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Abstract

We study the box dimension and Minkowski content of spiral trajectories

of planar vector fields, using information about the asymptotic behaviour of

iterates of the Poincaré map. An auxilliary tool is a flow-sector theorem

near the weak focus, which is of a similar nature as the well known flow-box

theorem. Applications include Hopf bifurcation and Liénard systems. We

obtain all possible values of box dimensions of spiral trajectories around weak

focus, associated with polynomial vector fields.

1 Introduction

We deal with planar vector fields, and consider their spiral trajectories of limit cycle
and focus types. Spiral trajectories of planar systems have been studied in [18]
and [19], while spatial spirals have been studied in [20]. Concentrating on planar
systems, we derive fractal properties of spirals using only an information about the
asymptotic behaviour of the sequence of iterates of the corresponding Poincaré map
near the origin, associated with the system

{

ẋ = −y + p(x, y)
ẏ = x + q(x, y),

(1)

where p(x, y) and q(x, y) are given C1 functions such that |p(x, y)| ≤ C(x2 +y2) and
|q(x, y)| ≤ C(x2+y2) for some positive constant C and for (x, y) near the origin. The
main result dealing with box dimension of spiral trajectories near the weak focus
of (1) is contained in Theorem 1. It enables us to apply it to the Hopf bifurcation,

1991 Mathematics Subject Classification : 37C45, 37G10, 37G15, 34C15.
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Liénard systems, see Theorems 5 and 6. We obtain that analytic systems as in (1)
have spirals near the origin with box dimensions only from a discrete set of the
form {4

3
, 6

5
, 8

7
, . . .}, see Theorem 7, and all these values can be attained for example

for simple Liénard systems (1) in which p(x, y) = x2k+1, q(x, y) ≡ 0, k ∈ N, see
Theorem 6.

The paper is organized as follows. In Section 2 we introduce the notion of spirals
of power β > 0, and state the main result. In Section 3 we prove the flow-sector
theorem, which is of a similar nature as the flow-box theorem. In Section 4 we prove
the main result using flow-box and flow-sector theorems, combined with a dimension
result from [5] dealing with discrete systems. In Section 5 we provide applications.

Let us introduce some notation. For A ⊂ R
N bounded we define the Minkowski

sausage of radius ε around A as the ε-neighbourhood of A (the notion has been in-
troduced by B. Mandelbrot): Aε := {y ∈ R

N : d(y, A) < ε}. By lower s-dimensional
Minkowski content of A, s ≥ 0 we mean

Ms
∗(A) := lim inf

ε→0

|Aε|
εN−s

,

and analogously for the upper s-dimensional Minkowski content M∗s(A). Now we
can introduce the lower and upper box dimensions of A by

dimBA := inf{s ≥ 0 : Ms
∗(A) = 0}

and analogously dimBA := inf{s ≥ 0 : M∗s(A) = 0}. If these two values coincide,
we call it simply the box dimension of A, and denote by dimB A. If 0 < Md

∗(A) ≤
M∗d(A) < ∞ for some d, then we say that A is Minkowski nondegenerate. In
this case obviously d = dimB A. In the case when lower or upper d-dimensional
Minkowski contents of A are 0 or ∞, where d = dimB A, we say that A is degenerate.
For more details on these definitions see e.g. Falconer [6], [18], [19] and [20].

For any two sequences of positive real numbers (ak) and (bk) converging to zero
we write ak ≃ bk as k → ∞ if there exist positive real numbers A < B such that
ak/bk ∈ [A, B] for all k. Also if f, g : (0, r) → (0,∞) are two functions converging
to zero as s → 0 and f(s)/g(s) ∈ [A, B], we write f(s) ≃ g(s) as s → 0. We write
f(s) ∼ g(s) if f(s)/g(s) → 1 as s → 0. Also, for two real functions f and g we
shall sometimes write only f(x) ≃ g(x) meaning that for some positive A and B
we have Ag(x) ≤ f(x) ≤ Bg(x) for all x. For example, for a function F : U → V
with U, V ⊂ R

2, V = F (U), the condition |F (x1) − F (x2)| ≃ |x1 − x2| means that
f is a bilipschitz mapping, i.e., both F and F−1 are Lipschitzian. We also say
that F is lipeomorphism, and that the sets U and V are lipeomorphic. If a real
function function p(x, y) is such that for some positive constants k and C we have
|p(x, y)| ≤ C · rk for r =

√
x2 + y2 sufficiently small, we write p(x, y) = O(rk) when

r → 0. By Bε(a) we denote an open disk of radius ε centered at a.

2 Poincaré map and box dimension of spiral trajectories

If Γ is a spiral of limit cycle type (tending to a limit cycle Γ0, say from inside), to
each point x of Γ0 we attach an axis σ = σ(x) through this point, perpendicular
to the limit cycle, oriented inwards, and with origin at x. The set of all such axes
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σ will be denoted by Σc. Let Pσ : (0, εσ) ∩ Γ → (0, εσ) ∩ Γ be the Poincaré map
corresponding to any axis σ ∈ Σc and defined by Γ. We have Pσ(xk) = xk+1, where
the sequence (xk)k = (0, εσ) ∩ Γ in σ is arranged in decreasing order. By P k

σ we
denote k-fold composition of Pσ. We take εσ > 0 small enough, so that P k

σ (s) → 0
as k → ∞ for all s ∈ (0, εσ) ∩ Γ. If the family of Poincaré maps {Pσ : σ ∈ Σc} is
such that there exists β > 0 satisfying

dk(sσ) := P k
σ (sσ) − P k+1

σ (sσ) ≃ k−1−β, k → ∞, (2)

where sσ = max(Γ∩(0, εσ)) (here the maximum is taken on the σ-axis), we say that Γ
is the limit cycle spiral of power β. In other words, there exist two positive constants
Aσ < Bσ such that for any axis σ ∈ Σc there holds Aσk

−1−β ≤ dk(sσ) ≤ Bσk−1−β

for all k.

Remark 1. It is easy to see that condition (2) implies that the family of Poincaré
maps has the following property for all σ ∈ Σc:

P k
σ (sσ) ≃ k−β, k → ∞. (3)

Indeed, P k
σ (sσ) =

∑∞
i=k di(sσ) ≃ ∑∞

i=k i−1−β ≃ ∫∞
k x−1−βdx ≃ k−β, as k → ∞. This

is the reason why the limit cycle spirals satisfying (2) is said to be of power β.
Similarly, if Γ is a spiral of focus type, we consider the set Σ0 of all axes σ through

the focus. Let Pσ : (0, εσ) ∩ Γ → (0, εσ) ∩ Γ be the Poincaré map corresponding to
any fixed axis σ (we assume that s = 0 corresponds to the focus for any axis σ). If
the family of Poincaré maps {Pσ : σ ∈ Σ0} is such that there exists β > 0 such that
for all σ ∈ Σ0 there holds (2) for any fixed σ ∈ Σ0, we say that Γ is the focus spiral
of power β.

The main result of this paper is the following theorem. We postpone its proof
until Section 4. Let us recall that the function d(s) = P (s) − s, where P (·) is the
Poincaré map and s small enough, is the displacement function. Note that if the
Poincaré map corresponds to a limit cycle spiral with respect to an axis σ ∈ Σc

oriented inwards (if the spiral is inside the limit cycle), or outwards (if the spiral is
outside the limit cycle) then in both cases we have d(s) < 0. The same holds for
spirals of focus type.

Theorem 1. Let Γ be a spiral trajectory of a planar vector field of class C1. Let
Pσ(s) be the Poincaré map with respect to an axis σ, and assume that it has the
form Pσ(s) = s+dσ(s) for each σ, where the displacement function dσ(·) : (0, rσ) →
(−∞, 0) is monotonically nonincreasing, such that −dσ(s) ≃ sα as s → 0, for
a constant α > 1 independent of σ. Then Γ is the spiral of power 1/(α − 1).
Furthermore,

(a) if Γ is a focus spiral associated with a system (1) such that p(x, y) = O(r2)
and q(x, y) = O(r2) as r =

√
x2 + y2 → 0, then

dimB Γ =

{

2 − 2
α

for α > 2,
1 for 1 < α ≤ 2,

(4)

and Γ is Minkowski nondegenerate for α 6= 2, and Minkowski degenerate for α = 2;
(b) if Γ is a limit cycle spiral, then

dimB Γ = 2 − 1

α
,

and it is Minkowski nondegenerate.
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Figure 1: Flow-sector theorem: weak focus flow in sectors near the singular point is
lipeomorphically equivalent to the annulus flow.

3 Flow-sector theorem

In the proof of Theorem 1(b) we shall need the following version of the well known
flow-box theorem, dealing with diffeomorphic equivalence of phase portraits, i.e. map-
ping trajectories onto trajectories. In particular, the function realizing the equiv-
alence is lipeomorphism. Recall that for two closed sets U and V we say to be
diffeomorphic if there exists a diffeomorphism between their open neighbourhoods.

Theorem 2. (Flow-box theorem, see e.g. Dumortier, Llibre, Artés [4, Theorem
1.12], or Kuznetsov [12, p. 75]) Let us consider a planar vector field of class C1.
Assume that U ⊂ R

2 is a closed set the boundary of which is the union of two
trajectories and two curves transversal to trajectories. If U is free of singularities
and of periodic orbits, then the dynamical system restricted to U is diffeomorphically
equivalent to the system

{

ẏ1 = 0
ẏ2 = 1,

defined on the unit square V = {(y1, y2) : |y1| ≤ 1, |y2| ≤ 1}.
In the proof of Theorem 1(a) we shall need the following analog of flow-box

theorem that we call flow-sector theorem. It shows that in any sufficiently small
sector with vertex at the weak focus the dynamics is lipeomorphically equivalent to
that of the annulus flow in a sector, see Figure 1. Here the annulus flow is defined
by ṙ = 0, ϕ̇ = 1 in R

2 \ {0} in polar coordinates (r, ϕ). The result seems to be new
even for analytic systems (1) such that near the singularity the flow is of spiral type,
see Figure 1 on the left.

Theorem 3. (Flow-sector theorem) Let U0 ⊂ R
2 be an open sector with the vertex at

the origin, such that its opening angle is in (0, 2π), and the boundary of U0 consists
of a part of a trajectory and of intervals on two rays emanating from the origin (see
Figure 1 on the left). Assume that

p(x, y) = O(r2), q(x, y) = O(r2) as r =
√

x2 + y2 → 0. (5)

If the diameter of U0 is sufficiently small, then system (1) restricted to U0 is lipeo-
morphically equivalent to the system

{

ṙ = 0
ϕ̇ = 1,

(6)
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Figure 2: Definition of the mapping R

defined on the sector V0 = {(r, ϕ) : 0 < r < 1, 0 < ϕ < π/2} in polar coordi-
nates (r, ϕ).

Proof. It will be convenient in this proof to denote points in the plane by x =
(x1, x2)

⊤. Let us assume without loss of generality that the angles corresponding
to two rays from the definition of U0 are ϕ0 = 0 and ϕ1 ∈ (0, 2π). Now we define
a mapping R : U0 → V1 = R(U0) for which we will show to be a lipeomorphic
equivalence. For a given x ∈ U0 let Γx be the trajectory passing through x, and let
x0 be the point of intersection of Γ with the ray {ϕ = 0}. Let r0(x) = ‖x0‖, where
‖ · ‖ is the Euclidean norm. We define R by

R(x) = r0(x) x̂ =
r0(x)

‖x‖ x, (7)

see Figure 2. It is well defined since the opening angle of sector U0 is in (0, 2π),
and since the rays are transversal to trajectories, and even almost perpendicular.
Indeed,

cos ∠(x, F (x)) =
|x · F (x)|
‖x‖ ‖F (x)‖ ≃ |x1p(x) + x2q(x)|

r2
=

O(r3)

r2
→ 0,

as r → 0, where F (x) = (−x1 + p(x), x2 + q(x))⊤ for x = (x1, x2)
⊤ ∈ U 0, so that

when U0 has a sufficiently small diameter we have ∠(x, F (x)) ≈ π/2. Note that the
vector field (6) on sector V1 is lipeomorphically equivalent to the system (6) viewed
on the sector V0.

Using (1) we obtain that x p+y q = r ṙ, hence, ṙ = O(r2). Using also ϕ̇ = 1+O(r)
we obtain that

dr

dϕ
=

ṙ

ϕ̇
=

O(r2)

1 + O(r)
= O(r2).

Dividing −Cr2 ≤ dr
dϕ

≤ Cr2 by r2 and integrating from ϕ = 0 to ϕ(x), it follows
that

| ‖x‖ − r0(x)| ≤ ϕ(x) O(r0(x)2). (8)

Hence, since r0(x) → 0 as x → 0, we have

‖x‖ ∼ r0(x) as x → 0. (9)
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Now we show that R is the lipeomorphic for x small enough. Applying the
Lagrange mean value theorem to both components of R = (R1, R2)

⊤, we obtain
that for any x, y ∈ U0 we have

R(x) − R(y) = T (u, v)(x− y), (10)

where T (u, v) = (∇R1(u),∇R2(v))⊤ is a 2×2-matrix with raws ∇R1(u) and ∇R2(v),
and u, v ∈ [x, y] ⊂ U0. Here [x, y] denotes the interval in the plane with vertices in
x and y. To compute T (u, v) we need the Fréchet derivative R′(x), since R′(x) =
(∇R1(x),∇R2(x))⊤. A direct computation shows that

R′(x) = x̂ · ∇r0(x)⊤ +
r0(x)

‖x‖ (I − x̂ · x̂⊤). (11)

In order to find ∇r0(x), let us go back to the differential equation dr
dϕ

= x p+y q

r(1+O(r))
=:

F (r, ϕ). By integration from ϕ = 0 to ϕ = ϕ(x), we obtain ‖x‖ − r0(x) =
∫ ϕ(x)
0 F (r(ϕ), ϕ) dϕ. Taking the gradient and using ϕ(x) = arctan(x2/x1), we obtain

that

x̂ −∇r0(x) = F (r, ϕ(x))∇ϕ(x) = F (‖x‖, ϕ(x)) r−2

[

−x2

x1

]

,

where r = ‖x‖. Exploiting (11) it follows that

R′(x) =
r0(x)

‖x‖ I +

(

1 − r0(x)

‖x‖

)

A(x) + B(x), (12)

where

A(x) = x̂ · x̂⊤ =

[

x̂2
1 x̂1x̂2

x̂1x̂2 x̂2
2

]

,

with x̂ = x
‖x‖

= (x̂1, x̂2)
⊤, and

B(x) =
F (‖x‖, ϕ(x))

‖x‖

[

x̂1

x̂2

]

[sin ϕ − cos ϕ].

Condition (5) implies that B(x) → 0 as x → 0.
Let us now consider the max-norm of vectors. Using (12) in (10) and denoting

vector raws of matrices A and B by Ai and Bi respectively, i = 1, 2, we obtain that
for any x, y ∈ R

2:

‖R(x) − R(y)‖∞ = ‖T (u, v)(x− y)‖∞

≥ min

{

r0(u)

‖u‖ ,
r0(v)

‖v‖

}

‖x − y‖∞

−M(u, v)‖(A1(u), A2(v))⊤(x − y)‖∞
−‖(B1(u), B2(v))⊤(x − y)‖∞,

where M(u, v) = maxz∈{u,v}

∣

∣

∣1 − r0(z)
‖z‖

∣

∣

∣. Note that

‖(A1(û), A2(v̂))⊤(x − y)‖∞ ≤ max
z∈{u,v}

‖A(ẑ)‖∞‖x − y‖∞
≤ 2‖x − y‖∞,
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since ‖A(ẑ)‖∞ = ẑ2
1 + |ẑ1ẑ2| ≤ 2 for ‖ẑ‖∞ ≤ 1, and

‖(B1(u), B2(v))⊤(x − y)‖∞ ≤ max
z∈{u,v}

‖B(z)‖∞‖x − y‖∞.

Here max ‖B(z)‖∞ can be made arbitrarily small by taking the diameter of U0 small
enough. Therefore we have that ‖R(x) − R(y)‖∞ ≥ c1‖x − y‖∞, ∀x, y ∈ U0 for
some positive constant c1, provided

min
z∈{u,v}

r0(z)

‖z‖ − max
z∈{u,v}

∣

∣

∣

∣

∣

1 − r0(z)

‖z‖

∣

∣

∣

∣

∣

· 2 > c1 > 0. (13)

This is satisfied due to (9), assuming that U0 is of sufficiently small diameter. The
inequality ‖R(x)−R(y)‖∞ ≤ c2‖x−y‖∞ for some positive constant c2 follows easily
from (10) and (12). This proves that R : U0 → V1 is a lipeomorphic equivalence.

Remark 2. Let p and q be analytic functions such that

p(x, y) =
∞
∑

k=2

pk(x, y), q(x, y) =
∞
∑

k=2

qk(x, y), (14)

where pk and qk are homogeneous polynomials of degree k. Then the conditions of
Theorem 3 are satisfied, and hence the flow-sector property for (1) holds.

Remark 3. It is easy to see that the function R constructed in the proof of The-
orem 3 is a diffeomorphism. Indeed, R−1(x) = r1(x)x̂, where r1(x) can be obtained
similarly as r0(x) in the proof of Theorem 3. Thus, R is a lipeomorphic diffeomor-
phism. Furthermore, the Lipschitz constants c1 and c2 can be taken arbitrarily close
to 1, if the diameter of the sector U0 is sufficiently small, see (13). The reason is
intuitively clear: for small x the function R is close to the identity, and R′ is close
to the identity matrix, see (7), (11), and (9).

4 Proof of the main result

In the following theorem we establish the connection between the asymptotic be-
haviour of iterates of the Poincaré map associated with a spiral, and the box di-
mension of the spiral. It complements our results in [19, Theorems 1 and 2]. The
main Theorem 1 will be a consequence of Theorem 4 below dealing with continuous
systems, and of a result from [5] dealing with one-dimensional discrete systems.

Theorem 4. Let Γ be a spiral trajectory of a planar vector field of class C1.
(a) If Γ is a focus spiral trajectory of power β > 0, associated with the system

described by (1), such that p(x, y) = O(r2) and q(x, y) = O(r2) as r =
√

x2 + y2 → 0,
then

dimB Γ =

{

2
1+β

for β ∈ (0, 1),

1 for β ≥ 1.
(15)

Furthermore, Γ is Minkowski nondegenerate when β 6= 2, and it is Minkowski de-
generate for β = 1.
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(b) If Γ is a limit cycle spiral trajectory of power β > 0, then

dimB Γ =
2 + β

1 + β
, (16)

and the spiral is Minkowski nondegenerate.

Proof of Theorem 4. (a) For each σ ∈ Σ0 there exists an open sector U0(σ, δσ) ⊂
Bε(0) as in Theorem 3, of sufficiently small diameter, with vertex at the focus,
where δσ ∈ (0, 2π) denotes the opening angle of the sector, and σ is the middle
ray corresponding to the opening angle in the sector. It is clear that we may take ε
independent of σ. Using Theorem 3, we see that the set Γ∩U0(σ, δσ) is lipeomorphic
to the set B′

σ = C ′
β∩V1(σ, δσ), where C ′

β is the union of concentric circles with centers
at the origin, having radii P k

σ (sσ), k ∈ N, and V1(σ, δσ, 1) is the corresponding
sector in the unit ball B1(0). Now, we show that B′

σ is lipeomorphic to the set
Bσ = Cβ ∩ V1(σ, δσ), where Cβ is the union of concentric circles of radii k−β, k ∈ N,
centered at the origin. Indeed, we first define a piecewise linear function f : σ → σ
by F (P k

σ (sσ)) = k−β defined in a neighbourhood of the origin, which is clearly
lipeomorphic due to P k

σ (sσ)−P k+1
σ (sσ) ≃ k−β − (k + 1)−β as k → ∞, see (2). Then

we define the desired lipeomorphism F : B′
σ → Bσ by radial extension, that is, by

F (x) = f(‖x‖) x̂, where x̂ = x/‖x‖.
The family of open sectors {U0(σ, δσ, ε) : σ ∈ Σ0} is not an open cover of of the

whole of Γ, since for example 0 ∈ Γ, but not in any of the sectors. Therefore, for fixed
σ we consider a part Aσ the set of all points x on the unit circle S1 = {x : |x| = 1}
of the plane, such that the ray spanned by x and the origin intersects the sector
U0(σ, δσ). It is clear that the family {Aσ : σ ∈ Σ0} is an open cover of the circle,
hence there exists a finite subcover: S1 = Aσ1

∪ · · · ∪ Aσn
. From this we see that

Γ′ ⊂ U0(σ1, δ1)∪ · · · ∪U0(σn, δn), where we have denoted δi = δσi
, and Γ′ is the part

of Γ inside U . Similarly as in (a) we have that dimB Γ = dimB Γ′, since Γ′′ = Γ \ Γ′

is rectifiable. Let us define Γ′
i = Γ′∩U0(σi, δi), i = 1, . . . , n. Then Γ′ = Γ′

1∪· · ·∪Γ′
n,

and due to finite stability of box dimension,

dimB Γ′ = max
i=1,...,n

(dimB Γ′
i) = max

i=1,...,n
(dimB Bσi

).

Now we show that each dimB Bσi
is equal to the right-hand side in (15). The sets

Bσi
, i = 1, . . . , n are lipeomorphic (and moreover, isometric). Hence, using finite

stability of box dimension we obtain that

dimB Γ′ = max
i=1,...,n

(dimB Bσi
) = dimB

(

n
⋃

i=1

Bσi

)

= dimB Cβ,

and the claim follows from dimB Cβ = 2/(1 + β) for 0 < β < 1 and dimB Cβ = 1 for
β ≥ 1, see [19, Remarks 8 and 2].

The second claim follows from Minkowski nondegeneracy of Bσ (this follows
easily from [19, Remarks 2 and 8]), combined with the fact that Minkowski nonde-
generacy is preserved under lipeomorphisms, see [20] or [21].

(b) Let us fix σ ∈ Σc, and define Uσ as a closed set containing interval (0, εσ) ⊂ σ
in its interior, such that the boundary of Uσ is the union of a part of the limit cycle,
of two closed intervals I(σ′) ⊂ σ′ and I(σ′′) ⊂ σ′′, σ′, σ′′ ∈ Σc, and of a part of
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spiral Γ. Let I(σ′) ∩ Γ = {(xk, 0) : k ∈ N} ⊂ σ′. Assume that the sequence (xk) is
decreasing, converging to 0. We first show that the set Γ ∩ Uσ is lipeomorphic to
the following Cartesian product:

Aβ = {k−β : k ∈ N} × [−1, 1]. (17)

In order to show this, we first note that by the flow-box Theorem 2, the initial
dynamical system on Uσ is diffeomorphically equivalent with the system ẏ1 = 0,
ẏ2 = 1, on the square [−1, 1]2. Let us show that Γ ∩ Uσ is lipeomorphic to V ′ =
{xk : k ∈ N} × [−1, 1]. Since the interval I(σ′) is mapped onto [−1, 1] × {−1}, due
to (2) we conclude that

xk − xk+1 ≃ P k
σ′(sσ′) − P k+1

σ′ (sσ′) = dk(σ
′) ≃ k−1−β. (18)

Similarly as in (a), using flow-box theorem, we can show that V ′ and Aβ are lipeo-
morphic.

The second claim follows as in (a), using the fact that Minkowski nondegener-
acy of a set is preserved under Cartesian product of the set with [−1, 1], see [18,
Proposition 4.3]. Minkowski nondegeneracy of the set {k−β} has been established
in Lapidus, Pomerance [13].

Now we can prove the main result of this paper.

Proof of Theorem 1. The fact that the spirals are of power β = 1/(α−1) follows
immediately from [5, Theorem 1], with f(s) = −d(s) there. The claims in (a) and
(b) then follow from Theorem 4.

5 Applications

We consider a planar analytic system (1) with a weak focus at the origin, where
p(x, y) and q(x, y) are as in (14). In polar coordinates (r, ϕ) system (1) reduces to

dr

dϕ
=

∞
∑

k=2

sk(ϕ) rk. (19)

Let r(ϕ, r0) be the solution of (19) such that r = r0 for ϕ = 0. For r small enough
we can write

r(ϕ, r0) = r0 +
∞
∑

k=2

uk(ϕ) rk
0 , (20)

with uk(0) = 0 for k ≥ 2. The Poincaré map for (1) near the focus is defined by

P (r0) = r(2π, r0) = r0 +
∞
∑

k=2

uk(2π) rk
0 .

The coefficient uk(2π) in the above expansion is called k-th Lyapunov coefficient of
the weak focus, k ≥ 2. We denote the first nonzero Lyapunov coefficient by Vk. It
can be shown that in such Vk the index k is always odd, see e.g. Dumortier, Llibre,
Artés [4, p. 124], or Roussarie [15, Lemma 8].
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Lyapunov coefficients were first introduced in [14]. There are some other names
for the Lyapunov coefficient, like the Lyapunov number, Lyapunov constant or Lya-
punov quantity. Also, there are different definitions, but all of them are mutually
equivalent and the coefficients are equal up to some positive constant, see [4, p.
126]. Lyapunov coefficients are important in solving the stability problem of a plane
system which is a perturbation of a linear focus at the origin, but computation of
the Lyapunov coefficients is quite a difficult task. There exist different ways of their
computation. A new algorithm for the computation of the Lyapunov coefficients,
based on Gasull, Torregrosa [11] and relying on ideas of Françoise [8], is exposed in
[4]. There one can find some numerical examples, see [4, pp. 144–145], to which our
dimension result in Theorem 1 applies. In [4, Section 4.7] there is a list of articles
dealing with the computation of Lyapunov coefficients.

5.1 Hopf bifurcaton

In [19] we dealt with the normal form called the standard model where the Hopf-
Takens bifurcation occurs:

X
(l)
± :=

(

−y
∂

∂x
+ x

∂

∂y

)

±
(

(x2 + y2)l+ (21)

al−1(x
2 + y2)l−1 + · · · + a0

)

(

x
∂

∂x
+ y

∂

∂y

)

.

Here (a0, . . . , al−1) ∈ R
l is fixed. We established the relation between the exponent

of the first nonzero monomial of (21) and the box dimension of the spiral trajectory
tending to focus or to a limit cycle, see [19, Theorems 9 and 19].

It is known that according to Takens [16], any analytic vector field X of the form

(1) satisfying (14) is locally diffeomorphic to its normal form X
(l)
± , see also Caubergh,

Dumortier [1, p. 3]. It follows that the Hopf-Takens bifurcation of codimension l,
assuming additionally that k = l (i.e. when we have the birth of l limit cycles),
occurs with box dimension equal to 2(1 − 1

2l+1
). For l = 1 we have a classical Hopf

bifurcation. In [19] we have shown that if l = 1 and a0 = 0 in (21), then any spiral
trajectory tending to the origin has box dimension equal to 4/3. We hope that the
approach undertaken in this paper via the Poincaré mapping could solve analogous
problems for the case of nilpotent focus and degenerate focus (i.e. with zero linear
part). It could be possible also to deal with spirals near a saddle-loop, and even
2-saddle cycle.

The next theorem deals with analytic systems of the form

{

ẋ = ax − y + p(x, y)
ẏ = x + ay + q(x, y).

(22)

We reprove the fact that at parameter of Hopf bifurcation the spirals near the weak
focus always have box dimension equal to 4/3. We have proved analogous result
in [5] for saddle-node and period-doubling bifurcations of one-dimensional discrete
systems.
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Theorem 5. (Hopf bifurcation) Assume that p(x, y) and q(x, y) are analytic func-
tions as in (14). Let Γ be a spiral trajectory near the origin of system (22), where
a = 0. If the first nonzero Lyapunov coefficient is V3, then the Hopf bifurcation
occurs at the origin of the system (22) at a = 0, the spiral is of power 1/2, and

dimB Γ =
4

3
.

Furthermore, Γ is Minkowski nondegenerate.

Proof. The claim follows from Theorem 1(a) with α = 3.

It is possible to extend this theorem for l > 1, which corresponds to Hopf-Takens
bifurcation. Box dimension of a spiral trajectory depends on the nonzero Lyapunov
coefficient.

5.2 Liénard systems

In the simple model (21) the box dimension depends only on the exponents of the
system, see [19], but in general it is not true because the Lyapunov coefficients
depend on the coefficients of the system. In Caubergh, Dumortier [1, Theorem
5] a relation between Lyapunov coefficients and Hopf-Takens bifurcation has been
established. Application of the results proved in [1] for Liénard systems















ẋ = −y +
N
∑

i=1

a2ix
2i +

N
∑

i=k

a2i+1x
2i+1

ẏ = x,

(23)

and generalised Liénard systems can be found in Caubergh, Françoise [2]. There
is a great interest to consider Liénard systems, see for instance Françoise [7], [9],
[10]. For such systems it is very simple to compute Lyapunov coefficients in terms
of the coefficients of the system. As an example we will extend [2, Proposition 8]
by a dimensional result. We recall that [2, Proposition 8] is a result cited from
Christopher, Lloyd [3]. For the sake of simplicity we state the following result under
less general conditions than in [2, Proposition 8].

Theorem 6. (Liénard system) Let a2k+1 6= 0 in (23), that is, a2k+1 is the first
nonzero coefficient corresponding to an odd exponent of x. Then any spiral trajectory
Γ, viewed near the origin, is of power 1

2k
and has box dimension equal to

dimB Γ = 2
(

1 − 1

2k + 1

)

. (24)

Furthermore, Γ is Minkowski nondegenerate.

Proof. The first nonzero Lyapunov coefficient in our notation is given by V2k+1 =
c2k+1a2k+1 6= 0 for a certain rational number c2k+1 > 0, see [2, Proposition 8].
The claim follows from Theorem 1(a) with α = 2k + 1, since p(x, y) = O(x2) and
q(x, y) = 0.
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Figure 3: Three spirals of Liénard system (25) for k = 1, 2, 3, with box dimensions
4/3, 8/5, 12/7, see (24).

An illustration of Theorem 6 is provided by Figure 3, where three spiral trajec-
tories are shown, corresponding to the Liénard system















ẋ = −y +

(

k
∑

i=1

x2i

)

+ x2k+1

ẏ = x,

(25)

with k = 1, 2, 3 respectively. The terms with even exponents do not influence the
box dimension of spirals.

The Liénard system in Theorem 6 concerns a class of planar systems in which
p(x, y) is a polynomial in x and q(x, y) = 0. One can ask if it is possible to construct
polynomials p(x, y) and q(x, y) as in (14) such that a spiral trajectory of (1) near

the origin does not have its box dimension of the form 2
(

1 − 1
2k+1

)

or 1, that is,
from the set

D0 = { 4k

2k + 1
: k ∈ N} =

{

4

3
,

8

5
,

12

7
,
16

9
,

20

11
, . . .

}

.

The answer is no. Moreover, even for analytic functions p(x, y) and q(x, y) as in
(14), only dimensions from the set D0 can be obtained. This is a consequence of
the following theorem, which in turn follows immediately from Theorem 1(a). It
extends Theorems 5 and 6.

Theorem 7. (Analytic systems) Let Γ be a spiral trajectory near the origin of system
(1), where p(x, y) and q(x, y) are analytic functions as in (14). If the first nonzero
Lyapunov coefficient is V2k+1, then

dimB Γ = 2
(

1 − 1

2k + 1

)

.

Furthermore, Γ is Minkowski nondegenerate.

Remark 4. From [19, Theorem 10] we know that for analytic fields with normal
form (21) each spiral trajectory Γ of limit cycle type has box dimension of the form
dimB Γ = 2− 1

m
, where m is algebraic multiplicity of the spiral, that is, from the set

D1 = {2 − 1

m
: m ∈ N} =

{

1,
3

2
,
5

3
,
7

4
,
9

5
, . . .

}

.
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sitaires de France, Paris (1995).

[8] J.-P. Françoise, Successive derivatives of a first return map, application to the
study of quadratic vector fields, Ergodic Theory Dyn. Syst. 16 (1996), 87–96.

[9] J.-P. Françoise, Analytic properties of the return mapping of Liénard equation,
Mathematical Research Letters, 9, (2002), 255-266.

[10] J.-P. Françoise, C.C. Pugh, Keeping track of Limit cycles, Journal of Differential
Equations 65, (1986), 139-157

[11] A. Gasull, J. Torregrosa, A new approach to the computation of the Lyapunov
Constants, Computational and Applied Mathematics, Vol. 20, N. 1-2, (2001),
1-29.

[12] Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer Verlag,
1998.

[13] Lapidus M.L., Pomerance C., The Riemann zeta-function and the one-
dimensional Weyl-Berry conjecture for fractal drums, Proc. London Math. Soc.
(3) 66 (1993), no. 1, 41–69.

[14] A.M. Lyapunov, The General Problem of the Stability of Motion, Taylor and
Francis, (1992).

[15] R. Roussarie, Bifurcations of Planar Vector Fields and Hilbert’s Sixteenth Prob-
lem, Birkhäuser, 1998.
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