Neighborhoods of a Certain Family of
Multivalent Functions Defined by Using a
Fractional Derivative Operator

M. K. Aouf

Abstract

Making use of a fractional derivative operator, we introduce and inves-
tigate two new classes K]-(p, A, b, B) and L]-(p, A, b, B, i) of multivalently an-
alytic functions of complex order. In this paper we obtain the coefficient
estimates and inclusion relationships involving the (j, §) — neighborhood of
various subclasses of multivalently analytic functions of complex order.

1 Introduction

Let T(j, p) denote the class of functions of the form :
f(z) =2 — Z azk (ap > 0;p,j € N=1{1,2,...}) (1.1)
k=j+p

which are analytic and p-valent in the open unit disc U = {z : |z| < 1}. In terms
of the fractional derivative operator Dé‘ of order A, defined below, with

DYf(z) = f(z) and Dlf(z) = f (2), (1.2)

Srivastava and Aouf [15] defined and studied the operator :
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_TIlp+1-4)
I'(p+1)
For each f(z) € T(p,j), we have

M f(z) 2DMf(z) (0<SA<LpeN).  (13)

N ) s © T(k+1I(p+1-2A)
(i) "V f(z) _Zp_k_];pl“(p+l)l"(k+1—/\)ak2k (1.4)

and
(i) Q) f(z) = f(z) and QM f(z) = # (1.5)

Now, making use of the operator QQ”’ ) f(z) given by (1.3) and (1.4), we intro-

duce a new subclass K;(p, A, b, B) of the p-valently analytic function class T(j, p)
which consist of functions f(z) € T(j, p) satisfying the following inequality :

1 (20 f(2)
b < s 1)F
(zeW;p,jeN;0<A<TL;beC\{0};0<B<1). (1.6)
We note that :
(i) K;(p,0,b,8) = Si(p, b, )
— @ e TGp)s [ERE )| <

zeWpjeN;beC\{0}0<p<1)}; (1.7)
(i) K(p, 1,0, B) = Cj(p, b, )

(s i) s [farF T -p) <p
(zel;p,je N;be C\{0};0<B<1)}. (1.8)

Now, following the earlier investigations by Goodman [6], Ruscheweyh [14],
and others including Altintas and Owa [1], Altintas et al. ([2] and [3 ]), Muru-
gusundaramoorthy and Srivastava [8], Raina and Srivastava [13] and Srivastava
and Orhan [16] (see also [9] , [10] and [18]), we define the (j, §) —Neighborhood

of a function f(z) € T(j, p) by (see, for example, [3, p-1668])

Njs(f) = {838 €T(,p)gz) =2 — Y bz and Y klap— byl < (5} -
k=j+p k=j+p
(1.9)
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In particular, if

h(z) =z (p € N), (1.10)
we immediately have
N]',(g(]’l) = {g :9€T(j,p)glz) =2F — Z bz and Z kb < (5} . (1.11)
k=j+p k=j+p

Also, let Li(p, A, b, B, ) denote the subclass of T(j, p) consisting of functions
f(z) € T(j, p) which satisfy the inequality :

1 Q) QM f(z))
g{[(l—u) pr(z)+u( pz,f(_(f))]—l} <P
(zel;p,jeN;0<AL<L,beC\{0};0<B<1Lu=>0). (1.12)

We note that :
(i) Lj(p,0,b,B, 1) = Pi(p, b, B, )

2{ [(1 -l el - 1] }

(zel;p,jeN;be C\{0};,0<B<1L,u>0)}; (1.13)
(i) Lj(p, 1, b, B, ) = Ri(p, b, B, 1)

%{ (p+u(1—p))fiz_)1+uf (2] —P}

(zeUpjeN;bEC\(0}0<B<Lp>0)}; (1.14)
(iii) Lj(l, 1,b,B,u) = Rj(b, B, 1) (Altintas et al. [3])

={f(z) €TGp):

<B

={f(z) €TG p):

— @ TG s [ {F @+ @) 1) <p

(zel;jeN;be C\{0};,0<B<1L,u>0)}. (1.15)

Various operators of fractional calculus ( that is, fractional integral and frac-
tional derivative ) have been studied in the literature rather extensively (cf., e.g.,
[5], [11], [17] and [18] ). For our present investigation, we recall the following
definitions.

Definition 1. (Fractional Integral Operator). The fractional integral operator of order A
is defined, for a function f(z), by

U S (9
D f(z) = T(A)O/(z—g)l—)‘dg (A >0), (1.16)
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where f(z) is an analytic function in a simply- connected region of the z - plane contain-
ing the origin, and the multiplicity of (z — )"~ is removed by requiring log (z — {) to
be real when z — ¢ > 0.

Definition 2. (Fractional Derivative Operator). The fractional derivative of order A is
defined, for a function f(z), by

z
1 d _f@)
A
pum— < .
DM (z) r(1—A)dz0/(z—§)Ad€ 0<A<1), (1.17)
where f(z) is constrained, and the multiplicity of (z — {) " is removed as in Def-

inition 1.
Definition 3. (Extended Fractional Derivative Operator). Under the hypotheses of Def-
inition 2, the fractional derivative of order n + A is defined, for a function f(z), by

n

DA f(z) = g D)(z) (0<A<1;meNy=NU{0}). (1.18)

2 Neighborhoods for the classes K;(p, A, b, ) and L;(p, A, b, B, 1)

In our investigation of the inclusion relations involving Nj s(h), we shall require
Lemmas 1 and 2 below.

Lemma 1. Let the function f(z) € T(j, p) be defined by (1.1). Then f(z) € K;(p, A, b, B)
if and only if

© Tk+1)I(p+1-2A)
L T(p+ O)I(k+1—A)

(k+pBlb] = plax < B |b]. 1)
k=j+p

Proof. Leta function f(z) of the form (1.1) belong to the class K;(p, A, b, B).Then,
in view of (1.4) and (1.6), we obtain the following inequality

(Ap) !
Re {Z(ga,m;((;)) - p} > —Blb| (zel), 2.2)

or, equivalently,

r
r

~—~

k+D)I(p+1—A)
p+1I(k+1—A)

P+ DI(p+1=0) ) 4y
o TP+ DI(k+1-A)

s (k— p)agzk—r

k=j+p

1—

~~

Re

> —B|b] (zelU). (2.3)

™2

Il
~

Settingz = r(0 < r < 1) in (2.3), we observe that the expression in the denomi-
nator of the left-hand side of (2.3) is positive for r = 0 and also for (0 < r < 1).
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Thus, by letting r — 17 through real values, (2.3) leads us the desired assertion
(2.1) of Lemma 1.

Conversely, by applying the hypothesis (2.1) and letting |z| = 1, we find from
(1.6) that

T(k+1)T(p+1—A)
| T+ DT (k+1—A)
o) Pl = T(k+1)I(p+1—A)

1 B o
L T DT+ 1-2)

(k — p)agz*=7

LZka_p

o k

TS T A DT+ 1— )™

Hence, by the maximum modulus theorem, we have f(z) € Kj( p,A,b, B), which
evidently completes the proof of Lemma 1.

Remark 1. (i) Putting A =0, =j=1andb = p —a,0 < a < p, in Lemma 1, we
obtain the result obtained by Owa [12 , Theorem 2.3];

(ii) Putting B=j=A=1andb=p—a, 0 < a < p, in Lemma 1, we obtain the
result obtained by Owa [12, Theorem 2.4].

Similarly, we can prove the following lemma.

Lemma 2. Let the function f(z) € T(j, p) bedefineby (1.1). Then f(z) € Li(p, A, b, B, )
if and only if

e e+ ulk— plac < pB e

k=j+p
Remark 2. (i) Putting A =0, =j=1andb=1— %, (0 <a<p), inLemma?2,
we obtain the result obtained by Lee et al. [7, Lemma 2 |;
(ii) Putting p = A =j =1land b = 1—%, (0 < a < p), in Lemma 2, we
obtain the result obtained by Aouf [4 , Theorem 1].
Our first inclusion relation involving N; s(h) is given in the following theorem.
Theorem 1. Let
G+p)BoIT(p+DI(+p+1-47)

O GA BTGt p iy P> I @)

then
K](p, A, b,,B) C N],(s(h) (2.6)
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Proof. Let f(z) € Kj(p,A,b,B).Then, in view of the assertion (2.1) of Lemma 1,
we have

I'Gj+p+1)T(p+1—-A7)

. (j+B1b]) ay <
T(p+DIG+p+1-A) ﬁ"kgﬁk
S Tk+DI(p+1-A)
k+pB|b| —p)ax < B|b|, (2.7)
which readily yields
th Blo|T(p+ DI +p+1-A) 2.8)

WS GG+ p + DIT(p +1-A)

Making use of (2.1) again, in conjunction with (2.8), we get

TGj+p+1DI(p+1-—
. ka, < B|b| +
T(p+ 1T +p+1-— Ak%# k<Pl
T(j+p+1)T +1— i
R e P

T(p+DIG+p+1-2) S,

Bl (p—Blb) _ (i+p)Blb
<SPPI TE) T GraD)

Hence

S G+p)BIbIT(p+DI(+p+1-1)
L RS GG p e rp iy 0 W @9

which, by means of the definition (1.11), establishes the inclusion relation (2.6)
asserted by Theorem 1.

Remark 3. (i) Putting (a) A = 0, (b) A =1 in Theorem 1, we obtain the corresponding
results for the classes Si(p, b, B) and C;(p, b, B), respectively;

(ii) Putting A = 0 and p = 1 in Theorem 1, we obtain the result obtained by
Altintas et al. [2, Theorem 1 with A = 0];

(iii) Putting A = p = 1 in Theorem 1, we obtain the result obtained by Altintas et al.
[2, Theorem 1 with A = 1].

In a similar manner, by applying the assertion (2.4) of Lemma 2 instead of the
assertion (2.1) of Lemma 1 to functions in the class L;(p, A, b, B, u), we can prove
the following inclusion relationship.
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Theorem 2. If

(HppB I T(p+DT(+p+1-A)
= T G+ ricy #> (2.10)

then
Li(p, A b, B, i) C Njs(h). (2.11)

Remark 4. Putting p = A =1 in Theorem 2, we obtain the result obtained by Altintas
etal. [2, Theorem 2].
3 Neighborhoods for the classes K](“)(p, A,b,B) and

L (p,A,b, B, 1)

In this section, we determine the neighborhood for each of the classes

K\ (p,A,b,) and L (p,A,b,6,1) ,

L
which we define as follows. A function f

(z) € T(j,p) is said to be in the class
K](“) (p, A, b, B) if there exists a function g(z) € K;(p, A, b, p) such that
f(z) '
— —1ll<p—a (zel 0<a<p). (3.1)
R P)

Analogously, a function f(z) € T(j, p) is said to be in the class L](“) (p,Ab, B, u)
if there exists a function g(z) € L;(p, A, b, B, ) such that the inequality (3.1) holds
true.

Theorem 3. If ¢(z) € K;(p, A, b, p) and

S+ BN +p+DI(p+1-A)

v=p-— (j+p){(j+l3’b|)r(j+p+1)l“(p+1—A)—.B|b|1"(P+1)r(]'+P+(;2_)A)},

then
N],(S(g) C K]([X) (p/ A/ b/ ,B)/ (33)

where

6 < p(j+p) {1=BIBIT(p+ DI+ p+1=A) [(i+BIEDTG +p+DI(p+1-2)] ']
(3.4)

Proof. Suppose that f(z) € N;js(g). We find from (1.9 that
Y, klax—b] <§, (3.5)
k=j+p

which readily implies that
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%) 5 '
Yo lax— byl < P (p.j €N). (3.6)
k=j+p ] p

Next, since g(z) € Kj(p, A, b, B), we have [cf. equation (2.8)]

= BIbIT(p+ DI +p+1-2)
b < — . , 3.7
2 S DG+ p D+ 1 A) 7
so that

S g — b

18y i T

gz 17 1 v o,

k=j+p
Y G+BIDIG+p+DI(p+1-A)

ST (GBI +p+ N (p 1= ) = Bb[T(p+ DI+ p+1-A)}

— (38)

provided that « is given by (3.2). Thus, by the above definition, f(z) € K](“) (p,Ab,B)
for a given by (3.2). This evidently proves Theorem 3.

Remark 5. (i) Putting A = 0, and p =1 in Theorem 3, we obtain the result obtained
by Altintas et al. [2, Theorem 3 with A = 0];

(ii) Putting A = p = 1 in Theorem 3, we obtain the result obtained by Altintas et
al. [2, Theorem 3 with A = 1].
The proof of Theorem 4 below is similar to that of Theorem 3 above.

Theorem 4. If g(z) € Li(p,A, b, B, 1) and

po S(p+u)IG+p+DI(p+1-4)
G+ {(p+u)T(+p+D(p+1-A) = pBlb|T(p+ DI +p+1-7)}

(3.9)
then
Njs(g) € L (p, A, b, B, 1), (3.10)
where
6 < p(j+p) { 1=pBIBIT(p+ DTG+ p+1= ) [(p+ )G +p+1I(p+1- 1)}
(3.11)

(i) Putting A = 0, and A = 1 in Theorem 4, we obtain the corresponding

results for the classes Pj(“) (p,b,B, 1) and R](“) (p,b, B, 1), respectively;

(ii) Putting p = A = 1in Theorem 4, we obtain the result obtained by Altintas
etal. [2, Theorem 4 |.
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