Complementability of spaces of affine continuous functions on simplices*

Miroslav Bačák

Jiří Spurný

Abstract

We construct metrizable simplices X_1 and X_2 and a homeomorphism $\varphi : \overline{\operatorname{ext} X_1} \to \overline{\operatorname{ext} X_2}$ such that $\varphi(\operatorname{ext} X_1) = \operatorname{ext} X_2$, the space $\mathfrak{A}(X_1)$ of all affine continuous functions on X_1 is complemented in $\mathcal{C}(X_1)$ and $\mathfrak{A}(X_2)$ is not complemented in any $\mathcal{C}(K)$ space. This shows that complementability of the space $\mathfrak{A}(X)$ cannot be determined by topological properties of the couple $(\operatorname{ext} X, \operatorname{ext} X)$.

1 Introduction

A Banach space X is called an L^1 -predual if X^* is isometric to some $L^1(\mu)$ space. A particular example of an L^1 -predual is the space $\mathcal{C}(K)$ of all continuous functions on a compact space K. There was a question how "different" an L^1 -predual can be from $\mathcal{C}(K)$ -spaces which was answered by Y. Benyamini and J. Lindenstrauss in [3] where they constructed an ℓ^1 -predual that is not complemented in any $\mathcal{C}(K)$ -space.

The method of their construction was to find a suitable compact convex subset X of a locally convex space such that X is a simplex and the space $\mathfrak{A}(X)$ of all continuous affine functions on X is not complemented in any $\mathcal{C}(K)$ -space (we refer reader to the next section for the notions not explained here). As it is known, the space $\mathfrak{A}(X)$ on a simplex X is an example of an L^1 -predual space (see [6, Proposition 3.23]).

Bull. Belg. Math. Soc. Simon Stevin 15 (2008), 465-472

^{*}Research was supported in part by the grants GA ČR 201/06/0018, GA ČR 201/07/0388, and in part by the Research Project MSM 0021620839 from the Czech Ministry of Education.

Received by the editors July 2007.

Communicated by F. Bastin.

²⁰⁰⁰ Mathematics Subject Classification : 46A55 (primary), 46B03 (secondary).

Key words and phrases : simplex, L^1 -predual, complementability, affine functions.

Since some properties of $\mathfrak{A}(X)$ on a simplex X can be characterized by topological properties of the set ext X of all extreme points of X (see e.g. [6, Proposition 3.15] or [10, Theorem 1]), it seems natural to ask a similar question for the problem of complementability of $\mathfrak{A}(X)$ in a $\mathcal{C}(K)$ -space. The aim of this note is to show that this is not the case.

We prove even more, namely that complementability of $\mathfrak{A}(X)$ on a simplex X cannot be determined by topological properties of the pair (ext X, ext \overline{X}). By a modification of the method of [3] we get the following theorem.

Theorem 1.1. There exist metrizable simplices X_1 and X_2 and a homeomorphic mapping φ : $\overline{\operatorname{ext} X_1} \to \overline{\operatorname{ext} X_2}$ such that the sets $\operatorname{ext} X_1$, $\operatorname{ext} X_2$ are countable, $\varphi(\operatorname{ext} X_1) = \operatorname{ext} X_2$, $\mathfrak{A}(X_1)$ is complemented in $\mathcal{C}(X_1)$ and $\mathfrak{A}(X_2)$ is not complemented in any $\mathcal{C}(K)$ space.

We remark that the simplices X_1 , X_2 are constructed in such a way that the sets of extreme points are of type F_{σ} (i.e., it is a countable union of closed sets). This might be of some interest since the structure of simplices with extreme points being F_{σ} -set is more transparent (see e.g. [11, Théorème 80] or [9, Corollary 3.5]).

2 Preliminaries

All topological space will be considered as Hausdorff. If K is a compact space, we denote by $\mathcal{C}(K)$ the space of all continuous real-valued functions on K. We will identify the dual of $\mathcal{C}(K)$ with the space $\mathcal{M}(K)$ of all Radon measures on K. Let $\mathcal{M}^1(K)$ denote the set of all probability Radon measures on K and let ε_x stand for the Dirac measure at $x \in K$.

2.1 Function spaces

Throughout the paper we will consider a function space \mathcal{H} on a compact space K. By this we mean a (not necessarily closed) linear subspace of $\mathcal{C}(K)$ containing the constant functions and separating the points of K. Let $\mathcal{M}_x(\mathcal{H})$ be the set of all \mathcal{H} -representing measures for $x \in K$, i.e.,

$$\mathcal{M}_x(\mathcal{H}) = \{ \mu \in \mathcal{M}^1(K) : f(x) = \int_K f \, d\mu \text{ for any } f \in \mathcal{H} \}.$$

If $\mu \in \mathcal{M}_x(\mathcal{H})$, we say that x is a *barycenter of* μ and denote $x = r(\mu)$. Where no confusion can arise we simply say that μ represents x.

The set

$$\operatorname{Ch}_{\mathcal{H}} K = \{ x \in K : \mathcal{M}_x(\mathcal{H}) = \{ \varepsilon_x \} \}$$

is called the *Choquet boundary* of \mathcal{H} . It may be highly irregular from the topological point of view but it is a G_{δ} -set if K is metrizable (see [6, Proposition 2.9]).

Given a function space \mathcal{H} on a compact space K we can define the set of \mathcal{H} -affine continuous functions as follows

$$\mathcal{A}^{c}(\mathcal{H}) = \{ f \in \mathcal{C}(K) : f(x) = \int_{K} f \, d\mu \text{ for any } x \in K \text{ and } \mu \in \mathcal{M}_{x}(\mathcal{H}) \}$$

Clearly, $\mathcal{H} \subset \mathcal{A}^{c}(\mathcal{H})$.

We say that a function $h \in \mathcal{H}$ is \mathcal{H} -exposing for $x \in K$ if h attains its extremal value precisely at x. Obviously, any \mathcal{H} -exposed point is contained in the Choquet boundary of \mathcal{H} .

2.2 Examples of function spaces

We introduce the following main examples of function spaces.

In the "convex case", the function space \mathcal{H} is the linear space $\mathfrak{A}(X)$ of all continuous affine functions on a compact convex subset X of a locally convex space. In this example, the Choquet boundary of $\mathfrak{A}(X)$ coincides with the set of all extreme points of X (see [2, Theorem 6.3]) and is denoted by ext X.

Further, the barycenter of a probability measure μ on X is the unique point $r(\mu) \in X$ for which $f(r(\mu)) = \mu(f)$ for any $f \in \mathfrak{A}(X)$, in other words, x is $\mathfrak{A}(X)$ -represented by μ .

In the "harmonic case", U is a bounded open subset of the Euclidean space \mathbb{R}^m and the corresponding function space \mathcal{H} is $\mathbf{H}(U)$, i.e., the family of all continuous functions on \overline{U} which are harmonic on U. In the "harmonic case", the Choquet boundary of $\mathbf{H}(U)$ coincides with the set $\partial_{\text{reg}}U$ of all regular points of U (see [8, Theorem]).

2.3 Simplicial functions spaces

If \mathcal{H} is a function space on a metrizable compact space K, for any $x \in K$ there exists a measure $\mu \in \mathcal{M}_x(\mathcal{H})$ such that $\mu(K \setminus \operatorname{Ch}_{\mathcal{H}} K) = 0$ (see e.g. [6, Theorem 2.10]).

If this measure is uniquely determined for every $x \in K$, we say that \mathcal{H} is a simplicial function space. In the "convex case" it is equivalent to say that X is a Choquet simplex, briefly simplex (see [1, Theorem II.3.6], [2, Theorem 7.3] or [6]).

As another example of a simplicial function space serves the space $\mathbf{H}(U)$ from the "harmonic case" (see e.g. [8, Theorem]).

2.4 State space

By a standard technique briefly described below any function space can be viewed as the space $\mathfrak{A}(X)$ of affine continuous functions on a suitable compact convex set X. Details can be found in [1, Chapter 2, § 2], [2, Chapter 1, § 4] or [7, Section 6].

If \mathcal{H} is a function space on a compact space K, we set

$$\mathbf{S}(\mathcal{H}) = \{ \varphi \in \mathcal{H}^* : \|\varphi\| = \varphi(1) = 1 \} .$$

Then $\mathbf{S}(\mathcal{H})$ endowed with the weak^{*} topology is a compact convex set which is metrizable if K is metrizable. Let $\phi : K \to \mathbf{S}(\mathcal{H})$ be the evaluation mapping defined as $\phi(x) = s_x, x \in K$, where $s_x(h) = h(x)$ for $h \in \mathcal{H}$. Then ϕ is a homeomorphic embedding of K onto $\phi(K)$ and $\phi(\operatorname{Ch}_{\mathcal{H}} K) = \operatorname{ext} \mathbf{S}(\mathcal{H})$.

Let $\Phi : \mathcal{H} \to \mathfrak{A}(\mathbf{S}(\mathcal{H}))$ be the mapping defined for $h \in \mathcal{H}$ by $\Phi(h)(s) = s(h)$, $s \in \mathbf{S}(\mathcal{H})$. Then Φ serves as an isometric isomorphism of \mathcal{H} into $\mathfrak{A}(\mathbf{S}(\mathcal{H}))$. Further, Φ is onto if and only if the function space \mathcal{H} is uniformly closed in $\mathcal{C}(K)$. In this case the inverse mapping is realized by

$$\Phi^{-1}(F) = F \circ \phi, \quad F \in \mathfrak{A}(\mathbf{S}(\mathcal{H})) .$$

In the sequel we will need the following theorem.

Theorem 2.1. Let \mathcal{H} be a closed function space on a metrizable compact space K. Then the following assertions are equivalent:

- (i) \mathcal{H} is simplicial;
- (ii) the state space $\mathbf{S}(\mathcal{A}^{c}(\mathcal{H}))$ is a simplex.

Proof. See [4, Theorem].

By a projection, we always mean a bounded linear operator P on a Banach space such that $P = P^2$.

Without explicit mentioning, every Banach space is assumed to be a subspace of its second dual via its canonical embedding.

3 Construction

Definition 3.1. For a Banach space X we define

$$\lambda(X) = \inf \|T\| \, \|T^{-1}\| \, \|P\|,$$

where the infimum is taken over all isomorphisms T from X into a $\mathcal{C}(K)$ space and all projections $P : \mathcal{C}(K) \to TX$. If X is not isomorphic to a complemented subspace of any $\mathcal{C}(K)$ -space, we put $\lambda(X) = \infty$.

Lemma 3.2. Let X be a Banach space and B_{X^*} be its dual unit ball endowed with the weak^{*} topology. Then

 $\lambda(X) = \inf\{\|P\| : P \text{ is a projection of } \mathcal{C}(B_{X^*}) \text{ onto } X\}.$

Proof. See [3, Lemma].

Lemma 3.3. Let Y be a 1-complemented subspace of a Banach space X. Then $\lambda(Y) \leq \lambda(X)$.

Proof. Let $T : X \to Y$ be a projection of norm 1. We will show that for every projection $P : C(B_{X^*}) \to X$ we can find a projection $Q : C(B_{Y^*}) \to Y$ such that ||P|| = ||Q||. Then, by Lemma 3.2, $\lambda(Y) \leq \lambda(X)$. If $\pi : X^* \to Y^*$ denotes the restriction operator, then $Q : C(B_{Y^*}) \to Y$ defined as

$$Q: f \mapsto TP(f \circ \pi), \quad f \in \mathcal{C}(B_{Y^*}),$$

is a projection of norm ||P||. This finishes the proof.

468

3.1 Construction

Let \mathcal{H} be a simplicial function space on a compact space K such that $\mathcal{H} = \mathcal{A}^{c}(\mathcal{H})$. Let

$$L = \bigcup_{i \in \mathbb{N}, j=1,2,3} K_{ij} \cup \{p,q\} \cup \{r_{ij} : i = -1, 0, 1, j = 1,2,3\},\$$

where each K_{ij} is a copy of K. The topology on L is defined as follows: a basis of the neighborhoods of r_{0j} , j = 1, 2, 3, is given by the sets $\{r_{0j}\} \cup \bigcup_{i=n}^{\infty} K_{ij}$, $n \in \mathbb{N}$, each K_{ij} is both closed and open in L and all the remaining points are isolated.

Let

$$\mathcal{H}_{1} = \{ f \in \mathcal{C}(L) : f \upharpoonright_{K_{ij}} \in \mathcal{H}, i \in \mathbb{N}, j = 1, 2, 3, \\ 2f(r_{0j}) = f(r_{-1j}) + f(r_{1j}), j = 1, 2, 3 \},\$$

and

$$\mathcal{H}_2 = \{ f \in \mathcal{C}(L) : f \upharpoonright_{K_{ij}} \in \mathcal{H}, i \in \mathbb{N}, j = 1, 2, 3, 2f(r_{01}) = f(p) + f(q), \\ 3f(r_{02}) = 2f(p) + f(q), 3f(r_{03}) = f(p) + 2f(q) \}.$$

It is straightforward to verify that \mathcal{H}_1 , \mathcal{H}_2 are function spaces on L.

Lemma 3.4. Let \mathcal{H} be a simplicial function space on a compact space K such that $\mathcal{H} = \mathcal{A}^{c}(\mathcal{H})$ and let and $\mathcal{H}_{1}, \mathcal{H}_{2}$ be the function spaces on a compact space L constructed above. Then

- (a) $\operatorname{Ch}_{\mathcal{H}_1} L = \operatorname{Ch}_{\mathcal{H}_2} L$, and if $\operatorname{Ch}_{\mathcal{H}} K$ is of type F_{σ} , then $\operatorname{Ch}_{\mathcal{H}_1} L$ is an F_{σ} -set as well;
- (b) both \mathcal{H}_1 and \mathcal{H}_2 are simplicial;

(c)
$$\mathcal{A}^{c}(\mathcal{H}_{1}) = \mathcal{H}_{1}, \ \mathcal{A}^{c}(\mathcal{H}_{2}) = \mathcal{H}_{2}$$

(d) if \mathcal{H} is C-complemented in $\mathcal{C}(K)$, then \mathcal{H}_1 is $\max\{C, 3\}$ -complemented in $\mathcal{C}(L)$;

(e)
$$\lambda(\mathcal{H}_2) \ge \lambda(\mathcal{H}) + (500\lambda(\mathcal{H}))^{-1}$$

Proof. For the proof of (a) it is enough to show that both the sets $\operatorname{Ch}_{\mathcal{H}_1} L$ and $\operatorname{Ch}_{\mathcal{H}_2} L$ equal

$$\{r_{ij}: i = -1, 1, j = 1, 2, 3\} \cup \{p, q\} \cup \bigcup_{i \in \mathbb{N}, j = 1, 2, 3} \operatorname{Ch}_{\mathcal{H}} K_{ij}.$$

Indeed, for a point $x \in K_{ij}$ we have

$$x \in \operatorname{Ch}_{\mathcal{H}_1} L \Leftrightarrow x \in \operatorname{Ch}_{\mathcal{H}_2} L \Leftrightarrow x \in \operatorname{Ch}_{\mathcal{H}} K_{ij}$$

as the characteristic function $\chi_{K_{ij}} \in \mathcal{H}_1 \cap \mathcal{H}_2$, and hence every measure $\mu \in \mathcal{M}_x(\mathcal{H}_1) \cup \mathcal{M}_x(\mathcal{H}_2)$ is supported by K_{ij} . For the points

$$\{r_{ij}: i = -1, 1, j = 1, 2, 3\} \cup \{p, q\},\$$

it is easy to find \mathcal{H}_1 -exposing and \mathcal{H}_2 -exposing functions and thus all these points belong to $\operatorname{Ch}_{\mathcal{H}_1} L \cap \operatorname{Ch}_{\mathcal{H}_2} L$.

On the other hand, the points $\{r_{0j}: j = 1, 2, 3\}$ have \mathcal{H}_1 -representing measures

$$\frac{1}{2}\left(\varepsilon_{r_{-1,1}}+\varepsilon_{r_{1,1}}\right), \quad \frac{1}{2}\left(\varepsilon_{r_{-1,2}}+\varepsilon_{r_{1,2}}\right), \quad \frac{1}{2}\left(\varepsilon_{r_{-1,3}}+\varepsilon_{r_{1,3}}\right), \tag{1}$$

respectively, and \mathcal{H}_2 -representing measures

$$\frac{1}{2}(\varepsilon_p + \varepsilon_q), \quad \frac{1}{3}(2\varepsilon_p + \varepsilon_q), \quad \frac{1}{3}(\varepsilon_p + 2\varepsilon_q), \quad (2)$$

respectively, and hence they do not belong to the Choquet boundaries $\operatorname{Ch}_{\mathcal{H}_1} L$ and $\operatorname{Ch}_{\mathcal{H}_2} L$.

To show (b), let x be a point of L. If $x \in K_{ij}$ for some i, j, then x has a unique \mathcal{H}_1 -representing measure and a unique \mathcal{H}_2 -representing measure, both supported by the Choquet boundary of L, since \mathcal{H} is simplicial and every \mathcal{H}_1 or \mathcal{H}_2 -representing measure is supported by K_{ij} .

To finish the reasoning it is enough to notice that the points r_{0j} , j = 1, 2, 3, have uniquely determined \mathcal{H}_1 and \mathcal{H}_2 -representing measures carried by the Choquet boundary of L (see (1) and (2)).

For the proof of (c), let f be a function from $\mathcal{A}^{c}(\mathcal{H}_{1})$. By the assumption, $f \upharpoonright_{K_{ij}} \in \mathcal{H}$ for each K_{ij} and, obviously, f satisfies $2f(r_{0j}) = f(r_{-1j}) + f(r_{1j}), j = 1, 2, 3$. Hence $f \in \mathcal{H}_{1}$.

Analogously, $\mathcal{A}^{c}(\mathcal{H}_{2}) = \mathcal{H}_{2}$.

To verify (d), we assume that $P : \mathcal{C}(K) \to \mathcal{H}$ is a projection of the norm C. We define an operator $Q : \mathcal{C}(L) \to \mathcal{H}_1$ as

$$(Qf)(x) = \begin{cases} P(f \upharpoonright_{K_{ij}})(x) , & x \in K_{ij}, \\ f(x) , & x = p, q, r_{ij}, \ i = 0, -1, j = 1, 2, 3, \\ 2f(r_{0j}) - f(r_{-1j}) , & x = r_{1j}, \ j = 1, 2, 3. \end{cases}$$

It can be easily verified that Q is a projection of $\mathcal{C}(L)$ onto \mathcal{H}_1 and $||Q|| = \max\{C, 3\}$.

For the proof of (e), we define a compact space $\widetilde{L} = L \setminus \{r_{ij}; i = -1, 1, j = 1, 2, 3\}$ and a function space $\widetilde{\mathcal{H}}_2 = \{f \mid_{\widetilde{L}} : f \in \mathcal{H}_2\}$. Then $\widetilde{\mathcal{H}}_2$ can be considered to be a subspace of \mathcal{H}_2 via the isometric isomorphism $E : \widetilde{\mathcal{H}}_2 \to \mathcal{H}_2$ defined as

$$(Ef)(x) = \begin{cases} f(r_{0j}) , & x = r_{ij}, \ i = 1, -1, j = 1, 2, 3, \\ f(x) , & \text{elsewhere.} \end{cases}$$

By [3, Theorem], $\lambda(\widetilde{\mathcal{H}_2}) \geq \lambda(\mathcal{H}) + (500\lambda(\mathcal{H}))^{-1}$. Since the operator $T : \mathcal{H}_2 \to \widetilde{\mathcal{H}_2}$ defined as

$$Tf = E(f \upharpoonright_{\widetilde{L}}), \quad f \in \mathcal{H}_2,$$

is a projection of norm 1, we get from Lemma 3.3 that $\lambda(\mathcal{H}_2) \leq \lambda(\mathcal{H}_2)$. Hence $\lambda(\mathcal{H}_2) \geq \lambda(\mathcal{H}) + (500\lambda(\mathcal{H}))^{-1}$, which completes the proof.

4 Proof of the theorem

We start with a simplicial function space \mathcal{H} on a metrizable compact space L such that $\mathcal{H} = \mathcal{A}^{c}(\mathcal{H})$, \mathcal{H} is 1-complemented in $\mathcal{C}(L)$ and $\operatorname{Ch}_{\mathcal{H}} L$ is of type F_{σ} (the simplest choice is to take L as a singleton and $\mathcal{H} = \mathcal{C}(L)$). We define two sequences $\{(L^{n}, \mathcal{H}_{1}^{n})\}, \{(L^{n}, \mathcal{H}_{2}^{n})\}$ of function spaces as follows: $(L^{1}, \mathcal{H}_{1}^{1}) = (L^{1}, \mathcal{H}_{2}^{1}) = (L, \mathcal{H}),$ and for $n \in \mathbb{N}$, the space $(L^{n+1}, \mathcal{H}_{1}^{n+1})$ is the space \mathcal{H}_{1} from Lemma 3.4 constructed from $(L^{n}, \mathcal{H}_{1}^{n})$ and $(L^{n+1}, \mathcal{H}_{2}^{n+1})$ is the space \mathcal{H}_{2} constructed from $(L^{n}, \mathcal{H}_{2}^{n})$.

Finally, let

$$L_{\infty} = \bigcup_{n=1}^{\infty} L_n \cup \{x_{\infty}\}$$

be the one-point compactification of the topological sum of L^n 's and

$$\mathcal{H}_i = \{ f \in \mathcal{C}(L_\infty) : f \upharpoonright_{L^n} \in \mathcal{H}_i^n, n \in \mathbb{N} \}, \quad i = 1, 2.$$

Given $i \in \{1, 2\}$, it is easy to realize that \mathcal{H}_i is a simplicial function space, $\mathcal{A}^c(\mathcal{H}_i) = \mathcal{H}_i$ and

$$\operatorname{Ch}_{\mathcal{H}_i} L_{\infty} = \{x_{\infty}\} \cup \bigcup_{n=1}^{\infty} \operatorname{Ch}_{\mathcal{H}_i^n} L^n$$

In particular, $\operatorname{Ch}_{\mathcal{H}_1} L = \operatorname{Ch}_{\mathcal{H}_2} L$ and it is an F_{σ} -set (see Lemma 3.4(a)).

According to Lemma 3.4(d), \mathcal{H}_1^n is 3-complemented in $\mathcal{C}(L^n)$ for each $n \in \mathbb{N}$. It follows that \mathcal{H}_1 is 3-complemented in $\mathcal{C}(L_\infty)$.

Indeed, if $P_n : \mathcal{C}(L^n) \to \mathcal{H}_1^n$ is a projection with $||P_n|| \leq 3$, the mapping $Q : \mathcal{C}(L_{\infty}) \to \mathcal{H}_1$ defined as

$$Qf(x) = \begin{cases} (P_n f)(x) , & x \in L^n, n \in \mathbb{N} , \\ f(x_\infty) , & x = x_\infty , \end{cases}$$
(3)

is a projection of $\mathcal{C}(L_{\infty})$ onto \mathcal{H}_1 .

On the other hand, by Lemma 3.4(e), $\lambda(\mathcal{H}_2^n) \to \infty$. Since each \mathcal{H}_2^n is 1– complemented in \mathcal{H}_2 , \mathcal{H}_2 is not complemented in any $\mathcal{C}(K)$ space (see Lemma 3.3).

The desired simplices X_1 , X_2 will be the state spaces $\mathbf{S}(\mathcal{H}_1)$ and $\mathbf{S}(\mathcal{H}_2)$ (use Theorem 2.1). Let $\phi_i : L_{\infty} \to \mathbf{S}(\mathcal{H}_i)$, i = 1, 2, be the respective homeomorphic embeddings. Then $\phi = \phi_2 \circ \phi_1^{-1}$ is a homeomorphism of $\overline{\operatorname{ext} X_1}$ onto $\overline{\operatorname{ext} X_2}$ such that

$$\phi(\operatorname{ext} X_1) = \phi_2(\operatorname{Ch}_{\mathcal{H}_1} L_\infty) = \phi_2(\operatorname{Ch}_{\mathcal{H}_2} L_\infty) = \operatorname{ext} X_2 .$$

Since \mathcal{H}_1 is complemented in $\mathcal{C}(L_{\infty})$, $\mathfrak{A}(X_1)$ is complemented in $\mathcal{C}(X_1)$ as well. Indeed, using (3) we can define the mapping

$$\tilde{Q}f = \Phi_1 Q(f \circ \phi_1) , \quad f \in \mathcal{C}(X_1) ,$$

to get a projection of $\mathcal{C}(X_1)$ onto $\mathfrak{A}(X_1)$ (we recall that Φ_1 is the isometric isomorphism of \mathcal{H}_1 onto $\mathfrak{A}(X_1)$.

As $\mathfrak{A}(X_2)$ is isometric with \mathcal{H}_2 , $\mathfrak{A}(X_2)$ is not complemented in any $\mathcal{C}(K)$ space. This finishes the proof.

References

- E.M. Alfsen, Compact convex sets and boundary integrals, Springer-Verlag, 1971.
- [2] L. Asimow and A.J. Ellis, *Convexity theory and its applications in functional analysis*, Academic Press, 1980.
- [3] Y. Benyamini, J. Lindenstrauss, A predual of l_1 which is not isomorphic to a C(K) space, Israel J. Math. **13** (1972), 246–254.
- [4] H. Bauer, Simplicial function spaces and simplexes, Expo. Math. 3 (1985), 165–168.
- [5] G. Choquet, Lectures on analysis I III., W. A. Benjamin, Inc., New York-Amsterdam, 1969.
- [6] V.P. Fonf, J. Lindenstrauss, R.R. Phelps, *Infinite dimensional convexity*, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, 599–670.
- [7] R.R. Phelps, *Lectures on Choquet's theorem*, Math. Studies Princeton: Van Nostrand, 1966.
- [8] I. Netuka, The Dirichlet problem for harmonic functions, Amer. Math. Monthly 87 (1980), 621–628.
- [9] Jiří Spurný, Affine Baire-one functions on Choquet simplexes, Bull. Austral. Math. Soc. 71 (2005), 235–258.
- [10] J. Spurný and O. Kalenda, A solution of the abstract Dirichlet problem for Baire-one functions, J. Funct. Anal. 232 (2006), 259–294.
- [11] M. Rogalski, Opérateurs de Lion, projecteurs boréliens et simplexes analytiques, J. Funct. Anal. 2 (1968), 458–488.

Faculty of Mathematics and Physics Charles University Sokolovská 83 186 75 Praha 8 Czech Republic email:bacak@karlin.mff.cuni.cz – spurny@karlin.mff.cuni.cz.