly simpler.

1 Introduction

Suppose that N = PQ, where P and Q are two large, secret prime numbers.
Then the Quadratic Residue Assumption [3] states that there is no probabilistic
polynomial-time algorithm for computing square roots with respect to modulus

N. (For simplicity, in this paper we denote by
√

X a square root of X mod N.)

Now suppose that there is a public value X ∈ Z∗
N such that Alice knows

√
X. Al-

ice wants to convince Bob about this fact. Clearly, this could be a trivial task if she

were willing to show
√

X to Bob. However, for some reason, Alice is not willing

to do so. So she needs to present a zero-knowledge proof [4] that she knows
√

X.
Tompa and Woll [5] showed how to construct such a zero-knowledge proof. The
proof has the following four steps: In the first step, Alice picks r ∈ Z∗

N uniformly
at random and computes R = r2 mod N; she sends R to Bob. In the second step,
Bob picks a random number β ∈ {0, 1} uniformly at random and sends β to Al-

ice. In the third step, Alice computes z =
√

X
β
r and sends z to Bob. In the fourth

step, Bob verifies that z2 ≡ XβR (mod N).
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In one execution of the above zero-knowledge proof, with probability at most
1
2 a dishonest Alice (who does not know

√
X) can cheat Bob. If we repeat the

zero-knowledge proof for t times, the probability is reduced to at most 1
2t .

2 Our Problem

In this paper, we consider a more challenging problem. Suppose that there are
public values X1, X2 ∈ Z∗

N , and that, for some reason, Alice knows the square
root of one of them (with respect to modulus N). Assume that she is not even
willing to reveal to Bob which of the two has the square root that she knows. Is it
possible for her to prove this fact to Bob? In other words, is it possible for Alice
to prove, in zero knowledge, that she knows

√
X1 OR

√
X2? In principle, this

can be done using the general technique of proving first-order logic formulae [1].
Nevertheless, in this paper we give an alternative zero-knowledge proof, which
is significantly simpler.

3 Our Solution

Now we present a four-step interactive proof system for the above problem. Just
as the Tompa-Woll proof for knowing square root, our interactive proof can also
be repeated to reduce the probability that a dishonest Alice can cheat Bob. In
Section 4 we give a rigorous proof that this interactive proof system is zero-
knowledge. In the first step, if Alice knows

√
X1, then she picks r1, r2 ∈ Z∗

N

uniformly and independently, and computes R1 = r2
1 mod N, R2 = r2

2 mod N,

R2 = R2/X2 mod N. If Alice knows
√

X2, then she picks r1, r2 ∈ Z∗
N uniformly

and independently, and computes R1 = r2
1 mod N, R1 = R1/X1 mod N, R2 =

r2
2 mod N. In both cases, Alice sends R1, R2 to Bob, in a random order. (Note that

Alice knows
√

R1X1 and
√

R2X2 in both cases; in addition, she knows
√

R1 if she
knows

√
X1, and she knows

√
R2 if she knows

√
X2.) In the second step, Bob

picks a random number β ∈ {0, 1} and sends β to Alice. In the third step, if
β = 0, then Alice tells Bob the order in which she sent R1 and R2, computes r1

(=
√

R1X1) and r2 (=
√

R2X2) as follows and sends r1, r2 to Bob:

• If Alice knows
√

X1, then she already knows r2; she only needs to compute
r1 = r1

√
X1.

• If Alice knows
√

X2, then she already knows r1; she only needs to compute
r2 = r2

√
X2.

If β = 1, then Alice sends r to Bob, where r = r1 when Alice knows
√

X1 and
r = r2 when Alice knows

√
X2. In the fourth step, if β = 0, then Bob verifies

r2
1 = R1X1, r2

2 = R2X2. If β = 1, then Bob verifies that r2 is equal to R1 or R2. It is
important to note that, in the first step, Bob receives R1 and R2 in a random order.
Consequently, if β = 1, then Bob does not know which of them is R1 and which is
R2. Therefore, in the last step, Bob can’t know whether r is a square root of R1 or
it is a square root of R2. Otherwise, Bob would be able to find out whether Alice
knows

√
X1 or

√
X2.
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4 Security Analysis

Formally, we can treat Alice as a polynomial-time interactive machine A and Bob
as another polynomial-time interactive machine B. Then (A, B) is an interactive
proof system with common input X = (X1, X2) ∈ (Z∗

N)2.

Definition 1. (Perfect Zero-Knowledge, [2]) Let (A, B) be an interactive proof system.
We say that (A, B) is perfect zero-knowledge if for every probabilistic polynomial-
time interactive machine B∗ there exists a probabilistic polynomial-time algorithm M∗

such that for every common input X the following two conditions hold:

1. With probability at most 1
2 , on input X, machine M∗ outputs a special symbol ⊥

(i.e., Pr[M∗(X) = ⊥] ≤ 1
2 ).

2. Let m∗(X) be a random variable describing the distribution of M∗(X) conditioned
on M∗(X) 6= ⊥ (i.e., Pr[m∗(X) = α] = Pr[M∗(X) = α|M∗(X) 6= ⊥] for every
α ∈ {0, 1}∗). Then the following random variables are identically distributed:

• 〈A, B∗〉(X) (i.e., the output of the interactive machine B∗ after interacting
with the interactive machine A on common input X).

• m∗(X) (i.e., the output of algorithm M∗ on input X, conditioned on it not
being ⊥).

Machine M∗ is called a perfect simulator for the interaction of B∗ with A.

Theorem 2. The interactive proof system presented in Section 3 is perfect zero-knowledge.

Proof. For any B∗, we can construct a perfect simulator M∗ as follows. (Note
that M∗ incorporates a copy of B∗ such that M∗ can interact with B∗.) At the
very beginning, M∗ picks β′ ∈ {0, 1} uniformly at random. If β′ = 0, then M∗

picks r1, r2 ∈ Z∗
N uniformly and independently, and computes R1 = r2

1, R2 = r2
2,

R1 = R1/X1, R2 = R2/X2. If β′ = 1, then M∗ picks r1, r2 ∈ Z∗
N uniformly and

independently and computes R1 = r2
1 mod N, R2 = r2

2 mod N. In both cases,
M∗ sends R1, R2 to B∗, in a random order. Next, M∗ will receive β from B∗. If
β 6= β′, M∗ outputs ⊥ and halts. Obviously, the probability of outputting ⊥ is 1

2 .
Otherwise, M∗ proceeds as follows. If β = 0, then M∗ tells B∗ the order in which
it sent R1 and R2, and sends r1, r2 to Bob. If β = 1, then M∗ sends r to B∗, where
r = r1 or r2, each with probability 1

2 . The output of M∗ is defined as the output
of the incorporated B∗. Clearly, the distribution of this output, conditioned on it
not being ⊥, is identical to the distribution of 〈A, B∗〉(X).
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