On the Stability of Cauchy Additive Mappings

Kil-Woung Jun

Jaiok Roh*

Abstract

It is well-known that the concept of Hyers-Ulam-Rassias stability originated by Th. M. Rassias (Proc. Amer. Math. Soc. 72(1978), 297-300) and the concept of Ulam-Gavruta-Rassias stability by J. M. Rassias (J. Funct. Anal. U.S.A. 46(1982), 126-130; Bull. Sc. Math. 108 (1984), 445-446; J. Approx. Th. 57 (1989), 268-273) and P. Gavruta ("An answer to a question of John M. Rassias concerning the stability of Cauchy equation", in: Advances in Equations and Inequalities, in: Hadronic Math. Ser. (1999), 67-71). In this paper we give results concerning these two stabilities.

1 Introduction

The stability problem of functional equations originated from a question of S . Ulam[21] concerning the stability of group homomorphism: Let (G_{1}, \circ) be a group and $\left(G_{2}, *\right)$ a metric group with a metric $d(\cdot, \cdot)$. Given $\epsilon>0$, does there exist a $\delta>0$ such that if $f: G_{1} \rightarrow G_{2}$ satisfies

$$
d(f(x \circ y), f(x) * f(y)) \leq \delta, \quad \text { for all } x, y \in G_{1},
$$

then there exists a homomorphism $h: G_{1} \rightarrow G_{2}$ with

$$
d(f(x), h(x)) \leq \epsilon, \text { for all } x \in G_{1} ?
$$

D. H. Hyers[5] gave a first affirmative answer to the question of Ulam, for Banach spaces:

[^0]Let $f: E \rightarrow E^{\prime}$ be a mapping, where E and E^{\prime} are Banach spaces, such that

$$
\|f(x+y)-f(x)-f(y)\|_{E^{\prime}} \leq \epsilon
$$

for all $x, y \in E$ and for some ϵ. Then there exists a unique additive mapping $L: E \rightarrow E^{\prime}$ such that

$$
\|f(x)-L(x)\| \leq \epsilon
$$

In 1978, Th. M. Rassias[17] proved the following generalization of Hyers[5]:
Proposition 1.1. Let $f: E \rightarrow E^{\prime}$ be a mapping, where E is a real normed space and E^{\prime} is a Banach space. Assume that there exist $\epsilon>0$ such that

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right) \tag{1.1}
\end{equation*}
$$

for all $x, y \in E$, where $p \in[0,1)$. Then there exists a unique additive mapping $L: E \rightarrow E^{\prime}$ such that

$$
\begin{equation*}
\|f(x)-L(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p} \tag{1.2}
\end{equation*}
$$

for all $x \in E$. If $p<0$ then inequality (1.1) holds for $x, y \neq 0$ and (1.2) for $x \neq 0$.
In 1991, Z. Gajda[3] gave an affirmative answer to Th. M. Rassias' question whether his theorem can be extended for values of p greater than one.

However it was shown by Z. Gajda[3] and Th. M. Rassias and P. Semrl[18] that one can not prove a theorem similar to [17].

The inequality (1.1) that was introduced for the first time by Th. M. Rassias[17] provided a lot of influence in the development of a generalization of the Hyers-Ulam concept. This new concept of stability is known as generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional equations (see the book of D. H. Hyers, G. Isac and Th. M. Rassias[6]).

In 1982-1989, J. M. Rassias([14], [15], [16]) proved the following generalization of Hyers[5]:

Proposition 1.2. Let $f: E \rightarrow E^{\prime}$ be a mapping, where E is a real normed space and E^{\prime} is a Banach space. Assume that there exists a $\theta>0$ such that

$$
\begin{equation*}
\|f(x+y)-[f(x)+f(y)]\| \leq \theta\|x\|^{p}\|y\|^{q}, \tag{1.3}
\end{equation*}
$$

for all $x, y \in E$, where $r=p+q \neq 1$. Then there exists a unique additive mapping $L: E \rightarrow E^{\prime}$ such that

$$
\begin{equation*}
\|f(x)-L(x)\| \leq \frac{\theta}{\left|2^{r}-2\right|}\|x\|^{r} \tag{1.4}
\end{equation*}
$$

for all $x \in E$.
However, the case $r=1$ in inequality (1.3) is singular. A counter-example has been given by P. Gavruta[4]. The above-mentioned stability involving a product of different powers of norms is called Ulam-Gavruta-Rassias stability by B. Bouikhalene, E. Elqorachi and M. A. Sibaha[20], as well as by K. Ravi and M. Arunkumar[19], P. Nakmahachalasint[9], and B. Bouikhalene and E. Elqorachi[1].

More generalizations and applications of the generalized Hyers-Ulam stability to a number of functional equations and mappings can be find in [2], [7], [8], [10], [11] and [13].
C. Park, Y. Cho and M. Han[12] proved that a mapping satisfying one of the following inequalities,

$$
\begin{aligned}
\|f(x)+f(y)+f(z)\| & \leq\left\|2 f\left(\frac{x+y+z}{2}\right)\right\| \\
\|f(x)+f(y)+f(z)\| & \leq\|f(x+y+z)\| \\
\|f(x)+f(y)+2 f(z)\| & \leq\left\|2 f\left(\frac{x+y}{2}+z\right)\right\|
\end{aligned}
$$

is a Cauchy additive mapping and they gave some stability of these mappings. In this paper, we give improved results concerning these mappings.

2 Hyers-Ulam-Rassias Stability

In this paper we note that X is a normed vector space and Y is a Banach space. It was shown in [12] that a mapping $f: X \rightarrow Y$ satisfying the inequality

$$
\|f(x)+f(y)+f(z)\|_{Y} \leq\left\|2 f\left(\frac{x+y+z}{2}\right)\right\|_{Y}
$$

is Cauchy additive. Now we prove the Hyers-Ulam-Rassias stability of these mappings in Banach spaces.

Theorem 2.1. Let $r>1$ and ϵ be nonnegative real numbers, and let $f: X \rightarrow Y$ be a mapping such that

$$
\begin{equation*}
\|f(x)+f(y)+f(z)\|_{Y} \leq\left\|2 f\left(\frac{x+y+z}{2}\right)\right\|_{Y}+\epsilon\left(\|x\|_{X}^{r}+\|y\|_{X}^{r}+\|z\|_{X}^{r}\right) \tag{2.1}
\end{equation*}
$$

for all $x, y, z \in X$. Then there exists a unique Cauchy additive mapping $L: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-L(x)\|_{Y} \leq \frac{6+2^{r}}{2^{r}-2} \epsilon\|x\|_{X}^{r} \tag{2.2}
\end{equation*}
$$

Proof. From (2.1) with $x=y=z=0$, we get $\|3 f(0)\|_{Y} \leq\|2 f(0)\|_{Y}$ which implies $\|f(0)\|_{Y}=0$ and $f(0)=0$. Also, by letting $y=x, z=-2 x$ in (2.1) we get

$$
\|2 f(x)+f(-2 x)\|_{Y} \leq\left(2+2^{r}\right) \epsilon\|x\|_{X}^{r}
$$

for all $x \in X$. So, we get

$$
\begin{equation*}
\left\|2 f\left(\frac{x}{2}\right)+f(-x)\right\|_{Y} \leq \frac{2+2^{r}}{2^{r}} \epsilon\|x\|_{X}^{r} . \tag{2.3}
\end{equation*}
$$

Next, by letting $y=-x$ and $z=0$ in (2.1) we get

$$
\begin{equation*}
\|f(x)+f(-x)\|_{Y} \leq 2 \epsilon\|x\|_{X}^{r} \tag{2.4}
\end{equation*}
$$

Hence, we have due to (2.3) and (2.4) that

$$
\begin{aligned}
& \left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\|_{Y} \leq \sum_{j=l}^{m-1}\left\|2^{j} f\left(\frac{x}{2^{j}}\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\|_{Y} \\
& \leq \sum_{j=l}^{m-1}\left\|2^{j} f\left(\frac{x}{2^{j}}\right)+2^{j+1} f\left(\frac{-x}{2^{j+1}}\right)-2^{j+1} f\left(\frac{-x}{2^{j+1}}\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\|_{Y} \\
& \leq \sum_{j=l}^{m-1}\left[\left\|2^{j} f\left(\frac{x}{2^{j}}\right)+2^{j+1} f\left(\frac{-x}{2^{j+1}}\right)\right\|_{Y}+\left\|2^{j+1} f\left(\frac{-x}{2^{j+1}}\right)+2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\|_{Y}\right] \\
& \leq \frac{6+2^{r}}{2^{r}} \epsilon\|x\|_{X}^{r} \sum_{j=l}^{m-1}\left(\frac{2}{2^{r}}\right)^{j},
\end{aligned}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It means that the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So we can define the mapping $L: X \rightarrow Y$ by $L(x)$ $=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)$, for all $x \in X$.

Moreover, by letting $l=0$ and passing the limit $m \rightarrow \infty$, we get (2.2).
Next, we claim that $L(x)$ is a Cauchy additive mapping. First of all, we get by (2.4) that

$$
\begin{aligned}
\|L(x)+L(-x)\|_{Y} & \leq \lim _{n \rightarrow \infty} 2^{n}\left\|f\left(\frac{x}{2^{n}}\right)+f\left(-\frac{x}{2^{n}}\right)\right\|_{Y} \leq \lim _{n \rightarrow \infty} 2^{n+1} \epsilon\left\|\frac{x}{2^{n}}\right\|_{X}^{r} \\
& =\lim _{n \rightarrow \infty} \frac{2^{n+1} \epsilon}{2^{n r}}\|x\|_{X}^{r}=0
\end{aligned}
$$

for $r>1$. So we have $L(-x)=-L(x)$.
Therefore we get by the definition of $L(x)$ and (2.1) that

$$
\begin{aligned}
& \|L(x)+L(y)-L(x+y)\|_{Y}=\|L(x)+L(y)+L(-x-y)\|_{Y} \\
& =\lim _{n \rightarrow \infty} 2^{n}\left\|f\left(\frac{x}{2^{n}}\right)+f\left(\frac{y}{2^{n}}\right)+f\left(\frac{-x-y}{2^{n}}\right)\right\|_{Y} \\
& \leq \lim _{n \rightarrow \infty}\left(\frac{2}{2^{r}}\right)^{n} \epsilon\left[\|x\|_{X}^{r}+\|y\|_{X}^{r}+\|x+y\|_{X}^{r}\right]=0,
\end{aligned}
$$

for all $x, y \in X$. So the function $L: X \rightarrow Y$ is Cauchy additive.
Now, to prove uniqueness of the function $L(x)$, let us assume that $T: X \rightarrow Y$ be another Cauchy additive mapping satisfying (2.2).

Then we obtain

$$
\begin{aligned}
& \|L(x)-T(x)\|_{Y}=\lim _{n \rightarrow \infty} 2^{n}\left\|L\left(\frac{x}{2^{n}}\right)-T\left(\frac{x}{2^{n}}\right)\right\|_{Y} \\
& \leq \lim _{n \rightarrow \infty} 2^{n}\left[\left\|L\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right\|_{Y}+\left\|T\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right\|_{Y}\right] \\
& \leq \lim _{n \rightarrow \infty}\left(\frac{2}{2^{r}}\right)^{n}\left(\frac{12+2^{r+1}}{2^{r}-2}\right) \epsilon\|x\|_{X}^{r}=0
\end{aligned}
$$

for all $x \in X$. So we can conclude that $L(x)=T(x)$ for all $x \in X$. This proves the uniqueness of L. Thus the mapping $L: X \rightarrow Y$ is a unique Cauchy additive mapping satisfying (2.2).

Theorem 2.2. Let $r<1$ and ϵ be nonnegative real numbers, and let $f: X \rightarrow Y$ be a mapping such that

$$
\begin{equation*}
\|f(x)+f(y)+f(z)\|_{Y} \leq\left\|2 f\left(\frac{x+y+z}{2}\right)\right\|_{Y}+\epsilon\left(\|x\|_{X}^{r}+\|y\|_{X}^{r}+\|z\|_{X}^{r}\right) \tag{2.5}
\end{equation*}
$$

for all $x, y, z \in X$. Then there exists a unique Cauchy additive mapping $L: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-L(x)\|_{Y} \leq \frac{2+3 \cdot 2^{r}}{2-2^{r}} \epsilon\|x\|^{r} \tag{2.6}
\end{equation*}
$$

Proof. From (2.5) with $y=x$ and $z=-2 x$, we get

$$
\begin{equation*}
\left\|f(x)+\frac{1}{2} f(-2 x)\right\|_{Y} \leq \frac{2+2^{r}}{2} \epsilon\|x\|_{X}^{r} . \tag{2.7}
\end{equation*}
$$

Hence, we have by (2.4) and (2.7)

$$
\begin{aligned}
& \left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\|_{Y}=\sum_{j=l}^{m-1}\left\|\frac{1}{2^{j}} f\left(2^{j} x\right)-\frac{1}{2^{j+1}} f\left(2^{j+1} x\right)\right\|_{Y} \\
& \leq \sum_{j=l}^{m-1}\left[\left\|\frac{1}{2^{j}} f\left(2^{j} x\right)+\frac{1}{2^{j+1}} f\left(-2^{j+1} x\right)\right\|_{Y}+\frac{1}{2^{j+1}}\left\|f\left(-2^{j+1} x\right)+f\left(2^{j+1} x\right)\right\|_{Y}\right] \\
& \leq \sum_{j=l}^{m-1}\left[\left(\frac{2+2^{r}}{2^{j+1}}\right) \epsilon\left\|2^{j} x\right\|_{X}^{r}+\frac{2 \epsilon}{2^{j+1}}\left\|2^{j+1} x\right\|_{X}^{r}\right] \\
& \leq \sum_{j=l}^{m-1}\left(\frac{2+3 \cdot 2^{r}}{2}\right)\left(\frac{2^{r}}{2}\right)^{j} \epsilon\|x\|_{X}^{r},
\end{aligned}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It means that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in X$.

Since Y is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges. So we can define the mapping $L: X \rightarrow Y$ by $L(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)$, for all $x \in X$.

Moreover, by letting $l=0$ and passing the limit $m \rightarrow \infty$, we get

$$
\|f(x)-L(x)\|_{Y} \leq \frac{2+3 \cdot 2^{r}}{2-2^{r}} \epsilon\|x\|_{X}^{r}
$$

The rest is similar to the proof of Theorem 2.1.
It was shown in [12] that a mapping $f: X \rightarrow Y$ satisfying the inequality

$$
\|f(x)+f(y)+f(z)\|_{Y} \leq\|f(x+y+z)\|_{Y}
$$

is Cauchy additive. Now we prove the Hyers-Ulam-Rassias stability of these mappings in Banach spaces.
Theorem 2.3. Let $r>1$ and ϵ be nonnegative real numbers, and let $f: X \rightarrow Y$ be a mapping such that

$$
\begin{equation*}
\|f(x)+f(y)+f(z)\|_{Y} \leq\|f(x+y+z)\|_{Y}+\epsilon\left(\|x\|_{X}^{r}+\|y\|_{X}^{r}+\|z\|_{X}^{r}\right) \tag{2.8}
\end{equation*}
$$

for all $x, y, z \in X$. Then there exists a unique Cauchy additive mapping $L: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-L(x)\|_{Y} \leq \frac{6+2^{r}}{2^{r}-2} \epsilon\|x\|_{X}^{r} \tag{2.9}
\end{equation*}
$$

Proof. One can easily check that $\|f(0)\|_{Y}=0$ which implies $f(0)=0$. Also, by letting $y=x$ and $z=-2 x$ in (2.9), we get

$$
\begin{equation*}
\|2 f(x)+f(-2 x)\|_{Y} \leq\left(2+2^{r}\right) \epsilon\|x\|_{X}^{r}, \tag{2.10}
\end{equation*}
$$

for all $x \in X$. So we have

$$
\left\|2 f\left(\frac{x}{2}\right)+f(-x)\right\|_{Y} \leq \frac{2+2^{r}}{2^{r}} \epsilon\|x\|_{X}^{r} .
$$

Next, by letting $y=-x$ and $z=0$ in (2.9), we get

$$
\|f(x)+f(-x)\|_{Y} \leq 2 \epsilon\|x\|_{X}^{r} .
$$

The rest is similar to the proof of Theorem 2.1.
Theorem 2.4. Let $r<1$ and ϵ be nonnegative real numbers, and let $f: X \rightarrow Y$ be a mapping satisfying (2.8). Then there exists a unique Cauchy additive mapping $L: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-L(x)\|_{Y} \leq \frac{2+3 \cdot 2^{r}}{2-2^{r}} \epsilon\|x\|_{X}^{r}, \quad \text { for all } x \in X \tag{2.11}
\end{equation*}
$$

Proof. Since we get from (2.10),

$$
\|2 f(x)+f(-2 x)\|_{Y} \leq\left(2+2^{r}\right) \epsilon\|x\|_{X}^{r},
$$

for all $x \in X$, we obtain

$$
\left\|f(x)+\frac{1}{2} f(-2 x)\right\|_{Y} \leq \frac{2+2^{r}}{2} \epsilon\|x\|_{X}^{r},
$$

So by defining $L(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)$, we get (2.11). The rest is similar to the proof of Theorem 2.2.

It was shown in [12] that a mapping $f: X \rightarrow Y$ satisfying the inequality

$$
\|f(x)+f(y)+2 f(z)\|_{Y} \leq\left\|2 f\left(\frac{x+y}{2}+z\right)\right\|_{Y}
$$

is Cauchy additive. Now we prove the Hyers-Ulam-Rassias stability of these mappings in Banach spaces.

Theorem 2.5. Let $r>1$ and ϵ be nonnegative real numbers, and let $f: X \rightarrow Y$ be a mapping such that

$$
\begin{equation*}
\|f(x)+f(y)+2 f(z)\|_{Y} \leq\left\|2 f\left(\frac{x+y}{2}+z\right)\right\|_{Y}+\epsilon\left(\|x\|_{X}^{r}+\|y\|_{X}^{r}+\|z\|_{X}^{r}\right) \tag{2.12}
\end{equation*}
$$

for all $x, y, z \in X$. Then there exists a unique Cauchy additive mapping $L: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-L(x)\|_{Y} \leq \frac{5+2^{r}}{2^{r}-2} \epsilon\|x\|_{X}^{r} . \tag{2.13}
\end{equation*}
$$

Proof. From (2.12) with $x=y=z=0$, we get $f(0)=0$. Also, by letting $x=2 x$, $y=0$ and $z=-x$ in (2.12), we get

$$
\begin{equation*}
\|f(2 x)+2 f(-x)\|_{Y} \leq\left(1+2^{r}\right) \epsilon\|x\|_{X}^{r} \tag{2.14}
\end{equation*}
$$

Next, by letting $y=-x$ and $z=0$ in (2.14), we have

$$
\begin{equation*}
\|f(x)+f(-x)\|_{Y} \leq 2 \epsilon\|x\|_{X}^{r} \tag{2.15}
\end{equation*}
$$

By a similar method to the proof of Theorem 2.1, we can define $L(x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)$.
Now we claim that the mapping $L(x)$ is Cauchy additive. Due to (2.12) and (2.14), we obtain

$$
\begin{aligned}
& \|L(x)+L(y)-L(x+y)\|_{Y} \\
& =\lim _{n \rightarrow \infty} 2^{n}\left\|f\left(\frac{x}{2^{n}}\right)+f\left(\frac{y}{2^{n}}\right)-f\left(\frac{x+y}{2^{n}}\right)\right\|_{Y} \\
& \leq \lim _{n \rightarrow \infty} 2^{n}\left[\left\|f\left(\frac{x}{2^{n}}\right)+f\left(\frac{y}{2^{n}}\right)+2 f\left(\frac{-x-y}{2^{n+1}}\right)\right\|_{Y}+\left\|2 f\left(\frac{-x-y}{2^{n+1}}\right)+f\left(\frac{x+y}{2^{n}}\right)\right\|_{Y}\right] \\
& \leq \lim _{n \rightarrow \infty}\left(\frac{2}{2^{r}}\right)^{n} \epsilon\left[\|x\|_{X}^{r}+\|y\|_{X}^{r}+\frac{2+2^{r}}{2^{r}}\|x+y\|_{X}^{r}\right]=0
\end{aligned}
$$

for $r>1$. The rest is similar to the proof of Theorem 2.1.
Theorem 2.6. Let $r<1$ and ϵ be nonnegative real numbers, and let $f: X \rightarrow Y$ be a mapping satisfying the inequality (2.12). Then there exists a unique Cauchy additive mapping $L: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-L(x)\|_{Y} \leq \frac{1+3 \cdot 2^{r}}{2-2^{r}} \epsilon\|x\|^{r}, \quad \text { for all } x \in X \tag{2.16}
\end{equation*}
$$

Proof. In this case, we define $L(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)$. Then, due to (2.12) and (2.14), we obtain

$$
\begin{aligned}
& \|L(x)+L(y)-L(x+y)\|_{Y} \\
& =\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left\|f\left(2^{n} x\right)+f\left(2^{n} y\right)-f\left(2^{n}(x+y)\right)\right\|_{Y} \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left\|f\left(2^{n} x\right)+f\left(2^{n} y\right)+2 f\left(\frac{2^{n}(-x-y)}{2}\right)\right\|_{Y}+ \\
& +\lim _{n \rightarrow \infty}\left\|2 f\left(\frac{2^{n}(-x-y)}{2}\right)+f\left(2^{n}(x+y)\right)\right\|_{Y} \\
& \leq \lim _{n \rightarrow \infty}\left(\frac{2^{r}}{2}\right)^{n} \epsilon\left[\|x\|_{X}^{r}+\|y\|_{X}^{r}+\frac{2+2^{r}}{2^{r}}\|x+y\|_{X}^{r}\right]=0
\end{aligned}
$$

for $r<1$. The rest is similar to the proof of Theorem 2.2.

3 Ulam-Gavruta-Rassias Stability

In this section, we will give results concerning Ulam-Gavruta-Rassias stability.
Theorem 3.1. Let $r>\frac{1}{3}$ and ϵ be nonnegative real numbers, and let $f: X \rightarrow Y$ be a mapping such that

$$
\begin{equation*}
\|f(x)+f(y)+f(z)\|_{Y} \leq\left\|2 f\left(\frac{x+y+z}{2}\right)\right\|_{Y}+\epsilon\left(\|x\|_{X}^{r} \cdot\|y\|_{X}^{r} \cdot\|z\|_{X}^{r}\right), \tag{3.1}
\end{equation*}
$$

for all $x, y, z \in X$. Then there exists a unique Cauchy additive mapping $L: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-L(x)\|_{Y} \leq \frac{2^{r}}{2^{3 r}-2} \epsilon\|x\|^{3 r} \tag{3.2}
\end{equation*}
$$

Proof. From (3.1) with $x=y=z=0$, we get $\|f(0)\|_{Y}=0$ which implies $f(0)=$ 0 . Also, by letting $y=x$ and $z=-2 x$ in (3.1), we get

$$
\|2 f(x)+f(-2 x)\|_{Y} \leq 2^{r} \epsilon\|x\|^{3 r} .
$$

So, we obtain

$$
\begin{equation*}
\left\|2 f\left(\frac{x}{2}\right)+f(-x)\right\|_{Y} \leq \frac{\epsilon}{2^{2 r}}\|x\|^{3 r} . \tag{3.3}
\end{equation*}
$$

Next, by letting $y=-x$ and $z=0$ in (3.1), we get

$$
\begin{equation*}
\|f(x)+f(-x)\|_{Y}=0 \tag{3.4}
\end{equation*}
$$

which implies $-f(x)=f(-x)$. Hence, we have

$$
\begin{aligned}
& \left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\|_{Y} \leq \sum_{j=l}^{m-1}\left\|2^{j} f\left(\frac{x}{2^{j}}\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right\|_{Y} \\
& \leq \sum_{j=l}^{m-1}\left\|2^{j} f\left(\frac{x}{2^{j}}\right)+2^{j+1} f\left(\frac{-x}{2^{j+1}}\right)\right\|_{Y} \leq \sum_{j=l}^{m-1} \frac{2^{j}}{2^{2 r}} \epsilon\left\|\frac{x}{2^{j}}\right\|_{X}^{3 r} \\
& \leq \sum_{j=l}^{m-1} \frac{\epsilon}{2^{2 r}}\|x\|^{3 r}\left(\frac{2}{2^{3 r}}\right)^{j}
\end{aligned}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It means that the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in X$, if $r>\frac{1}{3}$. Since Y is complete, the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So we can define the mapping $L: X \rightarrow Y$ by $L(x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)$, for all $x \in X$.

Moreover, by letting $l=0$ and passing the limit $m \rightarrow \infty$, we get (3.2).
Next, we note from (3.4)

$$
\|L(x)+L(-x)\|_{Y}=\lim _{n \rightarrow \infty} 2^{n}\left\|f\left(\frac{x}{2^{n}}\right)+f\left(-\frac{x}{2^{n}}\right)\right\|_{Y}=0
$$

which implies $L(-x)=-L(x)$. The rest is similar to the proof of Theorem 2.1.
Theorem 3.2. Let $r<\frac{1}{3}$ and ϵ be nonnegative real numbers, and let $f: X \rightarrow Y$ be a mapping satisfying the inequality (3.1). Then there exists a unique Cauchy additive mapping $L: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-L(x)\|_{Y} \leq \frac{2^{r}}{2-2^{3 r}} \epsilon\|x\|_{X}^{3 r} \tag{3.5}
\end{equation*}
$$

Proof. From (3.1) with $y=x, z=-2 x$, we get

$$
\begin{equation*}
\left\|f(x)+\frac{1}{2} f(-2 x)\right\|_{Y} \leq 2^{r-1} \epsilon\|x\|_{X}^{3 r} \tag{3.6}
\end{equation*}
$$

Hence, we get by (3.4) and (3.6) that

$$
\begin{aligned}
& \left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\|_{Y} \leq \sum_{j=l}^{m-1}\left\|\frac{1}{2^{j}} f\left(2^{j} x\right)-\frac{1}{2^{j+1}} f\left(2^{j+1} x\right)\right\|_{Y} \\
& \leq \sum_{j=l}^{m-1}\left[\left\|\frac{1}{2^{j}} f\left(2^{j} x\right)+\frac{1}{2^{j+1}} f\left(-2^{j+1} x\right)\right\|_{Y}\right] \leq \sum_{j=l}^{m-1} \frac{2^{r}}{2^{j+1}} \epsilon\left\|2^{j} x\right\|_{X}^{3 r} \\
& \leq \sum_{j=l}^{m-1} 2^{r-1}\left(\frac{2^{3 r}}{2}\right)^{j} \epsilon\|x\|_{X}^{3 r},
\end{aligned}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It means that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in X$.

Since Y is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges. So we can define the mapping $L: X \rightarrow Y$ by $L(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)$, for all $x \in X$.

Moreover, by letting $l=0$ and passing the limit $m \rightarrow \infty$, we get (3.5). The rest is similar to the proof of Theorem 2.1.

Theorem 3.3. Let $r>\frac{1}{3}$ and ϵ be nonnegative real numbers, and let $f: X \rightarrow Y$ be a mapping such that

$$
\begin{equation*}
\|f(x)+f(y)+f(z)\|_{Y} \leq\|f(x+y+z)\|_{Y}+\epsilon\left(\|x\|_{X}^{r} \cdot\|y\|_{X}^{r} \cdot\|z\|_{X}^{r}\right) \tag{3.7}
\end{equation*}
$$

for all $x, y, z \in X$. Then there exists a unique Cauchy additive mapping $L: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-L(x)\|_{Y} \leq \frac{2^{r}}{2^{3 r}-2} \epsilon\|x\|_{X}^{3 r} \tag{3.8}
\end{equation*}
$$

Proof. One can easily check $\|3 f(0)\|_{Y} \leq\|f(0)\|_{Y}$ which implies $\|f(0)\|_{Y}=0=$ $f(0)$. Also, by letting $y=x$ and $z=-2 x$ in (3.8) we get

$$
\begin{equation*}
\|2 f(x)+f(-2 x)\|_{Y} \leq 2^{r} \epsilon\|x\|_{X}^{3 r}, \text { for } \quad \text { all } x \in X \tag{3.9}
\end{equation*}
$$

which implies by replacing x as $\frac{x}{2}$ that

$$
\left\|2 f\left(\frac{x}{2}\right)+f(-x)\right\|_{Y} \leq \frac{1}{2^{2 r}} \epsilon\|x\|_{X}^{3 r}
$$

Next, by letting $y=-x$ and $z=0$, we have $f(-x)=-f(x)$. The rest is similar to the proof of Theorem 3.1.

Theorem 3.4. Let $r<\frac{1}{3}$ and ϵ be nonnegative real numbers, and let $f: X \rightarrow Y$ be a mapping satisfying the inequality (3.7). Then there exists a unique Cauchy additive mapping $L: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-L(x)\|_{Y} \leq \frac{2^{r}}{2-2^{3 r}} \epsilon\|x\|_{X}^{3 r}, \text { for all } x \in X \tag{3.10}
\end{equation*}
$$

Proof. we get from (3.9) that

$$
\left\|f(x)+\frac{1}{2} f(-2 x)\right\|_{Y} \leq 2^{r-1} \epsilon\|x\|_{X}^{3 r}
$$

The rest is similar to the proof of Theorem 3.2.
Theorem 3.5. Let $r>\frac{1}{3}$ and ϵ be nonnegative real numbers, and let $f: X \rightarrow Y$ be a mapping such that

$$
\begin{equation*}
\|f(x)+f(y)+2 f(z)\|_{Y} \leq\left\|2 f\left(\frac{x+y}{2}+z\right)\right\|_{Y}+\epsilon\left(\|x\|_{X}^{r} \cdot\|y\|_{X}^{r} \cdot\|z\|_{X}^{r}\right) \tag{3.11}
\end{equation*}
$$

for all $x, y, z \in X$. Then the mapping $f: X \rightarrow Y$ is a Cauchy additive mapping.
Proof. One can easily get $f(0)=0$ by letting $x=y=z=0$ in (3.11). Also, by letting $x=2 x, z=-x$ and $y=0$ in (3.11), we get

$$
\begin{equation*}
\|f(2 x)+2 f(-x)\|_{Y}=0 \tag{3.12}
\end{equation*}
$$

Next, by letting $y=-x$ and $z=0$ in (3.11), we get

$$
\begin{equation*}
\|f(x)+f(-x)\|_{Y}=0, \quad f(-x)=-f(x) \tag{3.13}
\end{equation*}
$$

Thus, by (3.12) and (3.13) we obtain

$$
\begin{equation*}
f(2 x)=2 f(x), \quad f(x)=2 f\left(\frac{x}{2}\right), \quad f(x)=2^{n} f\left(\frac{x}{2^{n}}\right) \tag{3.14}
\end{equation*}
$$

for all $n \in N$ and $x \in X$. Since $f(x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)$ we obtain by (3.11),(3.12)

$$
\begin{aligned}
& \|f(x)+f(y)-f(x+y)\|_{Y}=\lim _{n \rightarrow \infty} 2^{n}\left\|f\left(\frac{x}{2^{n}}\right)+f\left(\frac{y}{2^{n}}\right)-f\left(\frac{x+y}{2^{n}}\right)\right\|_{Y} \\
& \leq \lim _{n \rightarrow \infty} 2^{n}\left[\left\|f\left(\frac{x}{2^{n}}\right)+f\left(\frac{y}{2^{n}}\right)+2 f\left(\frac{-x-y}{2^{n+1}}\right)\right\|_{Y}+\left\|2 f\left(\frac{-x-y}{2^{n+1}}\right)+f\left(\frac{x+y}{2^{n}}\right)\right\|_{Y}\right] \\
& \leq \lim _{n \rightarrow \infty}\left(\frac{2}{2^{3 r}}\right)^{n} \epsilon\left(\|x\|_{X}^{r} \cdot\|y\|_{X}^{r} \cdot \frac{\|x+y\|_{X}^{r}}{2^{r}}\right)=0
\end{aligned}
$$

for $r>\frac{1}{3}$. Thus $f(x+y)=f(x)+f(y)$.
Theorem 3.6. Let $r<\frac{1}{3}$ and $f: X \rightarrow Y$ be a mapping satisfying (3.11). Then the mapping $f: X \rightarrow Y$ is a Cauchy additive mapping.

Proof. By a similar method to the proof of Theorem 3.5, we get

$$
\|f(2 x)+2 f(-x)\|_{Y}=0, \quad f(-x)=-\frac{1}{2} f(2 x)
$$

and

$$
\|f(x)+f(-x)\|_{Y}=0, \quad f(-x)=-f(x)
$$

Thus we obtain

$$
f(x)=\frac{1}{2} f(2 x)=\frac{1}{2^{2}} f\left(2^{2} x\right)=\ldots=\frac{1}{2^{n}} f\left(2^{n} x\right) \ldots
$$

for all $n \in N$ and $x \in X$. So we have $f(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)$. Hence, by a similar method to the proof of Theorem 3.5, we obtain

$$
\begin{aligned}
& \|f(x)+f(y)-f(x+y)\|_{Y}=\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left\|f\left(2^{n} x\right)+f\left(2^{n} y\right)-f\left(2^{n}(x+y)\right)\right\|_{Y} \\
& \leq \lim _{n \rightarrow \infty}\left(\frac{2^{3 r}}{2}\right)^{n}\left[\|x\|_{X}^{r} \cdot\|y\|_{X}^{r} \cdot \frac{\|x+y\|_{X}^{r}}{2^{r}}\right]=0,
\end{aligned}
$$

for $r<\frac{1}{3}$. Therefore $f(x+y)=f(x)+f(y)$.

Acknowledgment

The authors would like to thank the referee for valuable comments.

References

[1] B. Bouikhalene and E. Elqorachi, Ulam-Gavruta-Rassias stability of the Pexider functional equation, Special Issue on Leonhard Paul Euler's, IJAMAS, 7, No Fe07, 2007, 27-39
[2] L. Cadariu and V. Radu, The alternative of fixed point and stability results for functional equations, Special Issue on Leonhard Paul Euler's, IJAMAS, 7, No Fe07, 2007, 40-58.
[3] Z. Gajda, On stability of additive mappings, IJMMS, 14 (1991), 431-434.
[4] P. Gavruta, An answer to a question of John M. Rassias concerning the stability of Cauchy equation, Advances in Equations and Inequalities, Hadronic Math. Ser. (1999), 67-71.
[5] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[6] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Boston, Basel, Berlin, 1998.
[7] K. Jun and Y. Lee, A generalization of the Hyers-Ulam-Rassias stability of the Pexiderized quadratic equations, J. Math. Anal. Appl. 297 (2004), 70-86.
[8] S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press Inc. Palm Harbor, Florida, 2001.
[9] P. Nakmahachalasint, On the generalized Ulam-Gavruta-Rassias stability of a mixed type linear and Euler-Lagrange-Rassias functional equation, IJMMS, article in press, 2007.
[10] C. Park, Homomorphisms between Poisson $J C^{*}$-algebra, Bull. Braz. Math. Soc. 36 (2005), 79-97.
[11] C. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras, Bull. Sci. Math. (to appear).
[12] C. Park, Y. Cho and M. Han, Functional inequalities associated with JordanVon Neumann type additive functional equations, Journal of Inequalities and Applications, Vol 2007.
[13] C. Park and A. Najati, Homomorphisms and derivations in C^{*}-algebras, AAAHindawi, article in press, 2007
[14] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982) 126-130.
[15] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. 108(1984), 445-446.
[16] J. M. Rassias, Solution of a problem of Ulam, J. Approx. Th. USA 57(1989), 268-273.
[17] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[18] Th. M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993
[19] K. Ravi and M. Arunkumar, On the Ulam-Gavruta-Rassias stability of the orthogonally Euler-Lagrange type functional equation, Special Issue on Leonhard Paul Euler's, 7, No Fe07, 2007, 143-156.
[20] M.A. Sibaha, B. Bouikhalene and E. Elquorachi, Ulam-Gavruta-Rassias stability for a linear functional equation, Special Issue on Leonhard Paul Euler's, 7, No Fe07, 2007, 157-166.
[21] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.

Kil-Woung Jun
Department of Mathematics, Chungnam National University, Daejeon 305-764, South Korea
email:kwjun@math.cnu.ac.kr
Jaiok Roh
Department of Mathematics, Hallym University,
Chuncheon 200-702, South Korea
email:joroh@dreamwiz.com

[^0]: *Corresponding author
 Received by the editors April 2007 - In revised form in June 2007.
 Communicated by F. Bastin.
 Key words and phrases : Hyers-Ulam stability, Cauchy additive mapping, Jordan-von Neumann type, Cauchy Jensen functional equation.

