Almost summability and unconditionally Cauchy series

A.Aizpuru

R. Armario

F.J. Pérez-Fernández

Abstract

In this paper, we obtain new characterizations of weakly unconditionally Cauchy series and unconditionally convergent series through the summability obtained by the Banach-Lorentz convergence. We study new spaces associated to a series in a Banach space and obtain a new version of the Orlicz-Pettis theorem by means of the almost summability.

1 Introduction

Let X be a normed space. For any given series $\sum_i x_i$ in X, let us consider the set $S(\sum_i x_i)$ (respectively $S_w(\sum_i x_i)$) of sequences $(a_i)_i \in \ell_{\infty}$ such that $\sum_i a_i x_i$ converges (respectively converges for the weak topology). The set $S(\sum_i x_i)$ (respectively $S_w(\sum_i x_i)$), endowed with the sup norm, will be called the space of convergence (respectively weak convergence) associated to the series $\sum_i x_i$.

Definition 1.1. A series $\sum_i x_i$ in a normed space X is said to be a weakly unconditionally Cauchy (*wuc*) series if for each $\varepsilon > 0$ and $f \in X^*$, an $n_0 \in \mathbb{N}$ can be found such that for each finite subset $F \subset \mathbb{N}$ with $F \cap \{1, \ldots, n_0\} = \emptyset$ is $\sum_{i \in F} |f(x_i)| < \varepsilon$.

As a consequence, $\sum_i x_i$ is a *wuc* series in X if and only if each functional $f \in X^*$ satisfies that $\sum_{i=1}^{\infty} |f(x_i)| < \infty$.

Bull. Belg. Math. Soc. Simon Stevin 15 (2008), 635-644

Received by the editors November 2007.

Communicated by F. Bastin.

²⁰⁰⁰ Mathematics Subject Classification : Primary 46B15; Secondary 40A05, 46B45.

In [8] it is proved that a normed space X is complete if and only if for every weakly unconditionally Cauchy (wuc) series $\sum_i x_i$, the space $S(\sum_i x_i)$ is also complete.

Diestel [5] proves the following characterization, that will be used several times in this paper:

Theorem 1.1. Let $\sum_i x_i$ be a series in a normed space X. Then, the series $\sum_i x_i$ is wuc if and only if there exists H > 0 such that

$$H = \sup\{ \|\sum_{i=1}^{n} a_i x_i\| : n \in \mathbb{N}, |a_i| \leq 1, i \in \{1, \dots, n\} \} =$$

= $\sup\{ \|\sum_{i=1}^{n} \varepsilon_i x_i\| : n \in \mathbb{N}, \varepsilon_i \in \{-1, 1\}, i \in \{1, \dots, n\} \} =$
= $\sup\{ \sum_{i=1}^{n} |f(x_i)| : f \in B_{X^*} \},$

where B_{X^*} denotes the closed unit ball in X^* .

In [2], Banach introduces the following concept of convergence and proves its existence:

Definition 1.2. A linear map $\varphi : \ell_{\infty} \to \mathbb{R}$ is said to be a Banach limit if verifies the following properties:

- 1. $\varphi((a_n)_n) = \lim_n a_n$ if $(a_n)_n \in c$, where c denotes the space of convergent real sequences.
- 2. $\varphi((a_n)_n) \ge 0$ if $a_n \ge 0$ for each $n \in \mathbb{N}$.
- 3. $\varphi((a_n)_n) = \varphi((a_{n+1})_n).$

The almost convergence of a bounded real sequence is defined as follows:

Definition 1.3. A sequence $(a_n)_n$ in ℓ_{∞} is said to be almost convergent to $s \in \mathbb{R}$ if for each Banach limit φ it is satisfied that $\varphi((a_n)_n) = s$. We denote this by $AC \lim_{n \to \infty} a_n = s$.

Lorentz, in 1948 [6] proves that $AC \lim_{n} a_n = s$ if and only if

$$\lim_{n \to \infty} \frac{1}{i+1} (a_j + a_{j+1} + \dots + a_{j+i}) = s \quad \text{uniformly in } j \in \mathbb{N}.$$

In this work, we denote by X a general normed space. We will say that a sequence $(x_n)_n$ in X is almost convergent to $x_0 \in X$, and we write $AC \lim_n x_n = x_0$, if $\lim_{i \to \infty} \frac{1}{i+1}(x_j + x_{j+1} + \dots + x_{j+i}) = x_0$ uniformly in $j \in \mathbb{N}$. In the following proposition, we check that if $(x_n)_n$ is almost convergent, then it is necessary a bounded sequence. **Proposition 1.1.** Let X be a normed space and $(x_n)_n$ an almost convergent sequence in X. Then $(x_n)_n \in \ell_{\infty}(X)$.

Proof. Let $(x_n)_n$ be a sequence in X such that $AC \lim_n x_n = x_0$ for some $x_0 \in X$. We can fix $\varepsilon > 0$ and $i_0 \in \mathbb{N}$ satisfying that

$$\left\|\sum_{k=j}^{j+i} \frac{x_k}{i+1}\right\| \leqslant \|x_0\| + \varepsilon$$

for every $i \ge i_0$ and $j \in \mathbb{N}$.

Then, we have that for every $j \in \mathbb{N}$ is

$$\|x_j\| = \left\| \frac{i_0 + 2}{i_0 + 1} \sum_{k=j}^{j+i_0+1} \frac{x_k}{i_0 + 2} - \sum_{k=j+1}^{j+i_0+1} \frac{x_k}{i_0 + 1} \right\| \le \left(\frac{i_0 + 2}{i_0 + 1} + 1\right) (\|x_0\| + \varepsilon),$$

where the last term is a fixed constant, what concludes the proof.

Definition 1.4. We will say that a series $\sum_{i} x_i$ in X is almost convergent to $x_0 \in X$, and we will denote it by $AC \sum_{i} x_i = x_0$, if $AC \lim_{i} s_n = x_0$, where $s_n = \sum_{i=1}^n x_i$ is the sequence of partial sums. Therefore, $AC \sum_{i} x_i = x_0$ if and only if

$$\lim_{k \to \infty} \left(\sum_{k=1}^{j} x_k + \frac{1}{i+1} \sum_{k=1}^{i} (i-k+1) x_{j+k} \right) = x_0$$

uniformly in $j \in \mathbb{N}$.

Definition 1.5. We will say that x_0 is the weak almost limit of a sequence $(x_n)_n$, and we will write $wAC \lim x_n = x_0$, if each function $f \in X^*$ verifies that $AC \lim_n f(x_n) = f(x_0)$.

2 Spaces of sequences defined by the almost summability of a series.

Let X be a normed space and $\sum_i x_i$ a series in X. We define the sets

$$S_{AC}(\sum_{i} x_{i}) = \{(a_{i})_{i} \in \ell_{\infty} : AC \sum_{i} a_{i}x_{i} \text{ exists}\}$$
$$S_{wAC}(\sum_{i} x_{i}) = \{(a_{i})_{i} \in \ell_{\infty} : wAC \sum_{i} a_{i}x_{i} \text{ exists}\}.$$

These are vector subspaces of ℓ_{∞} , and we consider them endowed with the sup norm.

Theorem 2.1. Let X be a Banach space and $\sum_i x_i$ a series in X. Then $\sum_i x_i$ is wuc (weakly unconditionally Cauchy) if and only if $S_{AC}(\sum_i x_i)$ is complete.

Proof. Consider $\sum_i x_i$ to be a wuc series. It will be enough to prove that $S_{AC}(\sum_i x_i)$ is closed in ℓ_{∞} . Let $(a^n)_n$ be a sequence in $S_{AC}(\sum_i x_i)$, $a^n = (a_i^n)_i$ for each $n \in \mathbb{N}$, and let also be $a^0 \in \ell_{\infty}$ such that $\lim_n ||a^n - a^0|| = 0$. We will show that $a^0 \in S_{AC}(\sum_i x_i)$. Let H > 0 be such that

$$H \ge \sup\{\|\sum_{i=1}^n a_i x_i\| : n \in \mathbb{N}, |a_i| \le 1, i \in \{1, \dots, n\}\}.$$

For each natural n, there exists $y_n \in X$ such that $y_n = AC \sum_i a_i^n x_i$. We will check that $(y_n)_n$ is a Cauchy sequence.

If $\varepsilon > 0$ is given, there exists an n_0 such that if $p, q \ge n_0$, then $||a^p - a^q|| < \varepsilon/3H$. If $p, q \ge n_0$ are fixed, there exists $i \in \mathbb{N}$ verifying

$$\|y_p - (\sum_{k=1}^j a_k^p x_k + \frac{1}{i+1} \sum_{k=1}^i (i-k+1) a_{j+k}^p x_{j+k})\| < \frac{\varepsilon}{3}$$
(1)

$$\|y_q - (\sum_{k=1}^j a_k^q x_k + \frac{1}{i+1} \sum_{k=1}^i (i-k+1) a_{j+k}^q x_{j+k})\| < \frac{\varepsilon}{3}$$
(2)

for each $j \in N$. Then, if $p, q \ge n_0$ we have that

$$||y_p - y_q|| \leq (1) + (2) + + ||\sum_{k=1}^{j} (a_k^p - a_k^q) x_k + \sum_{k=1}^{i} \frac{i - k + 1}{i + 1} (a_{j+k}^p - a_{j+k}^q) x_{j+k}||, \qquad (3)$$

where $(3) \leq \varepsilon/3$. Therefore, since X is a Banach space, there exists $y_0 \in X$ such that $\lim_n ||y_n - y_0|| = 0$. We will check that $AC \sum_i a_i^0 x_i = y_0$, that is,

$$\lim_{k \to \infty} \left(\sum_{k=1}^{j} a_k^0 x_k + \frac{1}{i+1} \sum_{k=1}^{i} (i-k+1) a_{j+k}^0 x_{j+k} \right) = y_0, \text{ uniformly in } j \in \mathbb{N}.$$

If $\varepsilon > 0$ is given, we can fix a natural n such that $||a^n - a^0|| < \varepsilon/3H$ and $||y_n - y_0|| < \varepsilon/3$. Now, we can also fix i_0 such that for every $i \ge i_0$ is

$$\|y_n - (\sum_{k=1}^j a_k^n x_k + \frac{1}{i+1} \sum_{k=1}^i (i-k+1) a_{j+k}^n x_{j+k})\| < \frac{\varepsilon}{3}$$

for every $j \in \mathbb{N}$.

Then, if $i \ge i_0$ it is satisfied that

$$\begin{aligned} \|y_0 - (\sum_{k=1}^j a_k^0 x_k + \frac{1}{i+1} \sum_{k=1}^i (i-k+1) a_{j+k}^0 x_{j+k})\| &\leq \|y_0 - y_n\| + \\ &+ \|y_n - (\sum_{k=1}^j a_k^n x_k + \frac{1}{i+1} \sum_{k=1}^i (i-k+1) a_{j+k}^n x_{j+k})\| + \\ &+ \|\sum_{k=1}^j (a_k^n - a_k^0) x_k + \frac{1}{i+1} \sum_{k=1}^i (i-k+1) (a_{j+k}^n - a_{j+k}^0) x_{j+k}\| \leq \frac{2\varepsilon}{3} + \\ &+ \|a^n - a^0\| \left(\sum_{k=1}^j \frac{(a_k^n - a_k^0)}{\|a^n - a^0\|} x_k + \sum_{k=1}^i \frac{(i-k+1)(a_{j+k}^n - a_{j+k}^0)}{(i+1)\|a^n - a^0\|} x_{j+k} \right) \leq \\ &\leq \frac{2\varepsilon}{3} + \frac{\varepsilon}{3H} H \leq \varepsilon \end{aligned}$$

for every $j \in \mathbb{N}$. Thus $(a_n^0)_n \in S_{AC}(\sum_i x_i)$.

Conversely, if $S_{AC}(\sum_i x_i)$ is closed, since $c_{00} \subset S_{AC}(\sum_i x_i)$, we deduce that $c_0 \subset S_{AC}(\sum_i x_i)$. Suppose that $\sum_i x_i$ is not a *wuc* series. Then, there exists $f \in X^*$ verifying $\sum_{i=1}^{\infty} |f(x_i)| = +\infty$.

We can choose a natural n_1 such that $\sum_{i=1}^{n_1} |f(x_i)| > 2 \cdot 2$, and for $i \in \{1, \ldots, n_1\}$ we define $a_i = 1/2$ if $f(x_i) \ge 0$ or $a_i = -1/2$ if $f(x_i) < 0$.

There exists $n_2 > n_1$ such that $\sum_{i=n_1+1}^{n_2} |f(x_i)| > 3 \cdot 3$, and for $i \in \{n_1+1, \dots, n_2\}$ we define $a_i = 1/3$ if $f(x_i) \ge 0$ or $a_i = -1/3$ if $|f(x_i)| < 0$.

In this manner we obtain an increasing sequence $(n_k)_k$ in \mathbb{N} and a sequence $a = (a_i)_i$ in c_0 such that $\sum_{i=1}^{\infty} a_i f(x_i) = +\infty$. Since $(a_i)_i \in S_{AC}(\sum_i x_i)$, it follows that $AC\sum_i a_i x_i$ exists and therefore $\left(\sum_{i=1}^n a_i f(x_i)\right)_n$ is a bounded sequence, which is a contradiction, and we are done.

Then, we have the following result:

Corollary 2.1. Let X be a Banach space and $\sum_i x_i$ a series in X. Then, $\sum_i x_i$ is a wuc series if and only if for each sequence $(a_i)_i \in c_0$ it is satisfied that $AC \sum_i a_i x_i$ exists.

Proof. Let $\sum_i x_i$ be a *wuc* series in X. Then, we have that $S_{AC}(\sum_i x_i)$ is complete. Since $c_{00} \subset S_{AC}(\sum_i x_i)$, we deduce that $c_0 \subset S_{AC}(\sum_i x_i)$, that is, $AC \sum_i a_i x_i$ exists for every sequence $(a_i)_i \in c_0$. The converse was proved at the end of the previous demonstration.

Remark. Let X be a normed space and $\sum_i x_i$ a series in X. We consider the linear map $T: S_{AC}(\sum_i x_i) \to X$ defined by $T(a) = AC \sum_i a_i x_i$.

Suppose that $\sum_i x_i$ is a *wuc* series and consider $H = \sup\{\|\sum_{i=1}^n a_i x_i\| : n \in \mathbb{N}, |a_i| \leq 1, i \in \{1, \ldots, n\}\}$. Then, it is easy to check that if $a \in S_{AC}(\sum_i x_i)$ then $\|T(a)\| = \|AC\sum_i a_i x_i\| \leq H\|a\|$, and therefore T is continuous.

Conversely, if T is continuous and $\{a_1, \ldots, a_j\} \subset [-1, 1]$, it is satisfied that $\|\sum_{i=1}^{j} a_i x_i\| = \|AC\sum_{i=1}^{\infty} a_i x_i\| \leq \|T\|$ (considering $a_i = 0$ if i > j), which implies that $\sum_{i=1}^{i} x_i$ is a *wuc* series.

In the next theorem we study the completeness of the space $S_{wAC}(\sum_i x_i)$.

Theorem 2.2. Let X be a Banach space and $\sum_i x_i$ a series in X. Then, $\sum_i x_i$ is a wuc series if and only if $S_{wAC}(\sum_i x_i)$ is complete.

Proof. Consider $\sum_i x_i$ to be a wuc series. It will be enough to prove that $S_{wAC}(\sum_i x_i)$ is closed in ℓ_{∞} . Let $(a^n)_n$ be a sequence in $S_{wAC}(\sum_i x_i)$, $a^n = (a_i^n)_i$ for each $n \in \mathbb{N}$, and let also be $a^0 \in \ell_{\infty}$ such that $\lim_n ||a^n - a^0|| = 0$. We will show that $a^0 \in S_{wAC}(\sum_i x_i)$. Let H > 0 be such that

$$H \ge \sup\{\|\sum_{i=1}^n a_i x_i\| : n \in \mathbb{N}, |a_i| \le 1, i \in \{1, \dots, n\}\}.$$

For each natural n, there exists $y_n \in X$ such that $y_n = wAC \sum_i a_i^n x_i$. We will check that $(y_n)_n$ is a Cauchy sequence.

If $\varepsilon > 0$ is given, there exists n_0 such that if $p, q \ge n_0$, then $||a^p - a^q|| < \varepsilon/3H$. We fix $p, q \ge n_0$, and we have that there exists $f \in S_{X^*}$ (unit sphere in X^*) verifying $||y_p - y_q|| = |f(y_p - y_q)|$. Since $AC \sum_i a_i^p f(x_i) = f(y_p)$ and $AC \sum_i a_i^q f(x_i) = f(y_q)$, there exists $i \in \mathbb{N}$ such that

$$|f(y_p) - (\sum_{k=1}^{j} a_k^p f(x_k) + \frac{1}{i+1} \sum_{k=1}^{i} (i-k+1) a_{j+k}^p f(x_{j+k}))| < \frac{\varepsilon}{3}$$
(4)

$$|f(y_q) - (\sum_{k=1}^{j} a_k^q f(x_k) + \frac{1}{i+1} \sum_{k=1}^{i} (i-k+1) a_{j+k}^q f(x_{j+k}))| < \frac{\varepsilon}{3}$$
(5)

for each $j \in N$. Then, if $p, q \ge n_0$ we have that

$$||y_p - y_q|| = |f(y_p) - f(y_q)| \le (4) + (5) + |\sum_{k=1}^{j} (a_k^p - a_k^q) f(x_k) + \sum_{k=1}^{i} \frac{i - k + 1}{i + 1} (a_{j+k}^p - a_{j+k}^q) f(x_{j+k})|,$$
(6)

where $(6) \leq \varepsilon/3$. Therefore, since X is a Banach space, there exists $y_0 \in X$ such that $\lim_{n \to \infty} ||y_n - y_0|| = 0$. We will check that $wAC \sum_i a_i^0 x_i = y_0$.

If $\varepsilon > 0$ is given, we can fix a natural *n* such that $||a^n - a^0|| < \varepsilon/3H$ and $||y_n - y_0|| < \varepsilon/3$. Consider a functional $f \in B_{X^*}$. We have that there exists $i_0 \in \mathbb{N}$

such that if $i \ge i_0$ is

$$|f(y_n) - (\sum_{k=1}^j a_k^n f(x_k) + \frac{1}{i+1} \sum_{k=1}^i (i-k+1) a_{j+k}^n f(x_{j+k}))| < \frac{\varepsilon}{3}$$

for each $j \in \mathbb{N}$. But then, if $i \ge i_0$ and $j \in \mathbb{N}$, we have that

$$\begin{aligned} |f(y_0) - (\sum_{k=1}^j a_k^0 f(x_k) + \frac{1}{i+1} \sum_{k=1}^i (i-k+1) a_{j+k}^0 f(x_{j+k}))| &\leq |f(y_0 - y_n)| + \\ + |f(y_n) - (\sum_{k=1}^j a_k^n f(x_k) + \frac{1}{i+1} \sum_{k=1}^i (i-k+1) a_{j+k}^n f(x_{j+k}))| + \\ + |\sum_{k=1}^j (a_k^n - a_k^0) f(x_k) + \frac{1}{i+1} \sum_{k=1}^i (i-k+1) (a_{j+k}^n - a_{j+k}^0) f(x_{j+k})| &\leq \varepsilon, \end{aligned}$$

that is, $wAC \sum_i a_i^0 x_i = y_0$, and $a^0 \in S_{wAC}(\sum_i x_i)$.

Conversely, suppose that $S_{wAC}(\sum_i x_i)$ is complete, which implies that $c_0 \subset S_{wAC}(\sum_i x_i)$. Suppose that there exists $f \in X^*$ verifying $\sum_{i=1}^{\infty} |f(x_i)| = +\infty$.

Then, as we did in *Theorem 2.1*, a sequence $a = (a_i)_i$ in c_0 can be obtained such that $\sum_i a_i f(x_i) = +\infty$, Since $a \in S_{wAC}(\sum_i x_i)$, there will exist $x_0 \in X$ such that $wAC\sum_i a_i x_i = x_0$, and it will be $AC\sum_i a_i f(x_i) = x_0$. But this implies that the sequence $\left(\sum_{i=1}^n a_i f(x_i)\right)_n$ is bounded, which is a contradiction.

Remark. Let X be a Banach space and $\sum_i x_i$ a series in X. We consider the linear map $T: S_{wAC}(\sum_i x_i) \to X$ defined by $T(a) = wAC \sum_i a_i x_i$. We will show that $\sum_i x_i$ is a *wuc* series if and only if T is continuous.

We define $H = \sup\{\|\sum_{i=1}^n a_i x_i\| : n \in \mathbb{N}, |a_i| \leq 1, i \in \{1, \ldots, n\}\}$ and take $a \in S_{wAC}(\sum_i x_i)$. Then, $wAC\sum_i a_i x_i = x_0$ exists, and we can take $f \in S_{X^*}$ such that $|T(a)| = |f(T(a))| = |AC\sum_i a_i f(x_i)| \leq H ||a||$.

Conversely, suppose that T is continuous. Then, if $\{a_1, \ldots a_n\} \subset [-1, 1]$, we have that $\|\sum_{i=1}^n a_i x_i\| = \|wAC\sum_{i=1}^\infty a_i x_i\| \leq \|T\|$ (considering $a_i = 0$ if i > n), and this implies that $\sum_i x_i$ is a *wuc* series.

From the previous theorem and its proof, the following corollary can be easily proved:

Corollary 2.2. Let X be a Banach space and $\sum_i x_i$ a series in X. Then, the following are equivalent:

1. $\sum_{i} x_{i}$ is a wuc series. 2. $S_{wAC}(\sum_{i} x_{i})$ is complete.

3.
$$c_0 \subset S_{wAC}(\sum_i x_i) \ (wAC\sum_i a_i x_i \ exists \ for \ each \ a = (a_i)_i \in c_0).$$

Let us see that the hypothesis of completeness in the two previous theorems is completely necessary. The following argument has been taken from [8]:

Let X be a non-complete normed space. Then, it is easy to prove that there exists a sequence $\sum_i x_i$ in X such that $||x_i|| < 1/i2^i$ and $\sum_i x_i = x^{**} \in X^{**} \setminus X$. Then, we have that $AC \sum_i x_i = x^{**}$. If we consider the series $\sum_i z_i$ defined by $z_i = ix_i$ for each $n \in \mathbb{N}$, we have that $\sum_i z_i$ is a *wuc* series. Consider the sequence $a = (a_i)_i \in c_0$ given by $a_i = 1/i$. It is satisfied that $AC \sum_i a_i z_i \in X^{**} \setminus X$, and therefore $a \notin S_{AC}(\sum_i z_i)$ and $a \notin S_{wAC}(\sum_i z_i)$.

Let X be a normed space and X^* its dual space. Let also $\sum_i f_i$ be a series in X^* . It is known [5] that $\sum_i f_i$ is *wuc* if and only if $\sum_i |f_i(x)| < \infty$ for each $x \in X$.

Now, we consider the vector space

$$S_{*-wAC}(\sum_{i} f_i) = \{(a_i)_i \in \ell_{\infty} : *-wAC\sum_{i} a_i f_i \text{ exists}\},\$$

where $*-wAC \sum_i a_i f_i = f_0$ if and only if $AC \sum_i a_i f_i(x) = f_0(x)$ for each $x \in X$.

Theorem 2.3. Let X be a normed space. It is satisfied that $1 \Rightarrow 2 \Rightarrow 3$, where:

1. $\sum_{i} f_{i}$ is a wuc series. 2. $S_{*-wAC}(\sum_{i} f_{i}) = \ell_{\infty}$. 3. If $x \in X$ and $M \subset \mathbb{N}$, then $AC \sum_{i \in M} f_{i}(x)$ exists.

Besides, if X is a barrelled normed space, the three items are equivalent.

Proof. From the *-weak compacity of B_{X^*} we deduce that $1 \Rightarrow 2$. It is clear that $2 \Rightarrow 3$.

We suppose now that X is barrelled, and we will prove that $3 \Rightarrow 1$. Effectively, our goal is to prove that $E = \{\sum_{i=1}^{n} a_i f_i : n \in \mathbb{N}, |a_i| \leq 1, i \in \{1, \ldots, n\}\}$ is pointwise bounded for each $x \in X$, and therefore E is bounded, which implies that $\sum_i f_i$ is a wuc series. Suppose that E is not pointwise bounded, that is, there exists $x_0 \in X$ such that $\sum_i |f_i(x_0)| = +\infty$. Then, we can choose a subset $M \subset \mathbb{N}$ such that $\sum_{i \in M} f_i(x_0) = \pm\infty$. But, by hypothesis, $AC \sum_{i \in M} f_i(x_0)$ exists, which is a contradiction.

3 Almost convergence and Orlicz-Pettis theorem.

The Orlicz-Pettis theorem gives us a characterization of wuc series in Banach spaces through the weak convergence of all its subseries.

Theorem 3.1. Let X be a Banach space and $\sum_i x_i$ a series in X such that for each $M \subset \mathbb{N}$ we have that $w \sum_{i \in M} x_i$ exists. Then $\sum_i x_i$ is uco (unconditionally convergent).

By means of the almost convergence of Banach-Lorentz, we are going to obtain a new version of this theorem.

Theorem 3.2. Let X be a Banach space and $\sum_i x_i$ a series in X such that for each $M \subset \mathbb{N}$ we have that $wAC \sum_{i \in M} x_i$ exists. Then $\sum_i x_i$ is uco (unconditionally convergent).

Proof. First, we are going to prove that $\sum_i x_i$ is a *wuc* series. If $\sum_i x_i$ were not *wuc*, then we can find a set $M \subset \mathbb{N}$ and $f \in X^*$ such that $\sum_{i \in M} f(x_i) = +\infty$. But by hypothesis, there exists $x_0 \in X$ such that $AC \sum_{i \in M} f(x_i) = f(x_0)$, which is a contradiction.

Finally, we will show that if $M \subset \mathbb{N}$, then $w \sum_{i \in M} x_i$ exists, and by the classic Orlicz-Pettis theorem, we will have that $\sum_i x_i$ is *uco*.

Effectively, if $M \subset \mathbb{N}$, we have that there exists $x_0 \in X$ such that $wAC \sum_{i \in M} x_i = x_0$, but if $f \in X^*$, then $\sum_{i \in M} f(x_i)$ exists, and it will be

$$\sum_{i \in M} f(x_i) = AC \sum_{i \in M} f(x_i) = f(x_0),$$

and therefore $w \sum_{i \in M} x_i = x_0$.

The following corollary is deduced as an evident consequence:

Corollary 3.1. Let X be a Banach space, and $\sum_i x_i$ a series in X. Then, the following are equivalent:

Remark. Let X be a Banach space, and $\sum_i x_i$ a *wuc* series in X. Then, for each $a = (a_i)_i \in \ell_{\infty}$, it is satisfied that $\sum_i a_i x_i$ is a *wuc* series, which implies that

$$S_{AC}(\sum_{i} x_i) \subset S_w(\sum_{i} x_i)$$

where $S_w(\sum_i x_i) = \{(a_i)_i \in \ell_\infty : w \sum_i a_i x_i \text{ exists}\}$, but we don't know what conditions us to obtain the equality of both spaces.

References

- [1] A. AIZPURU, A. GUTIÉRREZ-DÁVILA and A. SALA. Unconditionally Cauchy series and Cesaro summability. J. Math. Anal. Appl. 324 (1), 39-48 (2006).
- [2] S. BANACH. Théorie des opérations linéaires. Chelsea Publishing company. New York (1978).
- [3] C. BESSAGA AND A. PELCZYNSKI. On bases and unconditional convergence of series in Banach Spaces. Stud. Math. 17, 151-164 (1958).
- [4] J.BOOS AND P.CASS. Classical and Modern Methods in summability. Oxford University Press (2000).
- [5] J. DIESTEL. Sequences and series in Banach spaces. Springer-Yerlag. New York (1984).
- [6] G. LORENTZ. A contribution to the theory of divergent sequences. Acta Math. 80, 167-190 (1948).
- [7] C.W. MCARTHUR. On relationships amongst certain spaces of sequences in an arbitrary Banach space. Canad. J. Math 8, 192-197 (1956).
- [8] F.J. PÉREZ-FERNÁNDEZ, F. BENÍTEZ-TRUJILLO and A. AIZPURU. Characterizations of completeness of normed spaces through weakly unconditionally Cauchy series. Czechoslovak Math. J. (125), 884-896 (2000).

Departamento de Matemáticas, Universidad de Cádiz, Apdo. 40, 11510-Puerto Real, SPAIN E-mail addresses: antonio.aizpuru@uca.es, javier.perez@uca.es, rafael.armariomigueles@alum.uca.es (Corresponding Author)