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Abstract

We construct metrizable simplices X1 and X2 and a homeomorphism
ϕ : ext X1 → ext X2 such that ϕ(ext X1) = ext X2, the space A(X1) of all
affine continuous functions on X1 is complemented in C(X1) and A(X2) is
not complemented in any C(K) space. This shows that complementability of
the space A(X) cannot be determined by topological properties of the couple
(ext X, ext X).

1 Introduction

A Banach space X is called an L1–predual if X∗ is isometric to some L1(µ) space.
A particular example of an L1–predual is the space C(K) of all continuous functions
on a compact space K. There was a question how “different” an L1–predual can be
from C(K)–spaces which was answered by Y. Benyamini and J. Lindenstrauss in [3]
where they constructed an ℓ1–predual that is not complemented in any C(K)–space.

The method of their construction was to find a suitable compact convex subset
X of a locally convex space such that X is a simplex and the space A(X) of all
continuous affine functions on X is not complemented in any C(K)–space (we refer
reader to the next section for the notions not explained here). As it is known, the
space A(X) on a simplex X is an example of an L1–predual space (see [6, Proposition
3.23]).
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Since some properties of A(X) on a simplex X can be characterized by topological
properties of the set ext X of all extreme points of X (see e.g. [6, Proposition 3.15]
or [10, Theorem 1]), it seems natural to ask a similar question for the problem of
complementability of A(X) in a C(K)–space. The aim of this note is to show that
this is not the case.

We prove even more, namely that complementability of A(X) on a simplex X

cannot be determined by topological properties of the pair (ext X, ext X). By a
modification of the method of [3] we get the following theorem.

Theorem 1.1. There exist metrizable simplices X1 and X2 and a homeomorphic
mapping ϕ : ext X1 → ext X2 such that the sets ext X1, ext X2 are countable,
ϕ(ext X1) = ext X2, A(X1) is complemented in C(X1) and A(X2) is not comple-
mented in any C(K) space.

We remark that the simplices X1, X2 are constructed in such a way that the sets
of extreme points are of type Fσ (i.e., it is a countable union of closed sets). This
might be of some interest since the structure of simplices with extreme points being
Fσ–set is more transparent (see e.g. [11, Théorème 80] or [9, Corollary 3.5]).

2 Preliminaries

All topological space will be considered as Hausdorff. If K is a compact space, we
denote by C(K) the space of all continuous real–valued functions on K. We will
identify the dual of C(K) with the space M(K) of all Radon measures on K. Let
M1(K) denote the set of all probability Radon measures on K and let εx stand for
the Dirac measure at x ∈ K.

2.1 Function spaces

Throughout the paper we will consider a function space H on a compact space K.
By this we mean a (not necessarily closed) linear subspace of C(K) containing the
constant functions and separating the points of K. Let Mx(H) be the set of all
H–representing measures for x ∈ K, i.e.,

Mx(H) = {µ ∈ M1(K) : f(x) =
∫

K
f dµ for any f ∈ H}.

If µ ∈ Mx(H), we say that x is a barycenter of µ and denote x = r(µ). Where no
confusion can arise we simply say that µ represents x.

The set
ChH K = {x ∈ K : Mx(H) = {εx}}

is called the Choquet boundary of H. It may be highly irregular from the topological
point of view but it is a Gδ–set if K is metrizable (see [6, Proposition 2.9]).

Given a function space H on a compact space K we can define the set of H–affine
continuous functions as follows

Ac(H) = {f ∈ C(K) : f(x) =
∫

K
f dµ for any x ∈ K and µ ∈ Mx(H)}.
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Clearly, H ⊂ Ac(H).
We say that a function h ∈ H is H–exposing for x ∈ K if h attains its extremal

value precisely at x. Obviously, any H–exposed point is contained in the Choquet
boundary of H.

2.2 Examples of function spaces

We introduce the following main examples of function spaces.
In the “convex case”, the function space H is the linear space A(X) of all con-

tinuous affine functions on a compact convex subset X of a locally convex space. In
this example, the Choquet boundary of A(X) coincides with the set of all extreme
points of X (see [2, Theorem 6.3]) and is denoted by ext X.

Further, the barycenter of a probability measure µ on X is the unique point
r(µ) ∈ X for which f(r(µ)) = µ(f) for any f ∈ A(X), in other words, x is A(X)–
represented by µ.

In the “harmonic case”, U is a bounded open subset of the Euclidean space R
m

and the corresponding function space H is H(U), i.e., the family of all continuous
functions on U which are harmonic on U . In the “harmonic case”, the Choquet
boundary of H(U) coincides with the set ∂regU of all regular points of U (see [8,
Theorem]).

2.3 Simplicial functions spaces

If H is a function space on a metrizable compact space K, for any x ∈ K there
exists a measure µ ∈ Mx(H) such that µ(K \ ChH K) = 0 (see e.g. [6, Theorem
2.10]).

If this measure is uniquely determined for every x ∈ K, we say that H is a
simplicial function space. In the “convex case” it is equivalent to say that X is a
Choquet simplex, briefly simplex (see [1, Theorem II.3.6], [2, Theorem 7.3] or [6]).

As another example of a simplicial function space serves the space H(U) from
the “harmonic case” (see e.g. [8, Theorem]).

2.4 State space

By a standard technique briefly described below any function space can be viewed
as the space A(X) of affine continuous functions on a suitable compact convex set
X. Details can be found in [1, Chapter 2, § 2], [2, Chapter 1, § 4] or [7, Section 6].

If H is a function space on a compact space K, we set

S(H) = {ϕ ∈ H∗ : ‖ϕ‖ = ϕ(1) = 1} .

Then S(H) endowed with the weak* topology is a compact convex set which is
metrizable if K is metrizable. Let φ : K → S(H) be the evaluation mapping defined
as φ(x) = sx, x ∈ K, where sx(h) = h(x) for h ∈ H. Then φ is a homeomorphic
embedding of K onto φ(K) and φ(ChH K) = extS(H).

Let Φ : H → A(S(H)) be the mapping defined for h ∈ H by Φ(h)(s) = s(h),
s ∈ S(H). Then Φ serves as an isometric isomorphism of H into A(S(H)). Further,
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Φ is onto if and only if the function space H is uniformly closed in C(K). In this
case the inverse mapping is realized by

Φ−1(F ) = F ◦ φ, F ∈ A(S(H)) .

In the sequel we will need the following theorem.

Theorem 2.1. Let H be a closed function space on a metrizable compact space K.
Then the following assertions are equivalent:

(i) H is simplicial;

(ii) the state space S(Ac(H)) is a simplex.

Proof. See [4, Theorem].

By a projection, we always mean a bounded linear operator P on a Banach space
such that P = P 2.

Without explicit mentioning, every Banach space is assumed to be a subspace
of its second dual via its canonical embedding.

3 Construction

Definition 3.1. For a Banach space X we define

λ(X) = inf ‖T‖ ‖T−1‖ ‖P‖,

where the infimum is taken over all isomorphisms T from X into a C(K) space and
all projections P : C(K) → TX. If X is not isomorphic to a complemented subspace
of any C(K)–space, we put λ(X) = ∞.

Lemma 3.2. Let X be a Banach space and BX∗ be its dual unit ball endowed with
the weak∗ topology. Then

λ(X) = inf{‖P‖ : P is a projection of C(BX∗) onto X} .

Proof. See [3, Lemma].

Lemma 3.3. Let Y be a 1–complemented subspace of a Banach space X. Then
λ(Y ) ≤ λ(X).

Proof. Let T : X → Y be a projection of norm 1. We will show that for every
projection P : C(BX∗) → X we can find a projection Q : C(BY ∗) → Y such that
‖P‖ = ‖Q‖. Then, by Lemma 3.2, λ(Y ) ≤ λ(X). If π : X∗ → Y ∗ denotes the
restriction operator, then Q : C(BY ∗) → Y defined as

Q : f 7→ TP (f ◦ π) , f ∈ C(BY ∗) ,

is a projection of norm ‖P‖. This finishes the proof.
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3.1 Construction

Let H be a simplicial function space on a compact space K such that H = Ac(H).
Let

L =
⋃

i∈N,j=1,2,3

Kij ∪ {p, q} ∪ {rij : i = −1, 0, 1, j = 1, 2, 3} ,

where each Kij is a copy of K. The topology on L is defined as follows: a basis of
the neighborhoods of r0j , j = 1, 2, 3, is given by the sets {r0j} ∪

⋃
∞

i=n Kij , n ∈ N,
each Kij is both closed and open in L and all the remaining points are isolated.

Let
H1 = {f ∈ C(L) :f ↾Kij

∈ H, i ∈ N, j = 1, 2, 3,

2f(r0j) = f(r−1j) + f(r1j), j = 1, 2, 3} ,

and

H2 = {f ∈ C(L) :f ↾Kij
∈ H, i ∈ N, j = 1, 2, 3, 2f(r01) = f(p) + f(q),

3f(r02) = 2f(p) + f(q), 3f(r03) = f(p) + 2f(q)} .

It is straightforward to verify that H1, H2 are function spaces on L.

Lemma 3.4. Let H be a simplicial function space on a compact space K such
that H = Ac(H) and let and H1,H2 be the function spaces on a compact space L

constructed above. Then

(a) ChH1
L = ChH2

L, and if ChH K is of type Fσ, then ChH1
L is an Fσ–set as

well;

(b) both H1 and H2 are simplicial;

(c) Ac(H1) = H1, A
c(H2) = H2;

(d) if H is C–complemented in C(K), then H1 is max{C, 3}–complemented in
C(L);

(e) λ(H2) ≥ λ(H) + (500λ(H))−1.

Proof. For the proof of (a) it is enough to show that both the sets ChH1
L and

ChH2
L equal

{rij : i = −1, 1, j = 1, 2, 3} ∪ {p, q} ∪
⋃

i∈N,j=1,2,3

ChH Kij .

Indeed, for a point x ∈ Kij we have

x ∈ ChH1
L ⇔ x ∈ ChH2

L ⇔ x ∈ ChH Kij ,

as the characteristic function χKij
∈ H1 ∩ H2, and hence every measure µ ∈

Mx(H1) ∪Mx(H2) is supported by Kij . For the points

{rij : i = −1, 1, j = 1, 2, 3} ∪ {p, q},
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it is easy to find H1–exposing and H2–exposing functions and thus all these points
belong to ChH1

L ∩ ChH2
L.

On the other hand, the points {r0j : j = 1, 2, 3} have H1–representing measures

1

2

(
εr−1,1

+ εr1,1

)
,

1

2

(
εr−1,2

+ εr1,2

)
,

1

2

(
εr−1,3

+ εr1,3

)
, (1)

respectively, and H2–representing measures

1

2
(εp + εq) ,

1

3
(2εp + εq) ,

1

3
(εp + 2εq) , (2)

respectively, and hence they do not belong to the Choquet boundaries ChH1
L and

ChH2
L.

To show (b), let x be a point of L. If x ∈ Kij for some i, j, then x has a unique
H1–representing measure and a unique H2–representing measure, both supported by
the Choquet boundary of L, since H is simplicial and every H1 or H2–representing
measure is supported by Kij .

To finish the reasoning it is enough to notice that the points r0j , j = 1, 2, 3,
have uniquely determined H1 and H2–representing measures carried by the Choquet
boundary of L (see (1) and (2)).

For the proof of (c), let f be a function from Ac(H1). By the assumption,
f ↾Kij

∈ H for each Kij and, obviously, f satisfies 2f(r0j) = f(r−1j) + f(r1j), j =
1, 2, 3. Hence f ∈ H1.

Analogously, Ac(H2) = H2.
To verify (d), we assume that P : C(K) → H is a projection of the norm C. We

define an operator Q : C(L) → H1 as

(Qf)(x) =





P (f ↾Kij
)(x) , x ∈ Kij ,

f(x) , x = p, q, rij, i = 0,−1, j = 1, 2, 3,

2f(r0j) − f(r−1j) , x = r1j , j = 1, 2, 3.

It can be easily verified that Q is a projection of C(L) onto H1 and ‖Q‖ = max{C, 3}.
For the proof of (e), we define a compact space L̃ = L\{rij; i = −1, 1, j = 1, 2, 3}

and a function space H̃2 = {f ↾
L̃
: f ∈ H2}. Then H̃2 can be considered to be a

subspace of H2 via the isometric isomorphism E : H̃2 → H2 defined as

(Ef)(x) =





f(r0j) , x = rij, i = 1,−1, j = 1, 2, 3,

f(x) , elsewhere.

By [3, Theorem], λ(H̃2) ≥ λ(H) + (500λ(H))−1.
Since the operator T : H2 → H̃2 defined as

Tf = E(f ↾
L̃
) , f ∈ H2 ,

is a projection of norm 1, we get from Lemma 3.3 that λ(H̃2) ≤ λ(H2). Hence
λ(H2) ≥ λ(H) + (500λ(H))−1, which completes the proof.



Complementability of spaces of affine continuous functions on simplices 471

4 Proof of the theorem

We start with a simplicial function space H on a metrizable compact space L such
that H = Ac(H), H is 1–complemented in C(L) and ChH L is of type Fσ (the
simplest choice is to take L as a singleton and H = C(L)). We define two sequences
{(Ln,Hn

1 )}, {(Ln,Hn
2 )} of function spaces as follows: (L1,H1

1) = (L1,H1
2) = (L,H),

and for n ∈ N, the space (Ln+1,Hn+1
1 ) is the space H1 from Lemma 3.4 constructed

from (Ln,Hn
1 ) and (Ln+1,Hn+1

2 ) is the space H2 constructed from (Ln,Hn
2 ).

Finally, let

L∞ =
∞⋃

n=1

Ln ∪ {x∞}

be the one–point compactification of the topological sum of Ln’s and

Hi = {f ∈ C(L∞) : f ↾Ln∈ Hn
i , n ∈ N} , i = 1, 2 .

Given i ∈ {1, 2}, it is easy to realize that Hi is a simplicial function space,
Ac(Hi) = Hi and

ChHi
L∞ = {x∞} ∪

∞⋃

n=1

ChHn
i
Ln .

In particular, ChH1
L = ChH2

L and it is an Fσ–set (see Lemma 3.4(a)).

According to Lemma 3.4(d), Hn
1 is 3–complemented in C(Ln) for each n ∈ N. It

follows that H1 is 3–complemented in C(L∞).

Indeed, if Pn : C(Ln) → Hn
1 is a projection with ‖Pn‖ ≤ 3, the mapping Q :

C(L∞) → H1 defined as

Qf(x) =





(Pnf)(x) , x ∈ Ln, n ∈ N ,

f(x∞) , x = x∞ ,
(3)

is a projection of C(L∞) onto H1.
On the other hand, by Lemma 3.4(e), λ(Hn

2 ) → ∞. Since each Hn
2 is 1–

complemented in H2, H2 is not complemented in any C(K) space (see Lemma 3.3).
The desired simplices X1, X2 will be the state spaces S(H1) and S(H2) (use

Theorem 2.1). Let φi : L∞ → S(Hi), i = 1, 2, be the respective homeomorphic
embeddings. Then φ = φ2 ◦ φ−1

1 is a homeomorphism of ext X1 onto ext X2 such
that

φ(ext X1) = φ2(ChH1
L∞) = φ2(ChH2

L∞) = ext X2 .

Since H1 is complemented in C(L∞), A(X1) is complemented in C(X1) as well.
Indeed, using (3) we can define the mapping

Q̃f = Φ1Q(f ◦ φ1) , f ∈ C(X1) ,

to get a projection of C(X1) onto A(X1) (we recall that Φ1 is the isometric isomor-
phism of H1 onto A(X1).

As A(X2) is isometric with H2, A(X2) is not complemented in any C(K) space.
This finishes the proof.
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