Complementability of spaces of affine continuous functions on simplices*

Miroslav Bačák
Jiří Spurný

Abstract

We construct metrizable simplices X_{1} and X_{2} and a homeomorphism $\varphi: \overline{\operatorname{ext} X_{1}} \rightarrow \overline{\operatorname{ext} X_{2}}$ such that $\varphi\left(\operatorname{ext} X_{1}\right)=\operatorname{ext} X_{2}$, the space $\mathfrak{A}\left(X_{1}\right)$ of all affine continuous functions on X_{1} is complemented in $\mathcal{C}\left(X_{1}\right)$ and $\mathfrak{A}\left(X_{2}\right)$ is not complemented in any $\mathcal{C}(K)$ space. This shows that complementability of the space $\mathfrak{A}(X)$ cannot be determined by topological properties of the couple (ext $X, \overline{\operatorname{ext} X})$.

1 Introduction

A Banach space X is called an L^{1}-predual if X^{*} is isometric to some $L^{1}(\mu)$ space. A particular example of an L^{1}-predual is the space $\mathcal{C}(K)$ of all continuous functions on a compact space K. There was a question how "different" an L^{1}-predual can be from $\mathcal{C}(K)$-spaces which was answered by Y. Benyamini and J. Lindenstrauss in [3] where they constructed an ℓ^{1}-predual that is not complemented in any $\mathcal{C}(K)$-space.

The method of their construction was to find a suitable compact convex subset X of a locally convex space such that X is a simplex and the space $\mathfrak{A}(X)$ of all continuous affine functions on X is not complemented in any $\mathcal{C}(K)$-space (we refer reader to the next section for the notions not explained here). As it is known, the space $\mathfrak{A}(X)$ on a simplex X is an example of an L^{1}-predual space (see [6, Proposition 3.23]).

[^0]Since some properties of $\mathfrak{A}(X)$ on a simplex X can be characterized by topological properties of the set ext X of all extreme points of X (see e.g. [6, Proposition 3.15] or $[10$, Theorem 1]), it seems natural to ask a similar question for the problem of complementability of $\mathfrak{A}(X)$ in a $\mathcal{C}(K)$-space. The aim of this note is to show that this is not the case.

We prove even more, namely that complementability of $\mathfrak{A}(X)$ on a simplex X cannot be determined by topological properties of the pair (ext $X, \overline{\operatorname{ext} X})$. By a modification of the method of [3] we get the following theorem.

Theorem 1.1. There exist metrizable simplices X_{1} and X_{2} and a homeomorphic mapping $\varphi: \overline{\operatorname{ext} X_{1}} \rightarrow \overline{\operatorname{ext} X_{2}}$ such that the sets $\operatorname{ext} X_{1}$, ext X_{2} are countable, $\varphi\left(\operatorname{ext} X_{1}\right)=\operatorname{ext} X_{2}, \mathfrak{A}\left(X_{1}\right)$ is complemented in $\mathcal{C}\left(X_{1}\right)$ and $\mathfrak{A}\left(X_{2}\right)$ is not complemented in any $\mathcal{C}(K)$ space.

We remark that the simplices X_{1}, X_{2} are constructed in such a way that the sets of extreme points are of type F_{σ} (i.e., it is a countable union of closed sets). This might be of some interest since the structure of simplices with extreme points being F_{σ}-set is more transparent (see e.g. [11, Théorème 80] or [9, Corollary 3.5]).

2 Preliminaries

All topological space will be considered as Hausdorff. If K is a compact space, we denote by $\mathcal{C}(K)$ the space of all continuous real-valued functions on K. We will identify the dual of $\mathcal{C}(K)$ with the space $\mathcal{M}(K)$ of all Radon measures on K. Let $\mathcal{M}^{1}(K)$ denote the set of all probability Radon measures on K and let ε_{x} stand for the Dirac measure at $x \in K$.

2.1 Function spaces

Throughout the paper we will consider a function space \mathcal{H} on a compact space K. By this we mean a (not necessarily closed) linear subspace of $\mathcal{C}(K)$ containing the constant functions and separating the points of K. Let $\mathcal{M}_{x}(\mathcal{H})$ be the set of all \mathcal{H}-representing measures for $x \in K$, i.e.,

$$
\mathcal{M}_{x}(\mathcal{H})=\left\{\mu \in \mathcal{M}^{1}(K): f(x)=\int_{K} f d \mu \text { for any } f \in \mathcal{H}\right\}
$$

If $\mu \in \mathcal{M}_{x}(\mathcal{H})$, we say that x is a barycenter of μ and denote $x=r(\mu)$. Where no confusion can arise we simply say that μ represents x.

The set

$$
\mathrm{Ch}_{\mathcal{H}} K=\left\{x \in K: \mathcal{M}_{x}(\mathcal{H})=\left\{\varepsilon_{x}\right\}\right\}
$$

is called the Choquet boundary of \mathcal{H}. It may be highly irregular from the topological point of view but it is a G_{δ}-set if K is metrizable (see [6, Proposition 2.9]).

Given a function space \mathcal{H} on a compact space K we can define the set of \mathcal{H}-affine continuous functions as follows

$$
\mathcal{A}^{c}(\mathcal{H})=\left\{f \in \mathcal{C}(K): f(x)=\int_{K} f d \mu \text { for any } x \in K \text { and } \mu \in \mathcal{M}_{x}(\mathcal{H})\right\} .
$$

Clearly, $\mathcal{H} \subset \mathcal{A}^{c}(\mathcal{H})$.
We say that a function $h \in \mathcal{H}$ is \mathcal{H}-exposing for $x \in K$ if h attains its extremal value precisely at x. Obviously, any \mathcal{H}-exposed point is contained in the Choquet boundary of \mathcal{H}.

2.2 Examples of function spaces

We introduce the following main examples of function spaces.
In the "convex case", the function space \mathcal{H} is the linear space $\mathfrak{A}(X)$ of all continuous affine functions on a compact convex subset X of a locally convex space. In this example, the Choquet boundary of $\mathfrak{A}(X)$ coincides with the set of all extreme points of X (see [2, Theorem 6.3]) and is denoted by ext X.

Further, the barycenter of a probability measure μ on X is the unique point $r(\mu) \in X$ for which $f(r(\mu))=\mu(f)$ for any $f \in \mathfrak{A}(X)$, in other words, x is $\mathfrak{A}(X)-$ represented by μ.

In the "harmonic case", U is a bounded open subset of the Euclidean space \mathbb{R}^{m} and the corresponding function space \mathcal{H} is $\mathbf{H}(U)$, i.e., the family of all continuous functions on \bar{U} which are harmonic on U. In the "harmonic case", the Choquet boundary of $\mathbf{H}(U)$ coincides with the set $\partial_{\text {reg }} U$ of all regular points of U (see [8 , Theorem]).

2.3 Simplicial functions spaces

If \mathcal{H} is a function space on a metrizable compact space K, for any $x \in K$ there exists a measure $\mu \in \mathcal{M}_{x}(\mathcal{H})$ such that $\mu\left(K \backslash \mathrm{Ch}_{\mathcal{H}} K\right)=0$ (see e.g. [6, Theorem 2.10]).

If this measure is uniquely determined for every $x \in K$, we say that \mathcal{H} is a simplicial function space. In the "convex case" it is equivalent to say that X is a Choquet simplex, briefly simplex (see [1, Theorem II.3.6], [2, Theorem 7.3] or [6]).

As another example of a simplicial function space serves the space $\mathbf{H}(U)$ from the "harmonic case" (see e.g. [8, Theorem]).

2.4 State space

By a standard technique briefly described below any function space can be viewed as the space $\mathfrak{A}(X)$ of affine continuous functions on a suitable compact convex set X. Details can be found in [1, Chapter 2, § 2], [2, Chapter 1, § 4] or [7, Section 6]. If \mathcal{H} is a function space on a compact space K, we set

$$
\mathbf{S}(\mathcal{H})=\left\{\varphi \in \mathcal{H}^{*}:\|\varphi\|=\varphi(1)=1\right\}
$$

Then $\mathbf{S}(\mathcal{H})$ endowed with the weak* topology is a compact convex set which is metrizable if K is metrizable. Let $\phi: K \rightarrow \mathbf{S}(\mathcal{H})$ be the evaluation mapping defined as $\phi(x)=s_{x}, x \in K$, where $s_{x}(h)=h(x)$ for $h \in \mathcal{H}$. Then ϕ is a homeomorphic embedding of K onto $\phi(K)$ and $\phi\left(\mathrm{Ch}_{\mathcal{H}} K\right)=\operatorname{ext} \mathbf{S}(\mathcal{H})$.

Let $\Phi: \mathcal{H} \rightarrow \mathfrak{A}(\mathbf{S}(\mathcal{H}))$ be the mapping defined for $h \in \mathcal{H}$ by $\Phi(h)(s)=s(h)$, $s \in \mathbf{S}(\mathcal{H})$. Then Φ serves as an isometric isomorphism of \mathcal{H} into $\mathfrak{A}(\mathbf{S}(\mathcal{H}))$. Further,
Φ is onto if and only if the function space \mathcal{H} is uniformly closed in $\mathcal{C}(K)$. In this case the inverse mapping is realized by

$$
\Phi^{-1}(F)=F \circ \phi, \quad F \in \mathfrak{A}(\mathbf{S}(\mathcal{H})) .
$$

In the sequel we will need the following theorem.
Theorem 2.1. Let \mathcal{H} be a closed function space on a metrizable compact space K. Then the following assertions are equivalent:
(i) \mathcal{H} is simplicial;
(ii) the state space $\mathbf{S}\left(\mathcal{A}^{c}(\mathcal{H})\right)$ is a simplex.

Proof. See [4, Theorem].
By a projection, we always mean a bounded linear operator P on a Banach space such that $P=P^{2}$.

Without explicit mentioning, every Banach space is assumed to be a subspace of its second dual via its canonical embedding.

3 Construction

Definition 3.1. For a Banach space X we define

$$
\lambda(X)=\inf \|T\|\left\|T^{-1}\right\|\|P\|
$$

where the infimum is taken over all isomorphisms T from X into a $\mathcal{C}(K)$ space and all projections $P: \mathcal{C}(K) \rightarrow T X$. If X is not isomorphic to a complemented subspace of any $\mathcal{C}(K)$-space, we put $\lambda(X)=\infty$.

Lemma 3.2. Let X be a Banach space and $B_{X^{*}}$ be its dual unit ball endowed with the weak* topology. Then

$$
\lambda(X)=\inf \left\{\|P\|: P \text { is a projection of } \mathcal{C}\left(B_{X^{*}}\right) \text { onto } X\right\} .
$$

Proof. See [3, Lemma].
Lemma 3.3. Let Y be a 1-complemented subspace of a Banach space X. Then $\lambda(Y) \leq \lambda(X)$.

Proof. Let $T: X \rightarrow Y$ be a projection of norm 1. We will show that for every projection $P: C\left(B_{X^{*}}\right) \rightarrow X$ we can find a projection $Q: C\left(B_{Y^{*}}\right) \rightarrow Y$ such that $\|P\|=\|Q\|$. Then, by Lemma 3.2, $\lambda(Y) \leq \lambda(X)$. If $\pi: X^{*} \rightarrow Y^{*}$ denotes the restriction operator, then $Q: C\left(B_{Y^{*}}\right) \rightarrow Y$ defined as

$$
Q: f \mapsto T P(f \circ \pi), \quad f \in \mathcal{C}\left(B_{Y^{*}}\right)
$$

is a projection of norm $\|P\|$. This finishes the proof.

3.1 Construction

Let \mathcal{H} be a simplicial function space on a compact space K such that $\mathcal{H}=\mathcal{A}^{c}(\mathcal{H})$. Let

$$
L=\bigcup_{i \in \mathbb{N}, j=1,2,3} K_{i j} \cup\{p, q\} \cup\left\{r_{i j}: i=-1,0,1, j=1,2,3\right\},
$$

where each $K_{i j}$ is a copy of K. The topology on L is defined as follows: a basis of the neighborhoods of $r_{0 j}, j=1,2,3$, is given by the sets $\left\{r_{0 j}\right\} \cup \bigcup_{i=n}^{\infty} K_{i j}, n \in \mathbb{N}$, each $K_{i j}$ is both closed and open in L and all the remaining points are isolated.

Let

$$
\begin{aligned}
\mathcal{H}_{1}=\{f \in \mathcal{C}(L): & f \upharpoonright_{K_{i j}} \in \mathcal{H}, i \in \mathbb{N}, j=1,2,3, \\
& \left.2 f\left(r_{0 j}\right)=f\left(r_{-1 j}\right)+f\left(r_{1 j}\right), j=1,2,3\right\},
\end{aligned}
$$

and

$$
\begin{gathered}
\mathcal{H}_{2}=\left\{f \in \mathcal{C}(L): f \upharpoonright_{K_{i j}} \in \mathcal{H}, i \in \mathbb{N}, j=1,2,3,2 f\left(r_{01}\right)=f(p)+f(q),\right. \\
\left.3 f\left(r_{02}\right)=2 f(p)+f(q), 3 f\left(r_{03}\right)=f(p)+2 f(q)\right\}
\end{gathered}
$$

It is straightforward to verify that $\mathcal{H}_{1}, \mathcal{H}_{2}$ are function spaces on L.
Lemma 3.4. Let \mathcal{H} be a simplicial function space on a compact space K such that $\mathcal{H}=\mathcal{A}^{c}(\mathcal{H})$ and let and $\mathcal{H}_{1}, \mathcal{H}_{2}$ be the function spaces on a compact space L constructed above. Then
(a) $\mathrm{Ch}_{\mathcal{H}_{1}} L=\mathrm{Ch}_{\mathcal{H}_{2}} L$, and if $\mathrm{Ch}_{\mathcal{H}} K$ is of type F_{σ}, then $\mathrm{Ch}_{\mathcal{H}_{1}} L$ is an F_{σ}-set as well;
(b) both \mathcal{H}_{1} and \mathcal{H}_{2} are simplicial;
(c) $\mathcal{A}^{c}\left(\mathcal{H}_{1}\right)=\mathcal{H}_{1}, \mathcal{A}^{c}\left(\mathcal{H}_{2}\right)=\mathcal{H}_{2} ;$
(d) if \mathcal{H} is C-complemented in $\mathcal{C}(K)$, then \mathcal{H}_{1} is $\max \{C, 3\}$-complemented in $\mathcal{C}(L)$;
(e) $\lambda\left(\mathcal{H}_{2}\right) \geq \lambda(\mathcal{H})+(500 \lambda(\mathcal{H}))^{-1}$.

Proof. For the proof of (a) it is enough to show that both the sets $\mathrm{Ch}_{\mathcal{H}_{1}} L$ and $\mathrm{Ch}_{\mathcal{H}_{2}} L$ equal

$$
\left\{r_{i j}: i=-1,1, j=1,2,3\right\} \cup\{p, q\} \cup \bigcup_{i \in \mathbb{N}, j=1,2,3} \operatorname{Ch}_{\mathcal{H}} K_{i j} .
$$

Indeed, for a point $x \in K_{i j}$ we have

$$
x \in \mathrm{Ch}_{\mathcal{H}_{1}} L \Leftrightarrow x \in \mathrm{Ch}_{\mathcal{H}_{2}} L \Leftrightarrow x \in \mathrm{Ch}_{\mathcal{H}} K_{i j}
$$

as the characteristic function $\chi_{K_{i j}} \in \mathcal{H}_{1} \cap \mathcal{H}_{2}$, and hence every measure $\mu \in$ $\mathcal{M}_{x}\left(\mathcal{H}_{1}\right) \cup \mathcal{M}_{x}\left(\mathcal{H}_{2}\right)$ is supported by $K_{i j}$. For the points

$$
\left\{r_{i j}: i=-1,1, j=1,2,3\right\} \cup\{p, q\}
$$

it is easy to find \mathcal{H}_{1}-exposing and \mathcal{H}_{2}-exposing functions and thus all these points belong to $\mathrm{Ch}_{\mathcal{H}_{1}} L \cap \mathrm{Ch}_{\mathcal{H}_{2}} L$.

On the other hand, the points $\left\{r_{0 j}: j=1,2,3\right\}$ have \mathcal{H}_{1}-representing measures

$$
\begin{equation*}
\frac{1}{2}\left(\varepsilon_{r_{-1,1}}+\varepsilon_{r_{1,1}}\right), \quad \frac{1}{2}\left(\varepsilon_{r_{-1,2}}+\varepsilon_{r_{1,2}}\right), \quad \frac{1}{2}\left(\varepsilon_{r_{-1,3}}+\varepsilon_{r_{1,3}}\right) \tag{1}
\end{equation*}
$$

respectively, and $\mathcal{H}_{2}-$ representing measures

$$
\begin{equation*}
\frac{1}{2}\left(\varepsilon_{p}+\varepsilon_{q}\right), \quad \frac{1}{3}\left(2 \varepsilon_{p}+\varepsilon_{q}\right), \quad \frac{1}{3}\left(\varepsilon_{p}+2 \varepsilon_{q}\right) \tag{2}
\end{equation*}
$$

respectively, and hence they do not belong to the Choquet boundaries $\mathrm{Ch}_{\mathcal{H}_{1}} L$ and $\mathrm{Ch}_{\mathcal{H}_{2}} L$.

To show (b), let x be a point of L. If $x \in K_{i j}$ for some i, j, then x has a unique $\mathcal{H}_{1}-$ representing measure and a unique $\mathcal{H}_{2}-$ representing measure, both supported by the Choquet boundary of L, since \mathcal{H} is simplicial and every \mathcal{H}_{1} or $\mathcal{H}_{2}-$ representing measure is supported by $K_{i j}$.

To finish the reasoning it is enough to notice that the points $r_{0 j}, j=1,2,3$, have uniquely determined \mathcal{H}_{1} and \mathcal{H}_{2}-representing measures carried by the Choquet boundary of L (see (1) and (2)).

For the proof of (c), let f be a function from $\mathcal{A}^{c}\left(\mathcal{H}_{1}\right)$. By the assumption, $f \upharpoonright_{K_{i j}} \in \mathcal{H}$ for each $K_{i j}$ and, obviously, f satisfies $2 f\left(r_{0 j}\right)=f\left(r_{-1 j}\right)+f\left(r_{1 j}\right), j=$ $1,2,3$. Hence $f \in \mathcal{H}_{1}$.

Analogously, $\mathcal{A}^{c}\left(\mathcal{H}_{2}\right)=\mathcal{H}_{2}$.
To verify (d), we assume that $P: \mathcal{C}(K) \rightarrow \mathcal{H}$ is a projection of the norm C. We define an operator $Q: \mathcal{C}(L) \rightarrow \mathcal{H}_{1}$ as

$$
(Q f)(x)= \begin{cases}P\left(f \upharpoonright_{K_{i j}}\right)(x), & x \in K_{i j}, \\ f(x), & x=p, q, r_{i j}, i=0,-1, j=1,2,3 \\ 2 f\left(r_{0 j}\right)-f\left(r_{-1 j}\right), & x=r_{1 j}, j=1,2,3 .\end{cases}
$$

It can be easily verified that Q is a projection of $\mathcal{C}(L)$ onto \mathcal{H}_{1} and $\|Q\|=\max \{C, 3\}$.
For the proof of (e), we define a compact space $\widetilde{L}=L \backslash\left\{r_{i j} ; i=-1,1, j=1,2,3\right\}$ and a function space $\widetilde{\mathcal{H}_{2}}=\left\{\left.f\right|_{\widetilde{L}}: f \in \mathcal{H}_{2}\right\}$. Then $\widetilde{\mathcal{H}_{2}}$ can be considered to be a subspace of \mathcal{H}_{2} via the isometric isomorphism $E: \widetilde{\mathcal{H}_{2}} \rightarrow \mathcal{H}_{2}$ defined as

$$
(E f)(x)= \begin{cases}f\left(r_{0 j}\right), & x=r_{i j}, i=1,-1, j=1,2,3 \\ f(x), & \text { elsewhere }\end{cases}
$$

By [3, Theorem], $\lambda\left(\widetilde{\mathcal{H}_{2}}\right) \geq \lambda(\mathcal{H})+(500 \lambda(\mathcal{H}))^{-1}$.
Since the operator $T: \mathcal{H}_{2} \rightarrow \widetilde{\mathcal{H}_{2}}$ defined as

$$
T f=E\left(f \Gamma_{\widetilde{L}}\right), \quad f \in \mathcal{H}_{2},
$$

is a projection of norm 1 , we get from Lemma 3.3 that $\lambda\left(\widetilde{\mathcal{H}_{2}}\right) \leq \lambda\left(\mathcal{H}_{2}\right)$. Hence $\lambda\left(\mathcal{H}_{2}\right) \geq \lambda(\mathcal{H})+(500 \lambda(\mathcal{H}))^{-1}$, which completes the proof.

4 Proof of the theorem

We start with a simplicial function space \mathcal{H} on a metrizable compact space L such that $\mathcal{H}=\mathcal{A}^{c}(\mathcal{H}), \mathcal{H}$ is 1 -complemented in $\mathcal{C}(L)$ and $\mathrm{Ch}_{\mathcal{H}} L$ is of type F_{σ} (the simplest choice is to take L as a singleton and $\mathcal{H}=\mathcal{C}(L))$. We define two sequences $\left\{\left(L^{n}, \mathcal{H}_{1}^{n}\right)\right\},\left\{\left(L^{n}, \mathcal{H}_{2}^{n}\right)\right\}$ of function spaces as follows: $\left(L^{1}, \mathcal{H}_{1}^{1}\right)=\left(L^{1}, \mathcal{H}_{2}^{1}\right)=(L, \mathcal{H})$, and for $n \in \mathbb{N}$, the space $\left(L^{n+1}, \mathcal{H}_{1}^{n+1}\right)$ is the space \mathcal{H}_{1} from Lemma 3.4 constructed from $\left(L^{n}, \mathcal{H}_{1}^{n}\right)$ and $\left(L^{n+1}, \mathcal{H}_{2}^{n+1}\right)$ is the space \mathcal{H}_{2} constructed from $\left(L^{n}, \mathcal{H}_{2}^{n}\right)$.

Finally, let

$$
L_{\infty}=\bigcup_{n=1}^{\infty} L_{n} \cup\left\{x_{\infty}\right\}
$$

be the one-point compactification of the topological sum of L^{n} 's and

$$
\mathcal{H}_{i}=\left\{f \in \mathcal{C}\left(L_{\infty}\right): f \upharpoonright_{L^{n}} \in \mathcal{H}_{i}^{n}, n \in \mathbb{N}\right\}, \quad i=1,2 .
$$

Given $i \in\{1,2\}$, it is easy to realize that \mathcal{H}_{i} is a simplicial function space, $\mathcal{A}^{c}\left(\mathcal{H}_{i}\right)=\mathcal{H}_{i}$ and

$$
\mathrm{Ch}_{\mathcal{H}_{i}} L_{\infty}=\left\{x_{\infty}\right\} \cup \bigcup_{n=1}^{\infty} \mathrm{Ch}_{\mathcal{H}_{i}^{n}} L^{n}
$$

In particular, $\mathrm{Ch}_{\mathcal{H}_{1}} L=\mathrm{Ch}_{\mathcal{H}_{2}} L$ and it is an F_{σ}-set (see Lemma 3.4(a)).
According to Lemma 3.4(d), \mathcal{H}_{1}^{n} is 3 -complemented in $\mathcal{C}\left(L^{n}\right)$ for each $n \in \mathbb{N}$. It follows that \mathcal{H}_{1} is 3-complemented in $\mathcal{C}\left(L_{\infty}\right)$.

Indeed, if $P_{n}: \mathcal{C}\left(L^{n}\right) \rightarrow \mathcal{H}_{1}^{n}$ is a projection with $\left\|P_{n}\right\| \leq 3$, the mapping Q : $\mathcal{C}\left(L_{\infty}\right) \rightarrow \mathcal{H}_{1}$ defined as

$$
Q f(x)= \begin{cases}\left(P_{n} f\right)(x), & x \in L^{n}, n \in \mathbb{N} \tag{3}\\ f\left(x_{\infty}\right), & x=x_{\infty}\end{cases}
$$

is a projection of $\mathcal{C}\left(L_{\infty}\right)$ onto \mathcal{H}_{1}.
On the other hand, by Lemma 3.4(e), $\lambda\left(\mathcal{H}_{2}^{n}\right) \rightarrow \infty$. Since each \mathcal{H}_{2}^{n} is $1-$ complemented in $\mathcal{H}_{2}, \mathcal{H}_{2}$ is not complemented in any $\mathcal{C}(K)$ space (see Lemma 3.3).

The desired simplices X_{1}, X_{2} will be the state spaces $\mathbf{S}\left(\mathcal{H}_{1}\right)$ and $\mathbf{S}\left(\mathcal{H}_{2}\right)$ (use Theorem 2.1). Let $\phi_{i}: L_{\infty} \rightarrow \mathbf{S}\left(\mathcal{H}_{i}\right), i=1,2$, be the respective homeomorphic embeddings. Then $\phi=\phi_{2} \circ \phi_{1}^{-1}$ is a homeomorphism of $\overline{\text { ext } X_{1}}$ onto $\overline{\operatorname{ext} X_{2}}$ such that

$$
\phi\left(\operatorname{ext} X_{1}\right)=\phi_{2}\left(\mathrm{Ch}_{\mathcal{H}_{1}} L_{\infty}\right)=\phi_{2}\left(\mathrm{Ch}_{\mathcal{H}_{2}} L_{\infty}\right)=\operatorname{ext} X_{2}
$$

Since \mathcal{H}_{1} is complemented in $\mathcal{C}\left(L_{\infty}\right), \mathfrak{A}\left(X_{1}\right)$ is complemented in $\mathcal{C}\left(X_{1}\right)$ as well. Indeed, using (3) we can define the mapping

$$
\widetilde{Q} f=\Phi_{1} Q\left(f \circ \phi_{1}\right), \quad f \in \mathcal{C}\left(X_{1}\right),
$$

to get a projection of $\mathcal{C}\left(X_{1}\right)$ onto $\mathfrak{A}\left(X_{1}\right)$ (we recall that Φ_{1} is the isometric isomorphism of \mathcal{H}_{1} onto $\mathfrak{A}\left(X_{1}\right)$.

As $\mathfrak{A}\left(X_{2}\right)$ is isometric with $\mathcal{H}_{2}, \mathfrak{A}\left(X_{2}\right)$ is not complemented in any $\mathcal{C}(K)$ space. This finishes the proof.

References

[1] E.M. Alfsen, Compact convex sets and boundary integrals, Springer-Verlag, 1971.
[2] L. Asimow and A.J. Ellis, Convexity theory and its applications in functional analysis, Academic Press, 1980.
[3] Y. Benyamini, J. Lindenstrauss, A predual of l_{1} which is not isomorphic to a $C(K)$ space, Israel J. Math. 13 (1972), 246-254.
[4] H. Bauer, Simplicial function spaces and simplexes, Expo. Math. 3 (1985), 165-168.
[5] G. Choquet, Lectures on analysis I - III., W. A. Benjamin, Inc., New YorkAmsterdam, 1969.
[6] V.P. Fonf, J. Lindenstrauss, R.R. Phelps, Infinite dimensional convexity, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, 599-670.
[7] R.R. Phelps, Lectures on Choquet's theorem, Math. Studies Princeton: Van Nostrand, 1966.
[8] I. Netuka, The Dirichlet problem for harmonic functions, Amer. Math. Monthly 87 (1980), 621-628.
[9] Jiří Spurný, Affine Baire-one functions on Choquet simplexes, Bull. Austral. Math. Soc. 71 (2005), 235-258.
[10] J. Spurný and O. Kalenda, A solution of the abstract Dirichlet problem for Baire-one functions, J. Funct. Anal. 232 (2006), 259-294.
[11] M. Rogalski, Opérateurs de Lion, projecteurs boréliens et simplexes analytiques, J. Funct. Anal. 2 (1968), 458-488.

Faculty of Mathematics and Physics
Charles University
Sokolovská 83
18675 Praha 8
Czech Republic
email:bacak@karlin.mff.cuni.cz - spurny@karlin.mff.cuni.cz.

[^0]: *Research was supported in part by the grants GA ČR 201/06/0018, GA ČR 201/07/0388, and in part by the Research Project MSM 0021620839 from the Czech Ministry of Education.

 Received by the editors July 2007.
 Communicated by F. Bastin.
 2000 Mathematics Subject Classification : 46A55 (primary), 46B03 (secondary).
 Key words and phrases : simplex, $L^{1}-$ predual, complementability, affine functions.

