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Abstract

We present an example of slow-fast system which displays a full open set
of initial data so that the corresponding orbit has the property that given any
e and 7', it remains to a distance less than € from a repulsive part of the fast
dynamics and for a time larger than 7. This example shows that the common
representation of generic fast-slow systems where general orbits are pieces of
slow motions near the attractive parts of the critical manifold intertwined by
fast motions is false. Such a description is indeed based on the condition that
the singularities of the critical set are folds. In our example, these singularities
are transcritical.

1 Introduction

A first approximation for the time evolution of fast-slow systems dynamics is often
seen as follows. A generic orbit jumps close to an attractive part of the equilibrium
set of the fast dynamics. It evolves then slowly close to this attractive part until
that, under the influence of the slow dynamics, this attractive part bifurcates into
a repulsive one. Then the generic orbit jumps to another attractive part of the fast
equilibrium set until it also looses its stability and then jumps again in search of an-
other attractor and so on. This approach is indeed only a first approximation. It is
a quite meaningful one because in this setting one can explain many phenomena like
for instance hysteresis cycles, relaxation oscillations, bursting oscillations and more
complicated alternance of pulsatile and surge patterns of coupled neurons popula-
tions. It can also serve as a good representation model of the so-called ultrastability
introduced in Cybernetics by R. Ashby ([1]) (as the property that some systems
display an adaptation under some external influences to switch in a reversible or
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non-reversible manner from a stable state to another one) and used in life sciences
by H. Atlan ([2], [10]).

Also, this approach does not take into account canards. Discovered by E. Benoit,
Callot, M. and F. Diener ([5]) using non-standard analysis, canards are limit periodic
sets (limit when € — 0) of the van der Pol system:

3

ci =y fla) =y (5 +2) (1.1)

y=x — c(e) (1.2)

where c(€) ranges between some bounds:
co +exp(—a/e) < c(e) < cg+exp(—PF/e), (a>p>0). (1.3)

The surprising aspect is that a part of the canard coincides with a repulsive piece
of the critical manifold. More recent contributions of Dumortier and Roussarie ([8])
yield new (standard) proofs for the existence of such limit-periodic sets. There are
now several evidences showing the relevance of this notion to explain experimental
facts observed in physiology. Note that canards occur in two-parameters families in
some narrow set of parameters.

The system we present here, although quite simple, displays a kind of recurrence of
the canard effect which enhances the delay to bifurcation.

2 Transcritical Dynamical Bifurcation

The classical transcritical bifurcation occurs when the parameter X in the equation:

b=+ 2% (2.4)

crosses A = 0. Equation 2.4 displays two equilibria, x = 0 and x = A\. For A > 0,
x = 0 is stable and z = X is unstable. After the bifurcation, A < 0, z = 0 is stable
and z = X is unstable. The two axis have “exchanged” their stability.

The terminology “Dynamical Bifurcation” refers to the situation where the bifurca-
tion parameter is replaced by a slowly varying variable. In the case of the transcrit-
ical bifurcation, this yields:

&= —yr + 2? (2.5)
= —¢, (2.6)
where € is assumed to be small.
This yields
&= —(—et +yo)r+ 2% (yo=y(0))

which is an integrable equation of Bernoulli type. Its solution displays:

B zoexp[—Y (1)] B
z(t) = 1 — g J§ exp[—Y (u)]du (w0 = 2(0)
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2

t t ¢
Y(t) = /0 y(s)ds = /0 (—es+yo)ds = —€5 + yot.

If we fix an initial data (zo,v0), o > 0, 0 < ¢ < yo/2, and we consider the solution
with this initial data we find easily that it takes time ¢ = yg/€ to reach the axis y = 0.
If 2y is quite small, that means the orbit stays closer and closer of the attractive
part of the critical manifold untill it reaches the axis x = y and then coordinate x
start increasing. But now consider time cyg/e, 1 > ¢ > 2. Then a straightforward

computation shows that Y'(t) = ¢(1 — %)%a = % and that

2yo0/e t2 2
limg_,O/ exp(e— — yot)dt = —.
€ 2 Yo

This shows that if € is small enough and if the initial data satifies xy < /2, then:

. xeexp(—k/e)
z(t) =0 R 270/v0

This yields that, despite the repulsiveness of the axis x = 0,y < 0, the orbit remains
for a very long time close to x = 0, indeed x(t) < xy. Note that after a larger time
the orbit blows away from this repulsive axis. This phenomenon, although quite
simply explained, is of the same nature as the delay to bifurcation discovered for
the dynamical Hopf bifurcation. See for instance ([3], [6], [9], [11]). This well-known
effect is instrumental in the example we construct in this article. Some related work
has been done in computing exit points through the passage of single turning points,
for example [4], [7].

)<z

3 An example of system with enhanced delay

Consider the equation:
&= (1-2")(z—y)
Y = €T.

The fast dynamics displays the invariant lines + = —1, x = 1, and y = . A quick
analysis shows that, as the slow variable y varies, the fast system undergoes two
transcritical bifurcations near the points (—1,—1) and (1,1). As we recalled in the
first paragraph, a typical orbit near (—1,—1) first displays a “delay” along the re-
pulsive part (x = —1,y < —1) of the slow manifold. Then, by hysteresis, it jumps
to the attractive part (x = 1,y < 1) till it reaches the other transcritical bifurcation
where it again displays another delay along the repulsive part (z = 1,y > 1). Then
it jumps again to (r = —1,y > 1) and starts again. There is such a mechanism of
successive enhancements of the delay after several turns generated by the hysteresis.
After this intuitive explanation, we give now a formal proof of the:

Theorem

For all initial data inside the strip —1 < x < 1, for all § and for all T', the cor-
responding orbit spends a time larger than 7" within a distance less than ¢ to the
repulsive part of the slow manifold.
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Proof
Inside the strip | z |< 1, it is convenient to use the variable u: z = tanhu. The
system yields the equations:

u = tanhu — y

y = etanhu.

Counsider the function
1
O(u,y) = a(tanhu —y)? + eln(coshu),

and its time derivation along the flow. This displays:

d i
Z0(u,y) = (=)

coshu

Hence the function & is strictly increasing along the flow (Lyapunov function for
the flow).

Note now that if (u(t),y(t)) is a solution then (—u(t), —y(t)) is also a solution. To
study the orbits of the system, we can restrict to initial data u = uy > 0 and y = .
The first step of the proof is to show that all orbits intersect both axes u = 0 and
y = w in infinitely many points.

Assume first yo > tanhug. Then u(0) < 0. But

d — tanh
— (y — tanhu) = etanhu + y— o

dt cosh?u

shows that y — tanhu grows hence remains positive. Assume that u would remain
always positive. Then, as y — tanhu > 0, u is monotone decreasing. Hence there
exists [ such that u — [ as t — 4-o00.

If I > 0, § = etanhu implies (via the mean value theorem) y — oo but then
it — —oo and (mean value theorem) contradiction with u > 0.

Ifl=0,u+y — 0. But y is monotone increasing. If y — +oo, then @4 — —o0
and again contradiction. If y tends to a finite limit m, then « — —m and again
contradiction. Hence all orbits with initial data (ug,yo) with yo > tanhug > 0
intersect the axe u = 0.

Consider now the case yg < tanhug. The variable u is first strictly increasing (as
soon as y < tanhu), hence positive and so y is increasing. Assume that tanhu — y
would remain positive along the orbit. Then as t — +oo, u would tend to a limit
m (eventually m = 4+00).As y — m, mean value theorem would imply y — +oo
and again a contradiction with @ — —o0. So the orbit necessarily intersects the axe
y = tanhu and ultimately the axe u = 0 by the preceding argument. By symmetry,
we can also show the existence of two sequences of times (¢,) and (6,,) such that:

t, <0, <ty

x(ty,) = x(tps1) =0
2(6n) = y(0n)
y(tn) = (=) "a,, a, >0.
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In the second part of the proof we show that the sequence (a,,) is unbounded.
Consider now the function

20 (u,y) = w(z,y) = (r —y)* —eln | 1 — 27 |,

which satisfies:
w=2(1— 2% (x —y)?/e

As w is strictly increasing, this yields:
w(t,) =a; < w(h,) = —en(l — &) < w(tp1) = asq,

with &, = x(6,). Integration along the flow of () = 2&(z — y) yields:

2 2 tn+1 . tn+1 i
a, . —a, = 2&(x — y)dt = 2 xydt

tn tn
tn+1 9

= 26/ xodt < 2€(t, — tpi1).
tn

This shows that if (t,) converges to a finite limit then so does (a,) and (&,). Now
integration along the flow of y = eu yields:

ap + apy < .s/tn+1 | tanhu | dt < e(t,41 —tn),
and this shows that the sequence of times (t,) is necessarily unbounded. Now assume
that the sequence (a,) would be bounded. Then, as the sequence (t,) tends to +oo,
the function w would be bounded on the orbit. But then so would be both the two
functions (z — y)? and —In(1 — z?). But then there would exist a constant « such
that (1 — 2?) > « along the orbit and

w > 2a(z —y)* > 20w,

hence e ?*w(t) increasing and contradiction with the fact that w would be bounded.
Last step is classical in slow-fast dynamics. Consider the unbounded sequence of
points (0, a,,) on the orbit. By Tikhonov’s theorem there is an invariant curve which
passes near that point. By Takens’s theorem the flow is conjugated to the fast flow
along this invariant curve. Hence necessarily there is for all orbits inside the strip,
all 9 and all T a part of the orbit which remains at a distance less than 0 of the
repulsive parts of the boundary of the strip for a time larger than T'.

4 Asymptotics of the system outside the strip

Theorem

Given any initial point (xg, yo) outside the strip | x |< 1, the corresponding orbit
is asymptotic to y = x.
Proof

We can always assume that xy > 1 because the system is symmetric relatively
to the origin. The equations yield:

dx 1

Ed_y = (v — E)(y — ).
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So if y > = and (zo,v0), (71,y1) are two points on the same orbit with zy < 1, we
get:

1 dx 1
_ = C ) < et < _ = _
(@ = )=o) < G < o= D)y =)
Set: . )
o E(xl xi), 1=0,
this yields
dx
d—y—ao(y—x) >0,
dx
d—y—al(y—x) <0,
hence J
d_(ecmyx) > aoyeaoy
Yy
d

—(e"x) < ayye™y.
dy( ) < ary

Integration between yo and y; yields

1 1

EOYO (41 ) > eMOUL (e
(%o 0 Oéo) = (11 1 a0>7

and . .
M (yo — o — —) <™ (y1 — a1 — —).

o a

The second inequality shows that if y9 = x¢, then
e > M (1 — oy (y1 — 1)),

and thus that the orbit stays above the line y = x. If we now choose xy (and «g)
large enough, the first inequality displays:

1
_ <
(1 — 1) < San

This shows that the orbit is asymptotic to y = x.
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