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Abstract

In this paper we will review several results of rigidity in one-dimensional
dynamics and its relation to renormalization. In many one dimensional dy-
namical systems the existence of a topological conjugacy between two map-
pings implies that the restriction of the conjugacy to the attractor extends
to a smooth mapping. Thus the combinatorics imposes severe restrictions on
the geometry of the attractor.

1 introduction

The phenomenom of rigidity occurs in many situations when a weaker equivalence
between certain classes of dynamical systems automatically implies a stronger equiv-
alence. One of the most celebrate results in this direction is Mostow’s rigidity theo-
rem stating that if two compact hyperbolic manifolds are homeomorphic ( or even if
they have the same homotopy type) they are isometric. In one dimensional dynam-
ics the first manifestation of this phenomena appears in the work of M. Herman,
[12] where he proved that two smooth circle diffeomorphisms that are topologically
conjugate and have a rotation number satisfying a Diophantine condition, the con-
jugacy is smooth. Also the discovery by Feigenbaum, [10] and Coullet-Tresser, [5]
of some universal scaling laws in the transition to chaos in parametrized families
of interval maps is related to a similar type of rigidity both in phase space and in
the parameter space as we will describe later. Finally the same phenomenon was
detected in the critical circle mappings which are in the boundary between circle
diffeomorphisms and chaotic circle mappings, [24], [17].
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2 Rigidity

Let M be either the compact interval [−1, 1] or the unit circle S1. The dynamical
systems we will discuss here are generated by a Cr map f : M → M . The basic
examples are given by the one-parameter family of quadratic maps and the two-
parameter family of circle maps described below. Let us consider the following
parametrized families of maps.

qa : [−1, 1] → [−1, 1], qa(x) = −ax2 + 1, 0 < a ≤ 2

Aa,b : S1 → S1; Aa,b(x) = x + a +
b

2π
sin(2πx) (mod 1),

where 0 ≤ a ≤ 2 and 0 ≤ b

All the maps in the first family have a unique critical point. If b < 1, the mapping
Aa,b is a circle diffeomorphism; if b = 1, it is a critical circle mapping: a smooth
homeomorphism with a unique critical point of cubic type and, lastly, for b > 1 it
is not invertible and the dynamics becomes “chaotic”.

An attractor for f is a subset A ⊂ M with the following properties:

• A is closed and f -invariant: f(A) = A;

• A is topologically transitive: there exists an orbit in A which is dense in A;

• the basin of attraction of A, B(A), has positive Lebesgue measure. Here B(A)
is the set of points in M whose ω-limit set is equal to A.

The simplest type of attractor is an attracting periodic orbit. If f is a circle dif-
feomorphism of class C2 without periodic points then, by Denjoy’s theorem, the
attractor is the whole circle. This is also the case for critical circle maps by a the-
orem of Yoccoz, [30]. For unimodal maps, like the maps in the quadratic families,
we have three types of attractors: periodic orbits, Cantor attractors= closure of the
critical orbit, or a cycle of a finite number of intervals that are permuted by f . In
the last case, the expanding periodic points are dense in the attractor.

For typical one-parameter families of unimodal maps, the set of parameter values
corresponding to maps with a periodic attractor is open and dense by a theorem of
Kozlovski, [16], and the set of parameters corresponding to maps whose attractor is
a cycle of intervals has positive Lebesgue measure by the theorem of Jakobson, [13].
Finally the set of parameter values corresponding to Cantor attractors contains a
Cantor set whose Hausdorff dimension is positive, see [11].

Two maps f and g are topologically conjugate if there exists a homeomorphism
h : M → M such that h ◦ f = g ◦ h.

We say that the attractor of f is Cs-rigid if for any map g topologically conjugate
to f , the restriction of the topological conjugacy to the attractor extends to a Cs,
1 ≤ s, diffeomorphism of M .
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3 Renormalization

A unimodal interval map f is renormalizable if there exists an interval J0 around
the critical point such that the first return map to J0 is an iterate fk and is again
a unimodal map. The family of intervals J0, J1 = f(J0), ..., Jk−1 = f(Jk−2) have
pairwise disjoint interiors. The smallest such k is called the renormalization period.
By rescaling J0 to the original size, we get the renormalization operator R from
the set of renormalizable maps to the set of unimodal maps. The dynamics of this
infinite dimension operator plays a fundamental role in the study of rigidity. In
order to understand the small scale geometry of the critical orbit of a given map
we are led to describe the limit set of the renormalization operator. For typical
one parameter families of unimodal maps, as the quadratic family above, the set
of parameter values corresponding to maps that are renormalizable with a given
combinatorics is usually an interval ( or a finite number of disjoint intervals) as in
Figure 1. The maps we are interested in are the infinitely renormalizable maps;
they belong to the domain of all iterates of the renormalization operator. For such
map the closure of the critical orbit is a Cantor set whose geometry we want to
understand.

Figure 1: Renormalization

The rigidity of this Cantor set is related to the exponential contraction of the
renormalization operator: if f and g are infinitely renormalizable maps with the
same combinatorial type then the distance between Rn(f) and Rn(g) converges to
zero exponentially fast. That the exponential contraction of the renormalization
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operator implies the C1+α rigidity of the Cantor attractor was proved in [22] in
the case of bounded combinatorial type, i.e., when the renormalization periods are
uniformly bounded. To establish the exponential contraction was a much more
difficult project that involved many tools from real and complex analysis that were
developed by Sullivan,[25],[26], McMullen, [20],[21] and Lyubich, [18], [19]. See [11]
for the final result concerning smooth maps with bounded combinatorial type. The
first step is to establish the so called real a priori bounds that implies that maps
in the limit set of the renormalization operator are real analytic with holomorphic
extensions in the Epstein class. The second fundamental step is the so called complex
a priori bounds: the high iterates of a map in the Epstein class has a holomorphic
extension to a quadratic like map in the sense of Douady-Hubbard, see [7], with a
fundamental annulus with conformal modulus bounded from below. The next step
came from the rigidity of towers of McMullen that using the theory of geometric
limits was able to prove that the quasi-conformal conjugacy between two quadratic
like maps of the same bounded combinatorial type is in fact C1+α at the critical
point and this implies the exponential convergence. Finally the full hyperbolicity
of the renormalization operator in the space of germs of quadratic like maps was
obtained by Lyubich even in the case of unbounded combinatorial type.

The combinatorics of circle diffeomorphisms and of critical circle mappings is
very simple to describe. For a mapping f without periodic points there is a unique
combinatorial invariant: the rotation number ρ(f). If the rotation number is irra-
tional the mapping is semi-conjugate to an irrational rigid rotation and if the map
is a C2 diffeomorphism or a C3 critical circle mapping it is topologically conjugate
to a rotation, see [23]. We say that the rotation number is Diophantine of exponent
β if there exists a constant C > 0 such that

|ρ(f) −
p

q
| >

C

q2+β

for all rational numbers p

q
∈ Q. The fundamental rigidity result of M. Herman,

[12], states that a smooth diffeomorphism whose rotation number is Diophantine is
smoothly conjugate to a rotation. On the other hand, there are examples of circle
diffeomorphisms with irrational rotation number such that the conjugacy with an
irrational rotation is even not absolutely continuous. The proof of Herman’s theorem
involves very delicate estimates from real analysis but no complex analysis argument.
Recently K. Khanin, found a very simple proof of this theorem that involves only
some cross-ratio estimates. In fact he proves that if the diffeomorphism is Ck with
k > β + 2 then the conjugacy to a rotation is Ck−1−β.

The rigidity results for critical circle mappings involve both real analytic esti-
mates and complex dynamics and is related to the behavior of a renormalization
operator. To a critical circle mapping f with irrational rotation number we asso-
ciate a sequence of interval mappings fn : Jn → Jn which is the first return mapping
of f to the interval Jn. The critical point splits the interval Jn in two intervals In,
In+1 where the interval In returns to Jn after qn+1 iterates whereas In+1 returns after
qn iterates. Here pn

qn

are the convergents of the rotation number of f , i.e., the best
rational approximations to the rotation number. By rescaling so that the interval In

becomes the interval [0, 1] we get a sequence of mappings Rn(f) : [−λn, 1] → [−λn, 1]
where λn is the ratio of the lengths of In+1 and In. The critical circle mapping has
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bounded combinatorics if the ratio qn+1

qn

is uniformly bounded. The first step toward
rigidity results for critical circle mappings is so called real a priori bounds. This
uses tools developed by Yoccoz, Herman, Swiatek that involves the control of the
distortion of cross-ratios under iteration, see [8]. The real a priori bounds imply
that the sequence λn is uniformly bounded and that the sequence of renormalized
maps lie in a compact set in the C0 topology. Furthermore, any convergent subse-
quence is a commuting pair of real analytic maps that have holomorphic extension
belonging to the Epstein class of holomorphic pairs. The next step is again the
analog of complex a priori bounds. Finally, using McMullen’s tools it was proved
in [9] the exponential contraction of renormalization for real analytic maps with the
same bounded combinatorial type and the C1+α rigidity of these maps. To study
maps with unbounded combinatorial type we first notice that from the real a priori
bounds, the renormalized maps of very big renormalization period, i.e., qn+1

qn

big,

are very close, in the C2 topology, to maps that have a parabolic fixed point with
bounded second derivative. The next step is to prove the a priori complex bounds
for the unbounded case, see [28] and to extend the McMullen’s rigidity of towers to
include the parabolic towers. Those were the main new tools used in [29] to get the
hyperbolicity or the full limit set of the renormalization operator for real analytic
critical circle maps.

A different proof of the exponential contraction of the renormalization operator
was given in [15] where they prove that the conjugacy between two analytic critical
circle maps with the same rotation number is C1+α at the critical point and this
implies the exponential contraction of the renormalization operator.

By a careful analysis of the parabolic bifurcation [1] shows the existence of real
analytic critical circle maps that are not C1+α rigid for any α > 0. However, using a
rather precise estimate of the iterates near a saddle-node bifurcation [14] proves that
the exponential convergence of the renormalization operator acting on two smooth
critical circle maps with the same irrational rotation number implies the existence
of a C1 conjugacy. Hence, combining this with the previous result we get the C1

rigidity for any real analytic critical circle map with irrational rotation number.
This in sharp contrast with the circle diffeomorphism case where, in the case of
Liouville rotation number, the conjugacy to a rigid rotation may fail to be even
quasi-symmetric.

If the attractor of a unimodal interval map f is a cycle of intervals where the
periodic points are dense we should not expect rigidity since, in this case, there
exist infinitely many smooth conjugacy invariants: the multipliers of the periodic
points. However a remarkable rigidity result was proven in [4] where they proved
the existence of a rather big subset X of some Banach space of real analytic maps
such that for any two maps in X that are topologically equivalent, the conjugacy,
restricted to the attractor is real analytic. The set X is big in the sense that for
typical parametrized families of maps, the set of parameters corresponding to maps
in X has full Lebesgue measure. In particular X contains maps whose attractor
is a cycle of intervals, see [2]. This implies that the holonomy of the dynamical
lamination in [2], which is quasi-symmetric, is not absolutely continuous.
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4 Open Problems

In this section I will formulate some open problems related to rigidity in dynamics.

• Prove the exponential contraction of renormalization for smooth (Ck, k ≥ 3)
critical circle maps.

• Find all smooth conjugacy invariants of critical circle maps with n ≥ 2 critical
points. Such a map is topologically conjugate to a rigid rotation and so has a
unique invariant measure. The ratio of the measures of segments bounded by
the critical points are clearly smooth conjugacy invariants.

• A very hard problem: extend the renormalization theory to cover real (non-
integer) power law, i.e. for maps of the type f(x) = φ(|x|α) where α is a
positive real number and φ is a smooth interval diffeomorphism. The difficulty
here is that we can no longer use the strong tools from complex dynamics.

• Hyperbolicity of renormalization for smooth unimodal maps with unbounded
combinatorial type.

• Renormalization of multimodal interval maps.
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