Bounded solutions for nonlinear elliptic equations with degenerate coercivity and data in

an $L \log L$

A. Benkirane
A. Youssfi
D. Meskine

Abstract

In this paper, we prove L^{∞}-regularity for solutions of some nonlinear elliptic equations with degenerate coercivity whose prototype is $$
\begin{cases}-\operatorname{div}\left(\frac{1}{(1+|u|)^{\theta(p-1)}}|\nabla u|^{p-2} \nabla u\right)=f & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$ where Ω is a bounded open set in $\mathbb{R}^{\mathrm{N}}, N \geq 2,1<p<N, \theta$ is a real such that $0 \leq \theta \leq 1$ and $f \in L^{\frac{N}{p}} \log ^{\alpha} L$ with some $\alpha>0$.

1 Introduction

Let Ω be a bounded open subset of \mathbb{R}^{N}, with $N \geq 2$, and p a real such that $1<p<N$. We consider the following problem

$$
\begin{cases}A(u):=-\operatorname{div} a(x, u, \nabla u)=f & \text { in } \quad \Omega \tag{1.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $a: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a Carathéodory function (that is, $a(., s, \xi)$ is measurable on Ω for every (s, ξ) in $\mathbb{R} \times \mathbb{R}^{N}$, and $a(x, .,$.$) is continuous on \mathbb{R} \times \mathbb{R}^{N}$

[^0]for almost every x in Ω), which we assume to satisfy the following assumptions
\[

$$
\begin{equation*}
a(x, s, \xi) \cdot \xi \geq h^{p-1}(|s|)|\xi|^{p} \tag{1.2}
\end{equation*}
$$

\]

for almost every x in Ω, for every (s, ξ) in $\mathbb{R} \times \mathbb{R}^{N}$, where $\left.h: \mathbb{R}^{+} \rightarrow\right] 0, \infty[$ is a decreasing continuous function such that its primitive

$$
H(s)=\int_{0}^{s} h(t) d t
$$

is unbounded;

$$
\begin{equation*}
|a(x, s, \xi)| \leq a_{0}(x)+|s|^{p-1}+|\xi|^{p-1} \tag{1.3}
\end{equation*}
$$

for almost x in Ω, for every $(s, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$, where a_{0} is a non negative function in $L^{p^{\prime}}(\Omega)$ with $p^{\prime}=\frac{p}{p-1}$, and

$$
\begin{equation*}
\left(a(x, s, \xi)-a\left(x, s, \xi^{\prime}\right)\right) \cdot\left(\xi-\xi^{\prime}\right)>0 \tag{1.4}
\end{equation*}
$$

for almost $x \in \Omega$, for every $s \in \mathbb{R}$ and for every ξ, ξ^{\prime} in \mathbb{R}^{N} with $\xi \neq \xi^{\prime}$.
It is our purpose in this paper, to prove the existence of a weak solution for (1.1) in $W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ when the data satisfies the assumption

$$
\begin{equation*}
f \in L^{\frac{N}{p}} \log ^{\alpha} L \tag{1.5}
\end{equation*}
$$

with $\alpha>\frac{N(p-1)}{p}$.
In the literature, many results concerning L^{∞} estimate for weak solutions of (1.1) had been obtained. It was shown earlier in the setting of Orlicz spaces (see [7]) that when h in (1.2) is a constant function, every weak solution of (1.1) is bounded provided that f belongs to the Lorentz space $L(m, \infty)$ with $m>\frac{N}{p}$.

Under the assumption (1.2), existence of bounded solutions for (1.1) has been proved first in [1] and [3] when $p=2$ and f belongs to $L^{m}(\Omega)$ with $m>\frac{N}{2}$, and for more general p, in [2] when the datum f belongs to $L^{m}(\Omega)$ with $m>\frac{N}{p}$.

Let us recall, as mentioned in [2] and [3], that if the data f belongs to $L^{\frac{N}{p}}(\Omega)$, the problem (1.1) has no bounded solution.

We note that there is a difficulty in dealing with (1.1) under the assumption (1.2), since the operator A is not coercive on $W_{0}^{1, p}(\Omega)$ and so the classical LerayLions surjectivity theorem do not apply even in the case in which the datum f belongs to $W^{-1, p^{\prime}}(\Omega)$ where $p^{\prime}=\frac{p}{p-1}$ (see [6]). To overcome this situation, we will proceed by approximation by means of truncatures in $a(x, s, \xi)$ to get a coercive differential operator on $W_{0}^{1, p}(\Omega)$.

2 Background

It's worth recalling here some definitions and notations that we will use later. Let $p \geq 1$ and $\alpha \in \mathbb{R}$, the Zygmund space $L^{p} \log ^{\alpha} L$, consists of all measurable functions g on Ω for which

$$
\int_{\Omega}|g|^{p} \log ^{\alpha}(e+|g|) d x<\infty
$$

It is an Orlicz space generated by the N-function $\Theta(t)=t^{p} \log ^{\alpha}(e+t), t \geq 0$, equipped with the so called Luxemburg norm

$$
\|g\|_{\Theta}=\inf \left\{\lambda>0: \int_{\Omega} \Theta\left(\frac{|g|}{\lambda}\right) d x \leq 1\right\}
$$

For $p>1$, the conjugate N -function of Θ is equivalent (see [5]) to $t^{p^{\prime}} \log g^{-\alpha \frac{p^{\prime}}{p}}(e+t)$ where $p^{\prime}=\frac{p}{p-1}$. Thus, it follows that the dual of $L^{p} \log ^{\alpha} L$ coincides with $L^{p^{\prime}} \log ^{-\alpha \frac{p^{\prime}}{p}} L$. The inverse function Θ^{-1} of Θ is equivalent to $t^{\frac{1}{p}} \log ^{-\frac{\alpha}{p}}(e+t)$.

We recall that for a subset E of Ω, the Luxemburg norm, associated to an N function M, of the characteristic function χ_{E} of E is (see [5])

$$
\begin{equation*}
\left\|\chi_{E}\right\|_{M}=\frac{1}{M^{-1}\left(\frac{1}{|E|}\right)} \tag{2.1}
\end{equation*}
$$

where $|E|$ denotes the Lebesgue measure of E.
The decreasing rearrangement of a measurable function $w: \Omega \rightarrow \mathbb{R}$ is defined as

$$
w^{*}(s)=\inf \left\{t \in \mathbb{R}: \mu_{w}(t) \leq s\right\} \quad \text { for } \quad s \in(0,|\Omega|)
$$

where

$$
\mu_{w}(t)=|\{x \in \Omega:|w(x)|>t\}|
$$

is the distribution function of w. Hence, w^{*} is the generalized inverse function of μ_{w} and

$$
w^{*}(0)=\|w\|_{\infty} .
$$

For more details, one can see $[7,8]$.
Throughout the paper, T_{k}, the truncation at level $k>0$, and G_{k} are functions defined by $T_{k}(s)=\max (-k, \min (s, k))$ and $G_{k}(s)=s-T_{k}(s)$.

3 Main result

Our main result is the following,
Theorem 3.1. Under the assumptions (1.2), (1.3), (1.4) and (1.5), the problem (1.1) has at least a weak solution u in $W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ in the sense that

$$
\begin{equation*}
\int_{\Omega} a(x, u, \nabla u) \cdot \nabla v d x=\int_{\Omega} f v d x \tag{3.1}
\end{equation*}
$$

for all v in $\mathcal{D}(\Omega)$.
Remark 3.1. The space $L^{\frac{N}{p}} \log ^{\alpha} L$ is contained in $L^{\frac{N}{p}}(\Omega)$ and contains the spaces $L^{m}(\Omega)$ with $m>\frac{N}{p}$, in this sense our result is a refinement of the one given in [2].

4 Proof of theorem 3.1

Step1: L^{∞}-bound

Remark that the operator A in (1.1) is not coercive, this is due to the assumption (1.2). To get rid of this situation, we consider the differential operator

$$
A_{n}(u)=-\operatorname{div} a\left(x, T_{n}(u), \nabla u\right), \quad n \in \mathbb{N}
$$

which turns out to be pseudo-monotone from $W_{0}^{1, p}(\Omega)$ to its dual $W^{-1, p^{\prime}}(\Omega)$. Moreover, by (1.2), we have

$$
\begin{aligned}
<A_{n}(u), u> & =\int_{\Omega} a\left(x, T_{n}(u), \nabla u\right) \nabla u d x \\
& \geq \int_{\Omega} h^{p-1}\left(\left|T_{n}(u)\right|\right)|\nabla u|^{p} d x \\
& \geq h^{p-1}(n) \int_{\Omega}|\nabla u|^{p} d x .
\end{aligned}
$$

Hence, A_{n} is coercive on $W_{0}^{1, p}(\Omega)$.
Let $\left(f_{n}\right)_{n}$ be a sequence of L^{∞}-functions such that

$$
f_{n} \rightarrow f \text { in } L^{1}(\Omega) \text { and }\left|f_{n}\right| \leq|f| .
$$

It is known, thanks to the Leray-Lions existence theorem (see [6]), that there exists a function u_{n} in $W_{0}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\int_{\Omega} a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) \cdot \nabla \phi d x=\int_{\Omega} f_{n} \phi d x \tag{4.1}
\end{equation*}
$$

holds for every ϕ in $W_{0}^{1, p}(\Omega)$.
For $t>0$ and $\epsilon>0$, we use $T_{\epsilon}\left(G_{t}\left(u_{n}\right)\right)$ as test function in (4.1), obtaining

$$
\int_{\left\{t<\left|u_{n}\right| \leq t+\epsilon\right\}} a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right) \nabla u_{n} d x \leq \epsilon \int_{\left\{\left|u_{n}\right|>t\right\}}|f| d x .
$$

Dividing both sides by ϵ and using (1.2), we get

$$
\frac{1}{\epsilon} \int_{\left\{t<\left|u_{n}\right| \leq t+\epsilon\right\}} h^{p-1}\left(\left|u_{n}\right|\right)\left|\nabla u_{n}\right|^{p} d x \leq \int_{\left\{\left|u_{n}\right|>t\right\}}|f| d x .
$$

Since h is a nonnegative and decreasing function, one has

$$
\frac{1}{\epsilon} h^{p-1}(t+\epsilon) \int_{\left\{t<\left|u_{n}\right| \leq t+\epsilon\right\}}\left|\nabla u_{n}\right|^{p} d x \leq \int_{\left\{\left|u_{n}\right|>t\right\}}|f| d x .
$$

Then, letting ϵ tends to 0^{+}we have

$$
\begin{equation*}
h^{p-1}(t)\left(-\frac{d}{d t} \int_{\left\{\left|u_{n}\right|>t\right\}}\left|\nabla u_{n}\right|^{p} d x\right) \leq \int_{\left\{\left|u_{n}\right|>t\right\}}|f| d x . \tag{4.2}
\end{equation*}
$$

On the other hand, Hölder's inequality implies that

$$
\begin{aligned}
\int_{\left\{t<\left|u_{n}\right| \leq t+\epsilon\right\}}\left|\nabla u_{n}\right| d x & \leq\left|\left\{t<\left|u_{n}\right| \leq t+\epsilon\right\}\right|^{\frac{1}{p^{p}}}\left(\int_{\left\{t<\left|u_{n}\right| \leq t+\epsilon\right\}}\left|\nabla u_{n}\right|^{p} d x\right)^{\frac{1}{p}} \\
& \leq\left(\mu_{n}(t)-\mu_{n}(t+\epsilon)\right)^{\frac{1}{p}}\left(\int_{\left\{t<\left|u_{n}\right| \leq t+\epsilon\right\}}\left|\nabla u_{n}\right|^{p} d x\right)^{\frac{1}{p}}
\end{aligned}
$$

where μ_{n} denotes the distribution function of u_{n}, that is

$$
\mu_{n}(t)=\left|\left\{x \in \Omega:\left|u_{n}(x)\right|>t\right\}\right| .
$$

Then, dividing both sides of the last inequality by ϵ we obtain

$$
\frac{1}{\epsilon} \int_{\left\{t<\left|u_{n}\right| \leq t+\epsilon\right\}}\left|\nabla u_{n}\right| d x \leq\left(-\frac{1}{\epsilon}\left(\mu_{n}(t+\epsilon)-\mu_{n}(t)\right)\right)^{\frac{1}{p}}\left(\frac{1}{\epsilon} \int_{\left\{t<\left|u_{n}\right| \leq t+\epsilon\right\}}\left|\nabla u_{n}\right|^{p} d x\right)^{\frac{1}{p}}
$$

Letting $\epsilon \rightarrow 0^{+}$, we get

$$
\begin{equation*}
-\frac{d}{d t} \int_{\left\{\left|u_{n}\right|>t\right\}}\left|\nabla u_{n}\right| d x \leq\left(-\mu^{\prime}(t)\right)^{\frac{1}{p^{\prime}}}\left(-\frac{d}{d t} \int_{\left\{\left|u_{n}\right|>t\right\}}\left|\nabla u_{n}\right|^{p} d x\right)^{\frac{1}{p}} . \tag{4.3}
\end{equation*}
$$

Now, let us recall the wellknown inequality (see [7])

$$
\begin{equation*}
N C_{N}^{\frac{1}{N}}\left(\mu_{n}(t)\right)^{1-\frac{1}{N}} \leq-\frac{d}{d t} \int_{\left\{\left|u_{n}\right|>t\right\}}\left|\nabla u_{n}\right| d x \tag{4.4}
\end{equation*}
$$

where C_{N} denotes the measure of the unit ball in \mathbb{R}^{N}. Combining (4.2), (4.3) and (4.4), we obtain

$$
h(t) \leq \frac{-\mu_{n}^{\prime}(t)}{N^{p^{\prime}} C_{N}^{\frac{p^{\prime}}{N}}\left(\mu_{n}(t)\right)^{p^{\prime}\left(1-\frac{1}{N}\right)}}\left(\int_{\left\{\left|u_{n}\right|>t\right\}}|f| d x\right)^{\frac{p^{\prime}}{p}}
$$

Using Hölder's inequality in Orlicz spaces, the above inequality becomes

$$
h(t) \leq \frac{-\mu_{n}^{\prime}(t)}{N^{p^{\prime}} C_{N}^{\frac{p^{\prime}}{N}}\left(\mu_{n}(t)\right)^{p^{\prime}\left(1-\frac{1}{N}\right)}} 2^{\frac{p^{\prime}}{p}}\|f\|_{L^{\frac{p^{\prime}}{p}} \log _{\alpha} L}\left\|\chi_{\left|u_{n}\right|>t}\right\|_{L^{\frac{p^{\prime}}{p}}}^{\frac{N}{N-p}} \log ^{-\alpha} \frac{p}{N-p} L .
$$

Thanks to (2.1), we get

$$
h(t) \leq \frac{2^{\frac{p^{\prime}}{p}}\|f\|_{L^{\frac{p^{\prime}}{p}}}^{\frac{N^{\frac{1}{p}}}{}} \log ^{\alpha} L}{N^{p^{\prime}} C_{N}^{\frac{p^{\prime}}{N}}} \frac{-\mu_{n}^{\prime}(t)}{\mu_{n}(t) \log ^{\alpha \frac{n^{\prime}}{N}}\left(e+\frac{1}{\mu_{n}(t)}\right)}
$$

Thus, integrating both sides of the above inequality between 0 and τ gives

$$
H(\tau) \leq \frac{2^{\frac{p^{\prime}}{p}}\|f\|_{L^{\frac{p^{\prime}}{p}}}^{\frac{p^{\prime}}{p}} \log ^{\alpha} L}{N^{p^{\prime}} C_{N}^{\frac{p^{\prime}}{N}}} \int_{0}^{\tau} \frac{-\mu_{n}^{\prime}(t)}{\mu_{n}(t) \log g^{\alpha \frac{n^{\prime}}{N}}\left(e+\frac{1}{\mu_{n}(t)}\right)} d t
$$

and a change of variables yields

$$
H(\tau) \leq \frac{2^{\frac{p^{\prime}}{p}}\|f\|_{L^{\frac{p^{\prime}}{p}}}^{\frac{p^{\prime}}{p}} \log ^{\alpha} L}{N^{p^{\prime}} C_{N}^{\frac{p^{\prime}}{N}}} \int_{\frac{1}{|\Omega|}}^{\frac{1}{\mu_{n}(\tau)}} \frac{d s}{\operatorname{slog}^{\alpha \frac{p}{}^{p^{\prime}}}(e+s)} .
$$

The definition of the rearrangement allows us to have

$$
H\left(u_{n}^{*}(\sigma)\right) \leq \frac{2^{\frac{p^{\prime}}{p}}\|f\|_{L^{\frac{p^{\prime}}{p}}}^{\frac{p^{\frac{N}{p}}}{}} \operatorname{Nog}^{\alpha} L}{N^{p^{\prime}} C_{N}^{\frac{p^{\prime}}{N}}} \int_{\frac{1}{|\Omega|}}^{\frac{1}{\sigma}} \frac{d s}{\operatorname{slog}^{\alpha \frac{p^{\prime}}{N}}(e+s)},
$$

hence follows the inequality

$$
\begin{equation*}
H\left(\left\|u_{n}\right\|_{\infty}\right) \leq \frac{2^{\frac{p^{\prime}}{p}}\|f\|_{L^{\frac{p^{\prime}}{p}}}^{\frac{p^{\prime}}{p}} \log ^{\alpha} L}{N^{p^{\prime}} C_{N}^{\frac{p^{\prime}}{N}}} \int_{\frac{1}{|\Omega|}}^{\infty} \frac{d s}{\operatorname{slog}^{\alpha^{\frac{p^{\prime}}{N}}}(e+s)} \tag{4.5}
\end{equation*}
$$

Since $\alpha \frac{p^{\prime}}{N}>1$, the integral in (4.5) converges, and the assumptions made on the function H ensures that $\left\|u_{n}\right\|_{\infty}$ is uniformly bounded, indeed one has

$$
\begin{equation*}
\left\|u_{n}\right\|_{\infty} \leq H^{-1}\left(\frac{2^{\frac{p^{\prime}}{p}}\|f\|_{L^{\frac{p^{\prime}}{p}}}^{\frac{p^{\prime}}{p}} \log ^{\alpha} L}{N^{p^{\prime}} C_{N}^{\frac{p^{\prime}}{N}}} \int_{\frac{1}{|\Omega|}}^{\infty} \frac{d s}{\operatorname{slog}^{\alpha \frac{p^{\prime}}{N}}(e+s)}\right) \tag{4.6}
\end{equation*}
$$

where H^{-1} denotes the inverse function of H.
In what follows, let us denote by λ the constant on the right of (4.6), that is

$$
\begin{equation*}
\left\|u_{n}\right\|_{\infty} \leq \lambda \tag{4.7}
\end{equation*}
$$

Step2: $W_{0}^{1, p}$-estimate
Thanks to (1.2) and (4.7), it is easy to get an estimation in $W_{0}^{1, p}(\Omega)$. Taking u_{n} as test function in (4.1), we get

$$
h^{p-1}(\lambda) \int_{\Omega}\left|\nabla u_{n}\right|^{p} d x \leq c\|f\|_{L^{\frac{N}{p}} \log ^{\alpha} L},
$$

where c is a constant not depending on n.
Therefore, we can deduce that there exist a subsequence of $\left\{u_{n}\right\}$, still denoted by $\left\{u_{n}\right\}$, and a function u in $W_{0}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
u_{n} \rightarrow u \text { weakly in } W_{0}^{1, p}(\Omega) \text { and a.e in } \Omega . \tag{4.8}
\end{equation*}
$$

Step3: Passage to the limit

In order to pass to the limit in the equation (4.1), we need to prove the almost everywhere convergence of the gradients of solutions, that is

$$
\begin{equation*}
\nabla u_{n} \rightarrow \nabla u \quad \text { a.e in } \Omega . \tag{4.9}
\end{equation*}
$$

This can be proved as previously done in [4], indeed this is easy since u_{n} is a bounded function. For $n \geq \lambda$, thanks to (4.7), (4.8) and (4.9) one can pass to the limit in (4.1), for all ϕ in $\mathcal{D}(\Omega)$, and conclude, since f belongs at least to $L^{1}(\Omega)$, that u is a bounded solution to problem (1.1) in the sense of (3.1).

References

[1] Alvino, A., Ferone, V., Trombetti, G.: A priori estimates for a class of non uniformly elliptic equations, Atti Semin. Mat. Fis. Univ. Modena 46-suppl., 381-391(1998)
[2] Alvino, A., Boccardo, L., Ferone, V., Orsina, L., Trombetti, G.: Existence results for nonlinear elliptic equations with degenerate coercivity, Annali di Mat. 182, 53-79(2003)
[3] Boccardo, L., Dall'Aglio, A., Orsina, L.: Existence and regularity results for some nonlinear equations with degenerate coercivity, Atti Sem. Mat. Fis. Univ. Modena 46-suppl., 51-81(1998)
[4] Del Vecchio, T.: Nonlinear elliptic equations with measure data, Potential Analysis 4, 185-203(1995)
[5] Krasnosel'skii, M., Rutikii, Ya.: Convex functions and Orlicz spaces, Groningen, Nordhooff (1969)
[6] Leray, J., Lions, J. L.: Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Mat. France 93, 97-107(1965)
[7] Talenti, G.: Nonlinear elliptic equations, Rearrangements of functions and Orlicz spaces, Ann. Mat. Pura Appl.,IV. Ser. 120, 159-184(1979)
[8] Talenti, G.: Linear elliptic P.D.E's: Level sets, rearrangements and a priori estimates of solutions, Boll. Un. Mat. Ital. 4-B(6), 917-949(1985)

Département de Mathématiques et Informatique
Faculté des Sciences Dhar-Mahraz
B.P 1796 Atlas, Fès, Morocco.
emails : a.benkirane@menara.ma, ahmed.youssfi@caramail.com, driss.meskine@laposte.net

[^0]: Received by the editors March 2006 - In revised form in November 2006.
 Communicated by P. Godin.
 2000 Mathematics Subject Classification : 35J70, 35J60, 46E30.
 Key words and phrases : Zygmund spaces, nonlinear elliptic equations, L^{∞}-estimates, rearrangements.

