Almost summability and unconditionally Cauchy
series

A.Aizpuru R. Armario F.J. Pérez-Fernandez

Abstract

In this paper, we obtain new characterizations of weakly unconditionally
Cauchy series and unconditionally convergent series through the summability
obtained by the Banach-Lorentz convergence. We study new spaces associated
to a series in a Banach space and obtain a new version of the Orlicz-Pettis
theorem by means of the almost summability.

1 Introduction

Let X be a normed space. For any given series >, z; in X, let us consider the
set S(X; x;) (respectively S, (>;x;)) of sequences (a;); € {s such that >; a;z; con-
verges (respectively converges for the weak topology). The set S(3; x;) (respectively
Sw(X; i), endowed with the sup norm, will be called the space of convergence (re-
spectively weak convergence) associated to the series Y, z;.

Definition 1.1. A series }; z; in a normed space X is said to be a weakly uncondi-
tionally Cauchy (wuc) series if for each € > 0 and f € X*, an ng € N can be found
such that for each finite subset F¥ C N with FN{1,...,no} =@ is Y _|f(2;)| <e.

i€l
As a consequence, Y, x; is a wuc series in X if and only if each functional f € X*
[ee]

satisfies that » | f(z;)| < oo.

=1
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In [8] it is proved that a normed space X is complete if and only if for every
weakly unconditionally Cauchy (wuc) series >, x;, the space S(X; x;) is also com-
plete.

Diestel [5] proves the following characterization, that will be used several times
in this paper:

Theorem 1.1. Let >, x; be a series in a normed space X. Then, the series >, x;
1s wuc if and only if there exists H > 0 such that

H = sup{||> aiz||:neN,|a] <1lie{l,....,n}} =

i=1

- Sup{” Zglen S Nagi € {_17 1}72 € {17 e 7”}} =

i=1

— sup{Y_ |f (2] : f € Bx-),

where Bx« denotes the closed unit ball in X*.

In [2], Banach introduces the following concept of convergence and proves its
existence:

Definition 1.2. A linear map ¢ : ., — R is said to be a Banach limit if verifies
the following properties:

L o((an)n) = lim a, if (an)n € ¢, where ¢ denotes the space of convergent real
sequences.

2. ¢((an)n) = 0if a,, > 0 for each n € N.
3. o((an)n) = ¢((@n+1)n)-
The almost convergence of a bounded real sequence is defined as follows:

Definition 1.3. A sequence (a,), in {y is said to be almost convergent to s € R
if for each Banach limit ¢ it is satisfied that ¢((a,),) = s. We denote this by
AC lirrln a, = S.

Lorentz, in 1948 [6] proves that AC lima, = s if and only if

1
lim - I (a; +aj1+---+a;4;) =s  uniformly in j € N.

1—00 7 -+

In this work, we denote by X a general normed space. We will say that a se-
quence (x,), in X is almost convergent to zy € X, and we write AC'lim z,, = z, if
n

lim -
i—o0 7 +
sition, we check that if (z,), is almost convergent, then it is necessary a bounded

; (xj + 211 + -+ -+ xj4) = 2o uniformly in j € N. In the following propo-

sequence.
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Proposition 1.1. Let X be a normed space and (x,,),, an almost convergent sequence
in X. Then (x,), € loo(X).

Proof. Let (x,), be a sequence in X such that AC lirrln T, = xo for some o € X.
We can fix ¢ > 0 and ¢ € N satisfying that

Jjt+i

> | < ol +
=y bt
for every ¢ > ip and j € N.
Then, we have that for every 57 € N is
io + 2 Jtio+1 Ty Jtio+1 Ty io + 2
logll = S S S < (2 1) (ol + <),
N + k—j 20 + k=j+1 20 + 20 +
where the last term is a fixed constant, what concludes the proof. ]

Definition 1.4. We will say that a series Z x; in X is almost convergent to zy € X,

and we will denote it by ACZ x; = xg, if AC lign S, = Tg, where s, = le is the
i i=1

sequence of partial sums.

Therefore, AC Z xr; = x¢ if and only if

J 1 i
lim Zkar,—Z(i—kJrl) Tk | = %o
Pt 1+ 1

1— 00 k=1

uniformly in j € N.

Definition 1.5. We will say that x is the weak almost limit of a sequence (x,,),,, and
we will write wAClimz, = xy, if each function f & X* wverifies that

AC1im f(x,) = f(z0).

2 Spaces of sequences defined by the almost summability of a
series.

Let X be a normed space and Y, z; a series in X. We define the sets
SAC(Z z;) ={(a;); €l : ACZ a;x; exists}

SwAC(Z x;) ={(a;); € b : wACZai:ci exists}.

These are vector subspaces of /., and we consider them endowed with the sup norm.

Theorem 2.1. Let X be a Banach space and y_; x; a series in X. Then >, x; is
wuc (weakly unconditionally Cauchy) if and only if Sac(X; x;) is complete.
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Proof. Consider Y_; z; to be a wuc series. It will be enough to prove that Sac(>; ;)
is closed in {+,. Let (a™),, be a sequence in Sac(X; ;), a™ = (al'); for each n € N, and
let also be a’ € {u such that lim [|a" — a’|| = 0. We will show that a® € Sac (X 75).
Let H > 0 be such that

H = sup{|| Y aiz]| :neN,|a| <1,0€{l,...,n}}.

i=1

For each natural n, there exists y, € X such that y, = AC Z a;z;. We will check

that (y,), is a Cauchy sequence.

If e > 0 is given, there exists an ng such that if p, ¢ > ny, then ||a? —a?|| < ¢/3H.
If p,q > ng are fixed, there exists i € N verifying

i

i . )

oy = (22 ai%ﬂLH—lZ(l—kJrl) @y ien)|l < 3 (1)
=1 k=1
! q 1 ! . q g

Iy = (3 afe+ 7 320 = b+ Dafpainll < 5 )
k=1 i+1 k=1 3

for each j € N. Then, if p, g > ng we have that

lyp — el < (1) +(2) +
J 7 — k + 1
+ 1D (ap — af)zy + Z (afy, — af )ikl (3)
k=1 k=1

where (3) < ¢/3. Therefore, since X is a Banach space, there exists yo € X such
that lign lyn — ol = 0. We will check that AC'Y; alz; = y, that is,

i

/ 1
lim (Z ayxy, + P (i —k+ 1)a2+kxj+k) = 1, uniformly in j € N.
i
k=1

1— 00 —1

If £ > 0 is given, we can fix a natural n such that |ja™ —a"|| < ¢/3H and ||y, —yo|| <
£/3. Now, we can also fix i such that for every i > iq is

i J N . £
[9n — (Z ay Ty + i1l Z(Z —k+ 1)aj+k5€j+k)H < 3
k=1

k=1

for every j € N.
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Then, if ¢ > i it is satisfied that
J 0 1 7
lyo — (3 apaw + 1 Y =k +1)ad i) < llvo —yall +
k=1 k=1

J 1
+ lyn — (Z apwy + P doli—k+1)al )| +

i+ 15
J 1 & 40 2¢e
+ Z —ap)zp+——=» (i—k+1)(a} A g — Qi) Tkl < o +
k=1 i+l 3

i G+ Dljen =a

a? ‘(i —k+1)(at, —al
+ a” 0” (Z || n __ 0|)| +Z< ; )( e ﬁk)l‘j#c) <

2¢e
< H<
3+3H c

for every j € N. Thus (a2),, € Sac(X; ).

Conversely, if Sac(Y>; x;) is closed, since cog C Sac(X; x;), we deduce that
co C Sac(X;x;). Suppose that >, x; is not a wuc series. Then, there exists f € X*
o

verifying » | f(xz;)| = +o0.
i=1

ni

We can choose a natural ny such that Y |f(z;)| >2-2, and for i € {1,...,n1} we
i=1

define a; = 1/2 if f(z;) 2 0 or a; = —1/2if f(x;) < 0.

n2
There exists ny > ng such that > [f(z;)| > 3-3,and fori € {n1 +1,...,no}
=ni1+1

we define a; = 1/3 if f(z;) =2 0 or a; = —1/3 if | f(x;)| < 0.

In this manner we obtain an increasing sequence (ng), in N and a sequence

a = (a;); in ¢g such that Za,f(x,) = +o0. Since (a;); € Sac(X; x;), it follows that
=1

ACZ&ZJ:Z exists and therefore <Z a; f(x; ) is a bounded sequence, which is a

=1
Contradlctlon and we are done. ]

Then, we have the following result:

Corollary 2.1. Let X be a Banach space and Y, x; a series in X. Then, >, z; is
a wuc series if and only if for each sequence (a;); € cq it is satisfied that AC'Y; a;x;
erists.

Proof. Let 3, x; be a wuc series in X. Then, we have that Syc(X; x;) is complete.
Since cog C Sac(X; i), we deduce that c¢g C Sac(X; x;), that is, AC'Y; a;x; exists
for every sequence (a;); € ¢o. The converse was proved at the end of the previous
demonstration. |

Remark. Let X be a normed space and >, x; a series in X. We consider the linear

map 1" : Sac(X; z;) — X defined by T'(a) = AC'Y; a;x;.
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Suppose that Y, z; is a wuc series and consider H = sup{|| X7 a;xi|| : n €
N,|a;| < 1,7 € {1,...,n}}. Then, it is easy to check that if a € Ssc(3; ;) then
T (a)|| = ||JAC' Y, a;z;|| < Hla||, and therefore T is continuous.

Conversely, if 7' is continuous and {as,...,a;} C [—1,1], it is satisfied that
I Za x| = HACZCLZSL’ZH |T|| (considering a; = 0 if ¢ > j), which implies that

Z .T}Z is a wuc S€I‘1€S

In the next theorem we study the completeness of the space Syac(X; ;).

Theorem 2.2. Let X be a Banach space and Y, x; a series in X. Then, >, x; 1S a
wuc series if and only if Syac(X; ;) is complete.

Proof. Consider Y, x; to be a wuc series. It will be enough to prove that Sy, ac(>; ;)
is closed in l,. Let (a™), be a sequence in Sy,ac(>; x;), a™ = (al); for each n € N,
and let also be a’ € (. such that lim [|a" — a’|| = 0. We will show that a° €

Swac(X; ;). Let H > 0 be such that
H = sup{|| Y aiz]| :neN,|a| <1,0€{l,...,n}}.
i=1
For each natural n, there exists y, € X such that y, = wAC Z a;z;. We will check

that (y,)n is a Cauchy sequence.

Ife > () is given, there exists ng such that if p,q > ng, then [|a? — a?|| < ¢/3H.
We fix p, ¢ > ng, and we have that there exists f € Sx« (unit sphere in X*) verifying

”yp yq” = ‘f(yp )‘ Since AC' Y, zf<$1> = f(yp> and AC'Y, azq (xZ) = f(yq)v
there exists 1 € N Such that

J i

) = (ol + = Y= b+ DS < 5 @)
k=1 k=1
) = () + =5 Sl —k+ Dl S < 5 (9)
k=1 k=1
for each j € N. Then, if p, g > ng we have that
I = all = 17 ) — £ < (4) + ()
J A k
b - )+ o @ - ) )l )

k=1 k=1

where (6) < ¢/3. Therefore, since X is a Banach space, there exists yo € X such
that lign lYn — ol = 0. We will check that wAC' Y, adx; = yo.

If ¢ > 0 is given, we can fix a natural n such that ||a" — a°|| < ¢/3H and
lyn — yol| < /3. Consider a functional f € Bx-. We have that there exists ip € N
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such that if 7 > ig is

i

() = (S 20 + 7 6= kot Do)l < 5

k=1
for each 5 € N. But then, if i > iy and 7 € N, we have that

i

~ (a0 + g 32— kot Do) < 1S = )] +

k=1
(b + Ty 3 K D)) +
k=1
+ \z<a2—a2>f<xk>+l.%z<z—k+1>< = ) () < =
k=1 k=1

that is, wAC' S, a?z; = yo, and a® € Sy,ac(>; ;).

Conversely, suppose that Sy,ac(X; ;) is complete, which implies that ¢y C

Swac(X; ;). Suppose that there exists f € X* verifying » | f(x;)| = +o0.
i=1
Then, as we did in Theorem 2.1, a sequence a = (a;); in ¢y can be obtained such
that Y, a;f(z;) = +o0, Since a € Syac(X; x;), there will exist zp € X such that
wAC' Y ; a;x; = xg, and it will be AC'Y; a;f(x;) = 9. But this implies that the

sequence (Z a; f (SL’Z)> is bounded, which is a contradiction. n

i=1 n
Remark. Let X be a Banach space and ), x; a series in X. We consider the linear

map 7T : Syac(X; ;) — X defined by T'(a) = wAC'Y; a;x;. We will show that Y, x;
is a wuc series if and only if 7" is continuous.

We define H = sup{|| X, @izl : n € Ny|a;| < 1, € {1,...,n}} and take
a € Syac(X;x;). Then, wAC' Y, a;x; = xo exists , and we can take f € Sy« such
that |T'(a)| = [f(T(a))| = [ACE; aif (z;)| < Hlal|.

Conversely, suppose that T is continuous. Then, if {ay,...a,} C [-1,1], we
have that || Za x| = \wAC’Za z;|| < ||T|| (considering a; = 0 if ¢ > n), and this

i=1
implies that Z x; 1s a wuc series.
From the previous theorem and its proof, the following corollary can be easily
proved:

Corollary 2.2. Let X be a Banach space and > ; x; a series in X. Then, the
following are equivalent:

1. sz 1S a wuc series.

i

2. SwAC(Z x;) is complete.

i
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3. ¢y C SwAc(Z x;) (wACZaixi exists for each a = (a;); € cp).

Let us see that the hypothesis of completeness in the two previous theorems is
completely necessary. The following argument has been taken from [8]:

Let X be a non-complete normed space. Then, it is easy to prove that there
exists a sequence Y, z; in X such that ||z;|| < 1/i2" and ¥, 2, = 2™ € X\ X.
Then, we have that AC'Y, z; = o**. If we consider the series ), z; defined by
z; = 1x; for each n € N, we have that ), z; is a wuc series. Consider the sequence
a = (a;); € ¢o given by a; = 1/i. It is satisfied that AC'Y; a;2; € X** \ X, and
therefore a € Sac(X; 2z:;) and a & Syac(X; 2)-

Let X be a normed space and X* its dual space. Let also ), f; be a series in
X*. Tt is known [5] that >, f; is wuc if and only if ;| fi(z)| < oo for each z € X.

Now, we consider the vector space

S*_wAC(Z fi)=A(a;); € b : *—wAC’Zaifi exists},

where #-wAC'Y; a; f; = fo if and only if AC'Y; a;fi(z) = fo(z) for each z € X.

Theorem 2.3. Let X be a normed space. It is satisfied that 1 = 2= 3, where:

1. Z fi is a wuc series.

2. S*—wAC(Z fz) = Eoo

8. Ifx € X and M CN, then AC Y fi(z) exists.

ieM
Besides, if X s a barrelled normed space, the three items are equivalent.

Proof. From the x-weak compacity of Bx+ we deduce that 1 = 2. It is clear that
2= 3.

We suppose now that X is barrelled, and we will prove that 3 = 1. Effectively,
our goal is to prove that £ = {3 a;fi : n € N/ja;| < 1,7 € {1,...,n}} is
pointwise bounded for each x € X, and therefore E is bounded, which implies that
>; fi is a wuc series. Suppose that E is not pointwise bounded, that is, there exists
zo € X such that >; |fi(z9)| = +o00. Then, we can choose a subset M C N such
that > ,car fi(zo) = Foo. But, by hypothesis, AC Y ;o fi(xo) exists, which is a
contradiction. m

3 Almost convergence and Orlicz-Pettis theorem.

The Orlicz-Pettis theorem gives us a characterization of wuc series in Banach spaces
through the weak convergence of all its subseries.
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Theorem 3.1. Let X be a Banach space and >; x; a series in X such that for
each M C N we have that wY ey x; exists. Then Y, x; is uco (unconditionally
convergent).

By means of the almost convergence of Banach-Lorentz, we are going to obtain
a new version of this theorem.

Theorem 3.2. Let X be a Banach space and >, x; a series in X such that for
each M C N we have that wAC' Y ;¢ x; exists. Then >; x; is uco (unconditionally
convergent).

Proof. First, we are going to prove that >, x; is a wuc series. If ), x; were not
wuc, then we can find a set M C N and f € X* such that > ,c5; f(2;) = +00. But
by hypothesis, there exists zo € X such that AC'Y ey f(xi) = f(xg), which is a
contradiction.

Finally, we will show that if M C N, then w3} ,c); x; exists, and by the classic
Orlicz-Pettis theorem, we will have that Y, x; is uco.

Effectively, if M C N, we have that there exists zo € X such that wAC' >, x; =
xg, but if f € X* then > ,c f(x;) exists, and it will be

Z f(SUz) = AC Z f(ﬂfz) = f(l’o)a

ieM €M

and therefore w Z T; = Xo. [
ieM

The following corollary is deduced as an evident consequence:

Corollary 3.1. Let X be a Banach space, and >, x; a series in X. Then, the
following are equivalent:

1. le 1S UCO.
2. AC’Z a;x; exists for each a = (a;); € loo.

3. wACZaixi exists for each a = (a;); € loo.

Remark. Let X be a Banach space, and >, x; a wuc series in X. Then, for each
a = (a;); € U, it is satisfied that Y, a;z; is a wuc series, which implies that

SAC(Z l‘z) C Sw(z :L‘,)

i

where S, (3 x;) = {(a;); € loo : WX, a;x; exists}, but we don’t know what condi-
tions us to obtain the equality of both spaces.
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