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Abstract

It is well-known that the concept of Hyers-Ulam-Rassias stability origi-
nated by Th. M. Rassias (Proc. Amer. Math. Soc. 72(1978), 297-300) and
the concept of Ulam-Gavruta-Rassias stability by J. M. Rassias (J. Funct.
Anal. U.S.A. 46(1982), 126-130; Bull. Sc. Math. 108 (1984), 445-446; J. Ap-
prox. Th. 57 (1989), 268-273) and P. Gavruta (“An answer to a question of
John M. Rassias concerning the stability of Cauchy equation”, in: Advances
in Equations and Inequalities, in: Hadronic Math. Ser. (1999), 67-71). In
this paper we give results concerning these two stabilities.

1 Introduction

The stability problem of functional equations originated from a question of S.
Ulam[21] concerning the stability of group homomorphism: Let (G1, ◦) be a group
and (G2, ∗) a metric group with a metric d(·, ·). Given ǫ > 0, does there exist a
δ > 0 such that if f : G1 → G2 satisfies

d(f(x ◦ y), f(x) ∗ f(y)) ≤ δ, for all x, y ∈ G1,

then there exists a homomorphism h : G1 → G2 with

d(f(x), h(x)) ≤ ǫ, for all x ∈ G1?

D. H. Hyers[5] gave a first affirmative answer to the question of Ulam, for Banach
spaces:
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Let f : E → E ′ be a mapping, where E and E ′ are Banach spaces, such that

‖ f(x + y) − f(x) − f(y) ‖E′ ≤ ǫ,

for all x, y ∈ E and for some ǫ. Then there exists a unique additive mapping
L : E → E ′ such that

‖ f(x) − L(x) ‖ ≤ ǫ.

In 1978, Th. M. Rassias[17] proved the following generalization of Hyers[5]:

Proposition 1.1. Let f : E → E ′ be a mapping, where E is a real normed space
and E ′ is a Banach space. Assume that there exist ǫ > 0 such that

‖ f(x + y) − f(x) − f(y) ‖ ≤ ǫ(‖ x ‖p + ‖ y ‖p), (1.1)

for all x, y ∈ E, where p ∈ [0, 1). Then there exists a unique additive mapping
L : E → E ′ such that

‖ f(x) − L(x) ‖ ≤
2ǫ

2 − 2p
‖ x ‖p (1.2)

for all x ∈ E. If p < 0 then inequality (1.1) holds for x, y 6= 0 and (1.2) for x 6= 0.

In 1991, Z. Gajda[3] gave an affirmative answer to Th. M. Rassias’ question
whether his theorem can be extended for values of p greater than one.

However it was shown by Z. Gajda[3] and Th. M. Rassias and P. Semrl[18] that
one can not prove a theorem similar to [17].

The inequality (1.1) that was introduced for the first time by Th. M. Rassias[17]
provided a lot of influence in the development of a generalization of the Hyers-Ulam
concept. This new concept of stability is known as generalized Hyers-Ulam stability
or Hyers-Ulam-Rassias stability of functional equations (see the book of D. H. Hyers,
G. Isac and Th. M. Rassias[6]).

In 1982-1989, J. M. Rassias([14], [15], [16]) proved the following generalization
of Hyers[5]:

Proposition 1.2. Let f : E → E ′ be a mapping, where E is a real normed space
and E ′ is a Banach space. Assume that there exists a θ > 0 such that

‖ f(x + y) − [f(x) + f(y)] ‖ ≤ θ‖ x ‖p ‖ y ‖q
, (1.3)

for all x, y ∈ E, where r = p + q 6= 1. Then there exists a unique additive mapping
L : E → E ′ such that

‖ f(x) − L(x) ‖ ≤
θ

|2r − 2|
‖ x ‖r

, (1.4)

for all x ∈ E.

However, the case r = 1 in inequality (1.3) is singular. A counter-example has
been given by P. Gavruta[4]. The above-mentioned stability involving a product of
different powers of norms is called Ulam-Gavruta-Rassias stability by B. Bouikha-
lene, E. Elqorachi and M. A. Sibaha[20], as well as by K. Ravi and M. Arunkumar[19],
P. Nakmahachalasint[9], and B. Bouikhalene and E. Elqorachi[1].
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More generalizations and applications of the generalized Hyers-Ulam stability to
a number of functional equations and mappings can be find in [2], [7], [8], [10], [11]
and [13].

C. Park, Y. Cho and M. Han[12] proved that a mapping satisfying one of the
following inequalities,

‖ f(x) + f(y) + f(z) ‖ ≤ ‖ 2f(
x + y + z

2
) ‖,

‖ f(x) + f(y) + f(z) ‖ ≤ ‖ f(x + y + z) ‖,

‖ f(x) + f(y) + 2f(z) ‖ ≤ ‖ 2f(
x + y

2
+ z) ‖,

is a Cauchy additive mapping and they gave some stability of these mappings. In
this paper, we give improved results concerning these mappings.

2 Hyers-Ulam-Rassias Stability

In this paper we note that X is a normed vector space and Y is a Banach space. It
was shown in [12] that a mapping f : X → Y satisfying the inequality

‖ f(x) + f(y) + f(z) ‖Y ≤ ‖ 2f(
x + y + z

2
) ‖

Y

is Cauchy additive. Now we prove the Hyers-Ulam-Rassias stability of these map-
pings in Banach spaces.

Theorem 2.1. Let r > 1 and ǫ be nonnegative real numbers, and let f : X → Y be
a mapping such that

‖ f(x) + f(y) + f(z) ‖Y ≤ ‖ 2f(
x + y + z

2
) ‖

Y
+ ǫ(‖ x ‖r

X +‖ y ‖r

X +‖ z ‖r

X), (2.1)

for all x, y, z ∈ X. Then there exists a unique Cauchy additive mapping L : X → Y

such that

‖ f(x) − L(x) ‖Y ≤
6 + 2r

2r − 2
ǫ‖ x ‖r

X . (2.2)

Proof. From (2.1) with x = y = z = 0, we get ‖ 3f(0) ‖Y ≤ ‖ 2f(0) ‖Y which
implies ‖ f(0) ‖Y = 0 and f(0) = 0. Also, by letting y = x, z = −2x in (2.1) we get

‖ 2f(x) + f(−2x) ‖Y ≤ (2 + 2r)ǫ‖ x ‖r

X ,

for all x ∈ X. So, we get

‖ 2f(
x

2
) + f(−x) ‖

Y
≤

2 + 2r

2r
ǫ‖ x ‖r

X . (2.3)

Next, by letting y = −x and z = 0 in (2.1) we get

‖ f(x) + f(−x) ‖Y ≤ 2ǫ‖ x ‖r

X . (2.4)
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Hence, we have due to (2.3) and (2.4) that

‖ 2lf(
x

2l
) − 2mf(

x

2m
) ‖

Y
≤

m−1
∑

j=l

‖ 2jf(
x

2j
) − 2j+1f(

x

2j+1
) ‖

Y

≤
m−1
∑

j=l

‖ 2jf(
x

2j
) + 2j+1f(

−x

2j+1
) − 2j+1f(

−x

2j+1
) − 2j+1f(

x

2j+1
) ‖

Y

≤
m−1
∑

j=l

[

‖ 2jf(
x

2j
) + 2j+1f(

−x

2j+1
) ‖

Y
+ ‖ 2j+1f(

−x

2j+1
) + 2j+1f(

x

2j+1
) ‖

Y

]

≤
6 + 2r

2r
ǫ‖ x ‖r

X

m−1
∑

j=l

(

2

2r

)j

,

for all nonnegative integers m and l with m > l and all x ∈ X. It means that the
sequence {2nf( x

2n
)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the

sequence {2nf( x
2n

)} converges. So we can define the mapping L : X → Y by L(x)
= limn→∞ 2nf( x

2n
), for all x ∈ X.

Moreover, by letting l = 0 and passing the limit m → ∞, we get (2.2).
Next, we claim that L(x) is a Cauchy additive mapping. First of all, we get by

(2.4) that

‖ L(x) + L(−x) ‖Y ≤ lim
n→∞

2n‖ f(
x

2n
) + f(−

x

2n
) ‖

Y
≤ lim

n→∞

2n+1ǫ‖
x

2n
‖

r

X

= lim
n→∞

2n+1ǫ

2nr
‖ x ‖r

X = 0,

for r > 1. So we have L(−x) = −L(x).
Therefore we get by the definition of L(x) and (2.1) that

‖ L(x) + L(y) − L(x + y) ‖Y = ‖ L(x) + L(y) + L(−x − y) ‖Y

= lim
n→∞

2n‖ f(
x

2n
) + f(

y

2n
) + f(

−x − y

2n
) ‖

Y

≤ lim
n→∞

(

2

2r

)n

ǫ [ ‖ x ‖r

X + ‖ y ‖r

X + ‖ x + y ‖r

X ] = 0,

for all x, y ∈ X. So the function L : X → Y is Cauchy additive.
Now, to prove uniqueness of the function L(x), let us assume that T : X → Y

be another Cauchy additive mapping satisfying (2.2).
Then we obtain

‖ L(x) − T (x) ‖Y = lim
n→∞

2n‖ L(
x

2n
) − T (

x

2n
) ‖

Y

≤ lim
n→∞

2n[‖ L(
x

2n
) − f(

x

2n
) ‖

Y
+ ‖ T (

x

2n
) − f(

x

2n
) ‖

Y
]

≤ lim
n→∞

(

2

2r

)n
(

12 + 2r+1

2r − 2

)

ǫ ‖ x ‖r

X = 0,

for all x ∈ X. So we can conclude that L(x) = T (x) for all x ∈ X. This proves
the uniqueness of L. Thus the mapping L : X → Y is a unique Cauchy additive
mapping satisfying (2.2). �
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Theorem 2.2. Let r < 1 and ǫ be nonnegative real numbers, and let f : X → Y be
a mapping such that

‖ f(x) + f(y) + f(z) ‖Y ≤ ‖ 2f(
x + y + z

2
) ‖

Y
+ ǫ(‖ x ‖r

X +‖ y ‖r

X +‖ z ‖r

X), (2.5)

for all x, y, z ∈ X. Then there exists a unique Cauchy additive mapping L : X → Y

such that

‖ f(x) − L(x) ‖Y ≤
2 + 3 · 2r

2 − 2r
ǫ ‖ x ‖r

. (2.6)

Proof. From (2.5) with y = x and z = −2x, we get

‖ f(x) +
1

2
f(−2x) ‖

Y
≤

2 + 2r

2
ǫ ‖ x ‖r

X . (2.7)

Hence, we have by (2.4) and (2.7)

‖
1

2l
f(2lx) −

1

2m
f(2mx) ‖

Y
=

m−1
∑

j=l

‖
1

2j
f(2jx) −

1

2j+1
f(2j+1x) ‖

Y

≤
m−1
∑

j=l

[

‖
1

2j
f(2jx) +

1

2j+1
f(−2j+1x) ‖

Y
+

1

2j+1
‖ f(−2j+1x) + f(2j+1x) ‖Y

]

≤
m−1
∑

j=l

[(

2 + 2r

2j+1

)

ǫ ‖ 2jx ‖
r

X +
2ǫ

2j+1
‖ 2j+1x ‖

r

X

]

≤
m−1
∑

j=l

(

2 + 3 · 2r

2

) (

2r

2

)j

ǫ‖ x ‖r

X ,

for all nonnegative integers m and l with m > l and all x ∈ X. It means that the
sequence { 1

2n
f(2nx)} is a Cauchy sequence for all x ∈ X.

Since Y is complete, the sequence { 1

2n
f(2nx)} converges. So we can define the

mapping L : X → Y by L(x) = limn→∞

1

2n
f(2nx), for all x ∈ X.

Moreover, by letting l = 0 and passing the limit m → ∞, we get

‖ f(x) − L(x) ‖Y ≤
2 + 3 · 2r

2 − 2r
ǫ ‖ x ‖r

X .

The rest is similar to the proof of Theorem 2.1. �

It was shown in [12] that a mapping f : X → Y satisfying the inequality

‖ f(x) + f(y) + f(z) ‖
Y
≤ ‖ f(x + y + z) ‖

Y

is Cauchy additive. Now we prove the Hyers-Ulam-Rassias stability of these map-
pings in Banach spaces.

Theorem 2.3. Let r > 1 and ǫ be nonnegative real numbers, and let f : X → Y be
a mapping such that

‖ f(x) + f(y) + f(z) ‖Y ≤ ‖ f(x + y + z) ‖Y + ǫ(‖ x ‖r

X + ‖ y ‖r

X + ‖ z ‖r

X), (2.8)

for all x, y, z ∈ X. Then there exists a unique Cauchy additive mapping L : X → Y

such that

‖ f(x) − L(x) ‖Y ≤
6 + 2r

2r − 2
ǫ‖ x ‖r

X . (2.9)
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Proof. One can easily check that ‖ f(0) ‖Y = 0 which implies f(0) = 0. Also, by
letting y = x and z = −2x in (2.9), we get

‖ 2f(x) + f(−2x) ‖Y ≤ (2 + 2r)ǫ ‖ x ‖r

X , (2.10)

for all x ∈ X. So we have

‖ 2f(
x

2
) + f(−x) ‖

Y
≤

2 + 2r

2r
ǫ ‖ x ‖r

X .

Next, by letting y = −x and z = 0 in (2.9), we get

‖ f(x) + f(−x) ‖Y ≤ 2ǫ ‖ x ‖r

X .

The rest is similar to the proof of Theorem 2.1. �

Theorem 2.4. Let r < 1 and ǫ be nonnegative real numbers, and let f : X → Y

be a mapping satisfying (2.8). Then there exists a unique Cauchy additive mapping
L : X → Y such that

‖ f(x) − L(x) ‖Y ≤
2 + 3 · 2r

2 − 2r
ǫ ‖ x ‖r

X , for all x ∈ X. (2.11)

Proof. Since we get from (2.10),

‖ 2f(x) + f(−2x) ‖Y ≤ (2 + 2r)ǫ ‖ x ‖r

X ,

for all x ∈ X, we obtain

‖ f(x) +
1

2
f(−2x) ‖

Y
≤

2 + 2r

2
ǫ ‖ x ‖r

X ,

So by defining L(x) = limn→∞

1

2n
f(2nx), we get (2.11). The rest is similar to the

proof of Theorem 2.2. �

It was shown in [12] that a mapping f : X → Y satisfying the inequality

‖ f(x) + f(y) + 2f(z) ‖Y ≤ ‖ 2f(
x + y

2
+ z) ‖

Y

is Cauchy additive. Now we prove the Hyers-Ulam-Rassias stability of these map-
pings in Banach spaces.

Theorem 2.5. Let r > 1 and ǫ be nonnegative real numbers, and let f : X → Y be
a mapping such that

‖ f(x) + f(y) + 2f(z) ‖
Y
≤ ‖ 2f(

x + y

2
+ z) ‖

Y
+ ǫ(‖ x ‖r

X
+ ‖ y ‖r

X
+ ‖ z ‖r

X
),

(2.12)
for all x, y, z ∈ X. Then there exists a unique Cauchy additive mapping L : X → Y

such that

‖ f(x) − L(x) ‖Y ≤
5 + 2r

2r − 2
ǫ‖ x ‖r

X . (2.13)
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Proof. From (2.12) with x = y = z = 0, we get f(0) = 0. Also, by letting x = 2x,
y = 0 and z = −x in (2.12), we get

‖ f(2x) + 2f(−x) ‖Y ≤ (1 + 2r)ǫ ‖ x ‖r

X . (2.14)

Next, by letting y = −x and z = 0 in (2.14), we have

‖ f(x) + f(−x) ‖Y ≤ 2ǫ‖ x ‖r

X . (2.15)

By a similar method to the proof of Theorem 2.1, we can define L(x) = limn→∞ 2nf( x
2n

).
Now we claim that the mapping L(x) is Cauchy additive. Due to (2.12) and (2.14),
we obtain

‖ L(x) + L(y) − L(x + y) ‖Y

= lim
n→∞

2n‖ f(
x

2n
) + f(

y

2n
) − f(

x + y

2n
) ‖

Y

≤ lim
n→∞

2n

[

‖ f(
x

2n
) + f(

y

2n
) + 2f(

−x − y

2n+1
) ‖

Y
+ ‖ 2f(

−x − y

2n+1
) + f(

x + y

2n
) ‖

Y

]

≤ lim
n→∞

(

2

2r

)n

ǫ

[

‖ x ‖r

X + ‖ y ‖r

X +
2 + 2r

2r
‖ x + y ‖r

X

]

= 0,

for r > 1. The rest is similar to the proof of Theorem 2.1. �

Theorem 2.6. Let r < 1 and ǫ be nonnegative real numbers, and let f : X → Y

be a mapping satisfying the inequality (2.12). Then there exists a unique Cauchy
additive mapping L : X → Y such that

‖ f(x) − L(x) ‖
Y
≤

1 + 3 · 2r

2 − 2r
ǫ‖ x ‖r

, for all x ∈ X. (2.16)

Proof. In this case, we define L(x) = limn→∞

1

2n
f(2nx). Then, due to (2.12) and

(2.14), we obtain

‖ L(x) + L(y) − L(x + y) ‖Y

= lim
n→∞

1

2n
‖ f(2nx) + f(2ny) − f(2n(x + y)) ‖Y

≤ lim
n→∞

1

2n
‖ f(2nx) + f(2ny) + 2f(

2n(−x − y)

2
) ‖

Y
+

+ lim
n→∞

‖ 2f(
2n(−x − y)

2
) + f(2n(x + y)) ‖

Y

≤ lim
n→∞

(

2r

2

)n

ǫ

[

‖ x ‖r

X + ‖ y ‖r

X +
2 + 2r

2r
‖ x + y ‖r

X

]

= 0,

for r < 1. The rest is similar to the proof of Theorem 2.2. �
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3 Ulam-Gavruta-Rassias Stability

In this section, we will give results concerning Ulam-Gavruta-Rassias stability.

Theorem 3.1. Let r > 1

3
and ǫ be nonnegative real numbers, and let f : X → Y be

a mapping such that

‖ f(x) + f(y) + f(z) ‖Y ≤ ‖ 2f(
x + y + z

2
) ‖

Y
+ ǫ(‖ x ‖r

X · ‖ y ‖r

X · ‖ z ‖r

X), (3.1)

for all x, y, z ∈ X. Then there exists a unique Cauchy additive mapping L : X → Y

such that

‖ f(x) − L(x) ‖Y ≤
2r

23r − 2
ǫ ‖ x ‖3r

. (3.2)

Proof. From (3.1) with x = y = z = 0, we get ‖ f(0) ‖Y = 0 which implies f(0) =
0. Also, by letting y = x and z = −2x in (3.1), we get

‖ 2f(x) + f(−2x) ‖Y ≤ 2rǫ ‖ x ‖3r
.

So, we obtain

‖ 2f(
x

2
) + f(−x) ‖

Y
≤

ǫ

22r
‖ x ‖3r

. (3.3)

Next, by letting y = −x and z = 0 in (3.1), we get

‖ f(x) + f(−x) ‖Y = 0 (3.4)

which implies −f(x) = f(−x). Hence, we have

‖ 2lf(
x

2l
) − 2mf(

x

2m
) ‖

Y
≤

m−1
∑

j=l

‖ 2jf(
x

2j
) − 2j+1f(

x

2j+1
) ‖

Y

≤
m−1
∑

j=l

‖ 2jf(
x

2j
) + 2j+1f(

−x

2j+1
) ‖

Y
≤

m−1
∑

j=l

2j

22r
ǫ ‖

x

2j
‖

3r

X

≤
m−1
∑

j=l

ǫ

22r
‖ x ‖3r

(

2

23r

)j

,

for all nonnegative integers m and l with m > l and all x ∈ X. It means that the
sequence {2nf( x

2n
)} is a Cauchy sequence for all x ∈ X, if r > 1

3
. Since Y is complete,

the sequence {2nf( x
2n

)} converges. So we can define the mapping L : X → Y by
L(x) = limn→∞ 2nf( x

2n
), for all x ∈ X.

Moreover, by letting l = 0 and passing the limit m → ∞, we get (3.2).
Next, we note from (3.4)

‖ L(x) + L(−x) ‖Y = lim
n→∞

2n‖ f(
x

2n
) + f(−

x

2n
) ‖

Y
= 0

which implies L(−x) = −L(x). The rest is similar to the proof of Theorem 2.1. �

Theorem 3.2. Let r < 1

3
and ǫ be nonnegative real numbers, and let f : X → Y be a

mapping satisfying the inequality (3.1). Then there exists a unique Cauchy additive
mapping L : X → Y such that

‖ f(x) − L(x) ‖Y ≤
2r

2 − 23r
ǫ ‖ x ‖3r

X . (3.5)
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Proof. From (3.1) with y = x, z = −2x, we get

‖ f(x) +
1

2
f(−2x) ‖

Y
≤ 2r−1ǫ ‖ x ‖3r

X . (3.6)

Hence, we get by (3.4) and (3.6) that

‖
1

2l
f(2lx) −

1

2m
f(2mx) ‖

Y
≤

m−1
∑

j=l

‖
1

2j
f(2jx) −

1

2j+1
f(2j+1x) ‖

Y

≤
m−1
∑

j=l

[

‖
1

2j
f(2jx) +

1

2j+1
f(−2j+1x) ‖

Y

]

≤
m−1
∑

j=l

2r

2j+1
ǫ ‖ 2jx ‖

3r

X

≤
m−1
∑

j=l

2r−1

(

23r

2

)j

ǫ ‖ x ‖3r

X ,

for all nonnegative integers m and l with m > l and all x ∈ X. It means that the
sequence { 1

2n
f(2nx)} is a Cauchy sequence for all x ∈ X.

Since Y is complete, the sequence { 1

2n
f(2nx)} converges. So we can define the

mapping L : X → Y by L(x) = limn→∞

1

2n
f(2nx), for all x ∈ X.

Moreover, by letting l = 0 and passing the limit m → ∞, we get (3.5). The rest
is similar to the proof of Theorem 2.1. �

Theorem 3.3. Let r > 1

3
and ǫ be nonnegative real numbers, and let f : X → Y be

a mapping such that

‖ f(x) + f(y) + f(z) ‖Y ≤ ‖ f(x + y + z) ‖Y + ǫ(‖ x ‖r

X · ‖ y ‖r

X · ‖ z ‖r

X), (3.7)

for all x, y, z ∈ X. Then there exists a unique Cauchy additive mapping L : X → Y

such that

‖ f(x) − L(x) ‖Y ≤
2r

23r − 2
ǫ ‖ x ‖3r

X . (3.8)

Proof. One can easily check ‖ 3f(0) ‖Y ≤ ‖ f(0) ‖Y which implies ‖ f(0) ‖Y = 0 =
f(0). Also, by letting y = x and z = −2x in (3.8) we get

‖ 2f(x) + f(−2x) ‖
Y
≤ 2rǫ ‖ x ‖3r

X
, for all x ∈ X, (3.9)

which implies by replacing x as x
2

that

‖ 2f(
x

2
) + f(−x) ‖

Y
≤

1

22r
ǫ ‖ x ‖3r

X .

Next, by letting y = −x and z = 0, we have f(−x) = −f(x). The rest is similar to
the proof of Theorem 3.1. �

Theorem 3.4. Let r < 1

3
and ǫ be nonnegative real numbers, and let f : X → Y be a

mapping satisfying the inequality (3.7). Then there exists a unique Cauchy additive
mapping L : X → Y such that

‖ f(x) − L(x) ‖Y ≤
2r

2 − 23r
ǫ ‖ x ‖3r

X , for all x ∈ X. (3.10)
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Proof. we get from (3.9) that

‖ f(x) +
1

2
f(−2x) ‖

Y
≤ 2r−1ǫ ‖ x ‖3r

X .

The rest is similar to the proof of Theorem 3.2. �

Theorem 3.5. Let r > 1

3
and ǫ be nonnegative real numbers, and let f : X → Y be

a mapping such that

‖ f(x) + f(y) + 2f(z) ‖Y ≤ ‖ 2f(
x + y

2
+ z) ‖

Y
+ ǫ(‖ x ‖r

X · ‖ y ‖r

X · ‖ z ‖r

X), (3.11)

for all x, y, z ∈ X. Then the mapping f : X → Y is a Cauchy additive mapping.

Proof. One can easily get f(0) = 0 by letting x = y = z = 0 in (3.11). Also, by
letting x = 2x, z = −x and y = 0 in (3.11), we get

‖ f(2x) + 2f(−x) ‖Y = 0. (3.12)

Next, by letting y = −x and z = 0 in (3.11), we get

‖ f(x) + f(−x) ‖Y = 0, f(−x) = −f(x). (3.13)

Thus, by (3.12) and (3.13) we obtain

f(2x) = 2f(x), f(x) = 2f(
x

2
), f(x) = 2nf(

x

2n
), (3.14)

for all n ∈ N and x ∈ X. Since f(x) = limn→∞ 2nf( x
2n

) we obtain by (3.11),(3.12)

‖ f(x) + f(y) − f(x + y) ‖Y = lim
n→∞

2n‖ f(
x

2n
) + f(

y

2n
) − f(

x + y

2n
) ‖

Y

≤ lim
n→∞

2n

[

‖ f(
x

2n
) + f(

y

2n
) + 2f(

−x − y

2n+1
) ‖

Y
+ ‖ 2f(

−x − y

2n+1
) + f(

x + y

2n
) ‖

Y

]

≤ lim
n→∞

(

2

23r

)n

ǫ

(

‖ x ‖r

X · ‖ y ‖r

X ·
‖ x + y ‖r

X

2r

)

= 0,

for r > 1

3
. Thus f(x + y) = f(x) + f(y). �

Theorem 3.6. Let r < 1

3
and f : X → Y be a mapping satisfying (3.11). Then the

mapping f : X → Y is a Cauchy additive mapping.

Proof. By a similar method to the proof of Theorem 3.5, we get

‖ f(2x) + 2f(−x) ‖Y = 0, f(−x) = −
1

2
f(2x)

and
‖ f(x) + f(−x) ‖Y = 0, f(−x) = −f(x).

Thus we obtain

f(x) =
1

2
f(2x) =

1

22
f(22x) = ... =

1

2n
f(2nx)...,
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for all n ∈ N and x ∈ X. So we have f(x) = limn→∞

1

2n
f(2nx). Hence, by a similar

method to the proof of Theorem 3.5, we obtain

‖ f(x) + f(y) − f(x + y) ‖Y = lim
n→∞

1

2n
‖ f(2nx) + f(2ny) − f(2n(x + y)) ‖Y

≤ lim
n→∞

(

23r

2

)n [

‖ x ‖r

X · ‖ y ‖r

X ·
‖ x + y ‖r

X

2r

]

= 0,

for r < 1

3
. Therefore f(x + y) = f(x) + f(y). �
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