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Abstract

In this paper, we obtain new characterizations of weakly unconditionally

Cauchy series and unconditionally convergent series through the summability

obtained by the Banach-Lorentz convergence. We study new spaces associated

to a series in a Banach space and obtain a new version of the Orlicz-Pettis

theorem by means of the almost summability.

1 Introduction

Let X be a normed space. For any given series
∑

i xi in X, let us consider the
set S(

∑

i xi) (respectively Sw(
∑

i xi)) of sequences (ai)i ∈ ℓ∞ such that
∑

i aixi con-
verges (respectively converges for the weak topology). The set S(

∑

i xi) (respectively
Sw(

∑

i xi)), endowed with the sup norm, will be called the space of convergence (re-
spectively weak convergence) associated to the series

∑

i xi.

Definition 1.1. A series
∑

i xi in a normed space X is said to be a weakly uncondi-
tionally Cauchy (wuc) series if for each ε > 0 and f ∈ X∗, an n0 ∈ N can be found
such that for each finite subset F ⊂ N with F ∩ {1, . . . , n0} = ∅ is

∑

i∈F

|f(xi)| < ε.

As a consequence,
∑

i xi is a wuc series in X if and only if each functional f ∈ X∗

satisfies that
∞
∑

i=1

|f(xi)| < ∞.
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In [8] it is proved that a normed space X is complete if and only if for every
weakly unconditionally Cauchy (wuc) series

∑

i xi, the space S(
∑

i xi) is also com-
plete.

Diestel [5] proves the following characterization, that will be used several times
in this paper:

Theorem 1.1. Let
∑

i xi be a series in a normed space X. Then, the series
∑

i xi

is wuc if and only if there exists H > 0 such that

H = sup{‖
n
∑

i=1

aixi‖ : n ∈ N, |ai| 6 1, i ∈ {1, . . . , n}} =

= sup{‖
n
∑

i=1

εixi‖ : n ∈ N, εi ∈ {−1, 1}, i ∈ {1, . . . , n}} =

= sup{
n
∑

i=1

|f(xi)| : f ∈ BX∗},

where BX∗ denotes the closed unit ball in X∗.

In [2], Banach introduces the following concept of convergence and proves its
existence:

Definition 1.2. A linear map ϕ : ℓ∞ → R is said to be a Banach limit if verifies
the following properties:

1. ϕ((an)n) = lim
n

an if (an)n ∈ c, where c denotes the space of convergent real
sequences.

2. ϕ((an)n) > 0 if an > 0 for each n ∈ N.

3. ϕ((an)n) = ϕ((an+1)n).

The almost convergence of a bounded real sequence is defined as follows:

Definition 1.3. A sequence (an)n in ℓ∞ is said to be almost convergent to s ∈ R

if for each Banach limit ϕ it is satisfied that ϕ((an)n) = s. We denote this by
AC lim

n
an = s.

Lorentz, in 1948 [6] proves that AC lim
n

an = s if and only if

lim
i→∞

1

i + 1
(aj + aj+1 + · · ·+ aj+i) = s uniformly in j ∈ N.

In this work, we denote by X a general normed space. We will say that a se-
quence (xn)n in X is almost convergent to x0 ∈ X, and we write AC lim

n
xn = x0, if

lim
i→∞

1

i + 1
(xj + xj+1 + · · ·+ xj+i) = x0 uniformly in j ∈ N. In the following propo-

sition, we check that if (xn)n is almost convergent, then it is necessary a bounded
sequence.
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Proposition 1.1. Let X be a normed space and (xn)n an almost convergent sequence
in X. Then (xn)n ∈ ℓ∞(X).

Proof. Let (xn)n be a sequence in X such that AC lim
n

xn = x0 for some x0 ∈ X.

We can fix ε > 0 and i0 ∈ N satisfying that

∥

∥

∥

∥

∥

∥

j+i
∑

k=j

xk

i + 1

∥

∥

∥

∥

∥

∥

6 ‖x0‖ + ε

for every i > i0 and j ∈ N.
Then, we have that for every j ∈ N is

‖xj‖ =

∥

∥

∥

∥

∥

∥

i0 + 2

i0 + 1

j+i0+1
∑

k=j

xk

i0 + 2
−

j+i0+1
∑

k=j+1

xk

i0 + 1

∥

∥

∥

∥

∥

∥

6

(

i0 + 2

i0 + 1
+ 1

)

(‖x0‖ + ε),

where the last term is a fixed constant, what concludes the proof.

Definition 1.4. We will say that a series
∑

i

xi in X is almost convergent to x0 ∈ X,

and we will denote it by AC
∑

i

xi = x0, if AC lim
n

sn = x0, where sn =
n
∑

i=1

xi is the

sequence of partial sums.
Therefore, AC

∑

i

xi = x0 if and only if

lim
i→∞





j
∑

k=1

xk +
1

i + 1

i
∑

k=1

(i − k + 1) xj+k



 = x0

uniformly in j ∈ N.

Definition 1.5. We will say that x0 is the weak almost limit of a sequence (xn)n, and
we will write wAC lim xn = x0, if each function f ∈ X∗ verifies that
AC lim

n
f(xn) = f(x0).

2 Spaces of sequences defined by the almost summability of a

series.

Let X be a normed space and
∑

i xi a series in X. We define the sets

SAC(
∑

i

xi) = {(ai)i ∈ ℓ∞ : AC
∑

i

aixi exists}

SwAC(
∑

i

xi) = {(ai)i ∈ ℓ∞ : wAC
∑

i

aixi exists}.

These are vector subspaces of ℓ∞, and we consider them endowed with the sup norm.

Theorem 2.1. Let X be a Banach space and
∑

i xi a series in X. Then
∑

i xi is
wuc (weakly unconditionally Cauchy) if and only if SAC(

∑

i xi) is complete.
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Proof. Consider
∑

i xi to be a wuc series. It will be enough to prove that SAC(
∑

i xi)
is closed in ℓ∞. Let (an)n be a sequence in SAC(

∑

i xi), an = (an
i )i for each n ∈ N, and

let also be a0 ∈ ℓ∞ such that lim
n

‖an − a0‖ = 0. We will show that a0 ∈ SAC(
∑

i xi).

Let H > 0 be such that

H > sup{‖
n
∑

i=1

aixi‖ : n ∈ N, |ai| 6 1, i ∈ {1, . . . , n}}.

For each natural n, there exists yn ∈ X such that yn = AC
∑

i

an
i xi. We will check

that (yn)n is a Cauchy sequence.

If ε > 0 is given, there exists an n0 such that if p, q > n0, then ‖ap−aq‖ < ε/3H .
If p, q > n0 are fixed, there exists i ∈ N verifying

‖yp − (
j
∑

k=1

ap
kxk +

1

i + 1

i
∑

k=1

(i − k + 1)ap
j+kxj+k)‖ <

ε

3
(1)

‖yq − (
j
∑

k=1

aq
kxk +

1

i + 1

i
∑

k=1

(i − k + 1)aq
j+kxj+k)‖ <

ε

3
(2)

for each j ∈ N . Then, if p, q > n0 we have that

‖yp − yq‖ 6 (1) + (2) +

+ ‖
j
∑

k=1

(ap
k − aq

k)xk +
i
∑

k=1

i − k + 1

i + 1
(ap

j+k − aq
j+k)xj+k‖, (3)

where (3) 6 ε/3. Therefore, since X is a Banach space, there exists y0 ∈ X such
that lim

n
‖yn − y0‖ = 0. We will check that AC

∑

i a
0
i xi = y0, that is,

lim
i→∞





j
∑

k=1

a0

kxk +
1

i + 1

i
∑

k=1

(i − k + 1)a0

j+kxj+k



 = y0, uniformly in j ∈ N.

If ε > 0 is given, we can fix a natural n such that ‖an−a0‖ < ε/3H and ‖yn−y0‖ <
ε/3. Now, we can also fix i0 such that for every i > i0 is

‖yn − (
j
∑

k=1

an
kxk +

1

i + 1

i
∑

k=1

(i − k + 1)an
j+kxj+k)‖ <

ε

3

for every j ∈ N.



Almost summability and unconditionally Cauchy series 639

Then, if i > i0 it is satisfied that

‖y0 − (
j
∑

k=1

a0

kxk +
1

i + 1

i
∑

k=1

(i − k + 1)a0

j+kxj+k)‖ 6 ‖y0 − yn‖ +

+ ‖yn − (
j
∑

k=1

an
kxk +

1

i + 1

i
∑

k=1

(i − k + 1)an
j+kxj+k)‖ +

+ ‖
j
∑

k=1

(an
k − a0

k)xk +
1

i + 1

i
∑

k=1

(i − k + 1)(an
j+k − a0

j+k)xj+k‖ 6
2ε

3
+

+ ‖an − a0‖





j
∑

k=1

(an
k − a0

k)

‖an − a0‖
xk +

i
∑

k=1

(i − k + 1)(an
j+k − a0

j+k)

(i + 1)‖an − a0‖
xj+k



 6

6
2ε

3
+

ε

3H
H 6 ε

for every j ∈ N. Thus (a0
n)n ∈ SAC(

∑

i xi).

Conversely, if SAC(
∑

i xi) is closed, since c00 ⊂ SAC(
∑

i xi), we deduce that
c0 ⊂ SAC(

∑

i xi). Suppose that
∑

i xi is not a wuc series. Then, there exists f ∈ X∗

verifying
∞
∑

i=1

|f(xi)| = +∞.

We can choose a natural n1 such that
n1
∑

i=1

|f(xi)| > 2 · 2, and for i ∈ {1, . . . , n1} we

define ai = 1/2 if f(xi) > 0 or ai = −1/2 if f(xi) < 0.

There exists n2 > n1 such that
n2
∑

i=n1+1

|f(xi)| > 3 · 3, and for i ∈ {n1 + 1, . . . , n2}

we define ai = 1/3 if f(xi) > 0 or ai = −1/3 if |f(xi)| < 0.

In this manner we obtain an increasing sequence (nk)k in N and a sequence

a = (ai)i in c0 such that
∞
∑

i=1

aif(xi) = +∞. Since (ai)i ∈ SAC(
∑

i xi), it follows that

AC
∑

i

aixi exists and therefore

(

n
∑

i=1

aif(xi)

)

n

is a bounded sequence, which is a

contradiction, and we are done.

Then, we have the following result:

Corollary 2.1. Let X be a Banach space and
∑

i xi a series in X. Then,
∑

i xi is
a wuc series if and only if for each sequence (ai)i ∈ c0 it is satisfied that AC

∑

i aixi

exists.

Proof. Let
∑

i xi be a wuc series in X. Then, we have that SAC(
∑

i xi) is complete.
Since c00 ⊂ SAC(

∑

i xi), we deduce that c0 ⊂ SAC(
∑

i xi), that is, AC
∑

i aixi exists
for every sequence (ai)i ∈ c0. The converse was proved at the end of the previous
demonstration.

Remark. Let X be a normed space and
∑

i xi a series in X. We consider the linear
map T : SAC(

∑

i xi) → X defined by T (a) = AC
∑

i aixi.



640 A. Aizpuru – R. Armario – F.J. Pérez-Fernández

Suppose that
∑

i xi is a wuc series and consider H = sup{‖
∑n

i=1 aixi‖ : n ∈
N, |ai| 6 1, i ∈ {1, . . . , n}}. Then, it is easy to check that if a ∈ SAC(

∑

i xi) then
‖T (a)‖ = ‖AC

∑

i aixi‖ 6 H‖a‖, and therefore T is continuous.

Conversely, if T is continuous and {a1, . . . , aj} ⊂ [−1, 1], it is satisfied that

‖
j
∑

i=1

aixi‖ = ‖AC
∞
∑

i=1

aixi‖ 6 ‖T‖ (considering ai = 0 if i > j), which implies that
∑

i xi is a wuc series.

In the next theorem we study the completeness of the space SwAC(
∑

i xi).

Theorem 2.2. Let X be a Banach space and
∑

i xi a series in X. Then,
∑

i xi is a
wuc series if and only if SwAC(

∑

i xi) is complete.

Proof. Consider
∑

i xi to be a wuc series. It will be enough to prove that SwAC(
∑

i xi)
is closed in ℓ∞. Let (an)n be a sequence in SwAC(

∑

i xi), an = (an
i )i for each n ∈ N,

and let also be a0 ∈ ℓ∞ such that lim
n

‖an − a0‖ = 0. We will show that a0 ∈

SwAC(
∑

i xi). Let H > 0 be such that

H > sup{‖
n
∑

i=1

aixi‖ : n ∈ N, |ai| 6 1, i ∈ {1, . . . , n}}.

For each natural n, there exists yn ∈ X such that yn = wAC
∑

i

an
i xi. We will check

that (yn)n is a Cauchy sequence.

If ε > 0 is given, there exists n0 such that if p, q > n0, then ‖ap − aq‖ < ε/3H .
We fix p, q > n0, and we have that there exists f ∈ SX∗ (unit sphere in X∗) verifying
‖yp − yq‖ = |f(yp − yq)|. Since AC

∑

i a
p
i f(xi) = f(yp) and AC

∑

i a
q
i f(xi) = f(yq),

there exists i ∈ N such that

|f(yp) − (
j
∑

k=1

ap
kf(xk) +

1

i + 1

i
∑

k=1

(i − k + 1)ap
j+kf(xj+k))| <

ε

3
(4)

|f(yq) − (
j
∑

k=1

aq
kf(xk) +

1

i + 1

i
∑

k=1

(i − k + 1)aq
j+kf(xj+k))| <

ε

3
(5)

for each j ∈ N . Then, if p, q > n0 we have that

‖yp − yq‖ = |f(yp) − f(yq)| 6 (4) + (5)+

+ |
j
∑

k=1

(ap
k − aq

k)f(xk) +
i
∑

k=1

i − k + 1

i + 1
(ap

j+k − aq
j+k)f(xj+k)|, (6)

where (6) 6 ε/3. Therefore, since X is a Banach space, there exists y0 ∈ X such
that lim

n
‖yn − y0‖ = 0. We will check that wAC

∑

i a
0
i xi = y0.

If ε > 0 is given, we can fix a natural n such that ‖an − a0‖ < ε/3H and
‖yn − y0‖ < ε/3. Consider a functional f ∈ BX∗ . We have that there exists i0 ∈ N
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such that if i > i0 is

|f(yn) − (
j
∑

k=1

an
kf(xk) +

1

i + 1

i
∑

k=1

(i − k + 1)an
j+kf(xj+k))| <

ε

3

for each j ∈ N. But then, if i > i0 and j ∈ N, we have that

|f(y0) − (
j
∑

k=1

a0

kf(xk) +
1

i + 1

i
∑

k=1

(i − k + 1)a0

j+kf(xj+k))| 6 |f(y0 − yn)| +

+ |f(yn) − (
j
∑

k=1

an
kf(xk) +

1

i + 1

i
∑

k=1

(i − k + 1)an
j+kf(xj+k))| +

+ |
j
∑

k=1

(an
k − a0

k)f(xk) +
1

i + 1

i
∑

k=1

(i − k + 1)(an
j+k − a0

j+k)f(xj+k)| 6 ε,

that is, wAC
∑

i a
0
i xi = y0, and a0 ∈ SwAC(

∑

i xi).

Conversely, suppose that SwAC(
∑

i xi) is complete, which implies that c0 ⊂

SwAC(
∑

i xi). Suppose that there exists f ∈ X∗ verifying
∞
∑

i=1

|f(xi)| = +∞.

Then, as we did in Theorem 2.1, a sequence a = (ai)i in c0 can be obtained such
that

∑

i aif(xi) = +∞, Since a ∈ SwAC(
∑

i xi), there will exist x0 ∈ X such that
wAC

∑

i aixi = x0, and it will be AC
∑

i aif(xi) = x0. But this implies that the

sequence

(

n
∑

i=1

aif(xi)

)

n

is bounded, which is a contradiction.

Remark. Let X be a Banach space and
∑

i xi a series in X. We consider the linear
map T : SwAC(

∑

i xi) → X defined by T (a) = wAC
∑

i aixi. We will show that
∑

i xi

is a wuc series if and only if T is continuous.

We define H = sup{‖
∑n

i=1 aixi‖ : n ∈ N, |ai| 6 1, i ∈ {1, . . . , n}} and take
a ∈ SwAC(

∑

i xi). Then, wAC
∑

i aixi = x0 exists , and we can take f ∈ SX∗ such
that |T (a)| = |f(T (a))| = |AC

∑

i aif(xi)| 6 H‖a‖.

Conversely, suppose that T is continuous. Then, if {a1, . . . an} ⊂ [−1, 1], we

have that ‖
n
∑

i=1

aixi‖ = ‖wAC
∞
∑

i=1

aixi‖ 6 ‖T‖ (considering ai = 0 if i > n), and this

implies that
∑

i xi is a wuc series.

From the previous theorem and its proof, the following corollary can be easily
proved:

Corollary 2.2. Let X be a Banach space and
∑

i xi a series in X. Then, the
following are equivalent:

1.
∑

i

xi is a wuc series.

2. SwAC(
∑

i

xi) is complete.
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3. c0 ⊂ SwAC(
∑

i

xi) (wAC
∑

i

aixi exists for each a = (ai)i ∈ c0).

Let us see that the hypothesis of completeness in the two previous theorems is
completely necessary. The following argument has been taken from [8]:

Let X be a non-complete normed space. Then, it is easy to prove that there
exists a sequence

∑

i xi in X such that ‖xi‖ < 1/i2i and
∑

i xi = x∗∗ ∈ X∗∗ \ X.
Then, we have that AC

∑

i xi = x∗∗. If we consider the series
∑

i zi defined by
zi = ixi for each n ∈ N, we have that

∑

i zi is a wuc series. Consider the sequence
a = (ai)i ∈ c0 given by ai = 1/i. It is satisfied that AC

∑

i aizi ∈ X∗∗ \ X, and
therefore a /∈ SAC(

∑

i zi) and a /∈ SwAC(
∑

i zi).

Let X be a normed space and X∗ its dual space. Let also
∑

i fi be a series in
X∗. It is known [5] that

∑

i fi is wuc if and only if
∑

i |fi(x)| < ∞ for each x ∈ X.

Now, we consider the vector space

S∗-wAC(
∑

i

fi) = {(ai)i ∈ ℓ∞ : ∗-wAC
∑

i

aifi exists},

where ∗-wAC
∑

i aifi = f0 if and only if AC
∑

i aifi(x) = f0(x) for each x ∈ X.

Theorem 2.3. Let X be a normed space. It is satisfied that 1 ⇒ 2 ⇒ 3, where:

1.
∑

i

fi is a wuc series.

2. S∗-wAC(
∑

i

fi) = ℓ∞.

3. If x ∈ X and M ⊂ N, then AC
∑

i∈M

fi(x) exists.

Besides, if X is a barrelled normed space, the three items are equivalent.

Proof. From the ∗-weak compacity of BX∗ we deduce that 1 ⇒ 2 . It is clear that
2 ⇒ 3 .

We suppose now that X is barrelled, and we will prove that 3 ⇒ 1 . Effectively,
our goal is to prove that E = {

∑n
i=1 aifi : n ∈ N, |ai| 6 1, i ∈ {1, . . . , n}} is

pointwise bounded for each x ∈ X, and therefore E is bounded, which implies that
∑

i fi is a wuc series. Suppose that E is not pointwise bounded, that is, there exists
x0 ∈ X such that

∑

i |fi(x0)| = +∞. Then, we can choose a subset M ⊂ N such
that

∑

i∈M fi(x0) = ±∞. But, by hypothesis, AC
∑

i∈M fi(x0) exists, which is a
contradiction.

3 Almost convergence and Orlicz-Pettis theorem.

The Orlicz-Pettis theorem gives us a characterization of wuc series in Banach spaces
through the weak convergence of all its subseries.
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Theorem 3.1. Let X be a Banach space and
∑

i xi a series in X such that for
each M ⊂ N we have that w

∑

i∈M xi exists. Then
∑

i xi is uco (unconditionally
convergent).

By means of the almost convergence of Banach-Lorentz, we are going to obtain
a new version of this theorem.

Theorem 3.2. Let X be a Banach space and
∑

i xi a series in X such that for
each M ⊂ N we have that wAC

∑

i∈M xi exists. Then
∑

i xi is uco (unconditionally
convergent).

Proof. First, we are going to prove that
∑

i xi is a wuc series. If
∑

i xi were not
wuc, then we can find a set M ⊂ N and f ∈ X∗ such that

∑

i∈M f(xi) = +∞. But
by hypothesis, there exists x0 ∈ X such that AC

∑

i∈M f(xi) = f(x0), which is a
contradiction.

Finally, we will show that if M ⊂ N, then w
∑

i∈M xi exists, and by the classic
Orlicz-Pettis theorem, we will have that

∑

i xi is uco.

Effectively, if M ⊂ N , we have that there exists x0 ∈ X such that wAC
∑

i∈M xi =
x0, but if f ∈ X∗, then

∑

i∈M f(xi) exists, and it will be

∑

i∈M

f(xi) = AC
∑

i∈M

f(xi) = f(x0),

and therefore w
∑

i∈M

xi = x0.

The following corollary is deduced as an evident consequence:

Corollary 3.1. Let X be a Banach space, and
∑

i xi a series in X. Then, the
following are equivalent:

1.
∑

i

xi is uco.

2. AC
∑

i

aixi exists for each a = (ai)i ∈ ℓ∞.

3. wAC
∑

i

aixi exists for each a = (ai)i ∈ ℓ∞.

Remark. Let X be a Banach space, and
∑

i xi a wuc series in X. Then, for each
a = (ai)i ∈ ℓ∞, it is satisfied that

∑

i aixi is a wuc series, which implies that

SAC(
∑

i

xi) ⊂ Sw(
∑

i

xi)

where Sw(
∑

i xi) = {(ai)i ∈ ℓ∞ : w
∑

i aixi exists}, but we don’t know what condi-
tions us to obtain the equality of both spaces.
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[8] F.J. Pérez-Fernández, F. Beńıtez-Trujillo and A. Aizpuru. Charac-
terizations of completeness of normed spaces through weakly unconditionally
Cauchy series. Czechoslovak Math. J. (125), 884-896 (2000).
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