Bounded solutions for nonlinear elliptic equations with degenerate coercivity and data in an $L \log L$

A. Benkirane A. Youssfi D. Meskine

Abstract

In this paper, we prove L^{∞} -regularity for solutions of some nonlinear elliptic equations with degenerate coercivity whose prototype is

$$\begin{cases} -\operatorname{div}(\frac{1}{(1+|u|)^{\theta(p-1)}}|\nabla u|^{p-2}\nabla u) = f & \text{in} \quad \Omega, \\ \\ u = 0 & \text{on} \quad \partial\Omega, \end{cases}$$

where Ω is a bounded open set in \mathbb{R}^N , $N \ge 2$, $1 , <math>\theta$ is a real such that $0 \le \theta \le 1$ and $f \in L^{\frac{N}{p}} \log^{\alpha} L$ with some $\alpha > 0$.

1 Introduction

Let Ω be a bounded open subset of \mathbb{R}^N , with $N \geq 2$, and p a real such that 1 . We consider the following problem

$$\begin{cases}
A(u) := -\operatorname{div} a(x, u, \nabla u) = f & \text{in} \quad \Omega, \\
u = 0 & \text{on} \quad \partial\Omega,
\end{cases}$$
(1.1)

where $a : \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N$ is a Carathéodory function (that is, $a(.,s,\xi)$ is measurable on Ω for every (s,ξ) in $\mathbb{R} \times \mathbb{R}^N$, and a(x, ., .) is continuous on $\mathbb{R} \times \mathbb{R}^N$

Received by the editors March 2006 - In revised form in November 2006.

Bull. Belg. Math. Soc. Simon Stevin 15 (2008), 369-375

Communicated by P. Godin.

²⁰⁰⁰ Mathematics Subject Classification : 35J70, 35J60, 46E30.

Key words and phrases : Zygmund spaces, nonlinear elliptic equations, L^{∞} -estimates, rearrangements.

for almost every x in Ω), which we assume to satisfy the following assumptions

$$a(x, s, \xi).\xi \ge h^{p-1}(|s|)|\xi|^p \tag{1.2}$$

for almost every x in Ω , for every (s,ξ) in $\mathbb{R} \times \mathbb{R}^N$, where $h : \mathbb{R}^+ \to]0, \infty[$ is a decreasing continuous function such that its primitive

$$H(s) = \int_0^s h(t)dt$$

is unbounded;

$$|a(x,s,\xi)| \le a_0(x) + |s|^{p-1} + |\xi|^{p-1}$$
(1.3)

for almost x in Ω , for every $(s,\xi) \in \mathbb{R} \times \mathbb{R}^N$, where a_0 is a non negative function in $L^{p'}(\Omega)$ with $p' = \frac{p}{p-1}$, and

$$(a(x, s, \xi) - a(x, s, \xi')).(\xi - \xi') > 0$$
(1.4)

for almost $x \in \Omega$, for every $s \in \mathbb{R}$ and for every ξ , ξ' in \mathbb{R}^N with $\xi \neq \xi'$.

It is our purpose in this paper, to prove the existence of a weak solution for (1.1) in $W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ when the data satisfies the assumption

$$f \in L^{\frac{N}{p}} log^{\alpha} L \tag{1.5}$$

with $\alpha > \frac{N(p-1)}{p}$.

In the literature, many results concerning L^{∞} estimate for weak solutions of (1.1) had been obtained. It was shown earlier in the setting of Orlicz spaces (see [7]) that when h in (1.2) is a constant function, every weak solution of (1.1) is bounded provided that f belongs to the Lorentz space $L(m, \infty)$ with $m > \frac{N}{p}$.

Under the assumption (1.2), existence of bounded solutions for (1.1) has been proved first in [1] and [3] when p = 2 and f belongs to $L^m(\Omega)$ with $m > \frac{N}{2}$, and for more general p, in [2] when the datum f belongs to $L^m(\Omega)$ with $m > \frac{N}{p}$.

Let us recall, as mentioned in [2] and [3], that if the data f belongs to $L^{\frac{N}{p}}(\Omega)$, the problem (1.1) has no bounded solution.

We note that there is a difficulty in dealing with (1.1) under the assumption (1.2), since the operator A is not coercive on $W_0^{1,p}(\Omega)$ and so the classical Leray-Lions surjectivity theorem do not apply even in the case in which the datum f belongs to $W^{-1,p'}(\Omega)$ where $p' = \frac{p}{p-1}$ (see [6]). To overcome this situation, we will proceed by approximation by means of truncatures in $a(x, s, \xi)$ to get a coercive differential operator on $W_0^{1,p}(\Omega)$.

2 Background

It's worth recalling here some definitions and notations that we will use later. Let $p \geq 1$ and $\alpha \in \mathbb{R}$, the Zygmund space $L^p log^{\alpha}L$, consists of all measurable functions g on Ω for which

$$\int_{\Omega} |g|^p \log^{\alpha}(e+|g|) dx < \infty.$$

It is an Orlicz space generated by the N-function $\Theta(t) = t^p \log^{\alpha}(e+t), t \ge 0$, equipped with the so called Luxemburg norm

$$||g||_{\Theta} = \inf\{\lambda > 0 : \int_{\Omega} \Theta(\frac{|g|}{\lambda}) dx \le 1\}.$$

For p > 1, the conjugate N-function of Θ is equivalent (see [5]) to $t^{p'} log^{-\alpha \frac{p'}{p}}(e+t)$ where $p' = \frac{p}{p-1}$. Thus, it follows that the dual of $L^p log^{\alpha}L$ coincides with $L^{p'} log^{-\alpha \frac{p'}{p}}L$. The inverse function Θ^{-1} of Θ is equivalent to $t^{\frac{1}{p}} log^{-\frac{\alpha}{p}}(e+t)$.

We recall that for a subset E of Ω , the Luxemburg norm, associated to an N-function M, of the characteristic function χ_E of E is (see [5])

$$\|\chi_E\|_M = \frac{1}{M^{-1}(\frac{1}{|E|})}$$
(2.1)

where |E| denotes the Lebesgue measure of E.

The decreasing rearrangement of a measurable function $w: \Omega \to \mathbb{R}$ is defined as

$$w^*(s) = \inf\{t \in \mathbb{R} : \mu_w(t) \le s\} \quad \text{for} \quad s \in (0, |\Omega|)$$

where

$$\mu_w(t) = |\{x \in \Omega : |w(x)| > t\}|$$

is the distribution function of w. Hence, w^* is the generalized inverse function of μ_w and

$$w^*(0) = ||w||_{\infty}.$$

For more details, one can see [7, 8].

Throughout the paper, T_k , the truncation at level k > 0, and G_k are functions defined by $T_k(s) = \max(-k, \min(s, k))$ and $G_k(s) = s - T_k(s)$.

3 Main result

Our main result is the following,

Theorem 3.1. Under the assumptions (1.2), (1.3), (1.4) and (1.5), the problem (1.1) has at least a weak solution u in $W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ in the sense that

$$\int_{\Omega} a(x, u, \nabla u) \cdot \nabla v dx = \int_{\Omega} f v dx \tag{3.1}$$

for all v in $\mathcal{D}(\Omega)$.

Remark 3.1. The space $L^{\frac{N}{p}}\log^{\alpha}L$ is contained in $L^{\frac{N}{p}}(\Omega)$ and contains the spaces $L^{m}(\Omega)$ with $m > \frac{N}{p}$, in this sense our result is a refinement of the one given in [2].

4 Proof of theorem 3.1

Step1: L^{∞} -bound

Remark that the operator A in (1.1) is not coercive, this is due to the assumption (1.2). To get rid of this situation, we consider the differential operator

$$A_n(u) = -\operatorname{div} a(x, T_n(u), \nabla u), \quad n \in \mathbb{N}$$

which turns out to be pseudo-monotone from $W_0^{1,p}(\Omega)$ to its dual $W^{-1,p'}(\Omega)$. Moreover, by (1.2), we have

$$< A_n(u), u > = \int_{\Omega} a(x, T_n(u), \nabla u) \nabla u dx$$

$$\ge \int_{\Omega} h^{p-1}(|T_n(u)|) |\nabla u|^p dx$$

$$\ge h^{p-1}(n) \int_{\Omega} |\nabla u|^p dx.$$

Hence, A_n is coercive on $W_0^{1,p}(\Omega)$. Let $(f_n)_n$ be a sequence of L^{∞} -functions such that

$$f_n \to f$$
 in $L^1(\Omega)$ and $|f_n| \le |f|$.

It is known, thanks to the Leray-Lions existence theorem (see [6]), that there exists a function u_n in $W_0^{1,p}(\Omega)$ such that

$$\int_{\Omega} a(x, T_n(u_n), \nabla u_n) \cdot \nabla \phi \, dx = \int_{\Omega} f_n \phi \, dx \tag{4.1}$$

holds for every ϕ in $W_0^{1,p}(\Omega)$.

For t > 0 and $\epsilon > 0$, we use $T_{\epsilon}(G_t(u_n))$ as test function in (4.1), obtaining

$$\int_{\{t < |u_n| \le t + \epsilon\}} a(x, T_n(u_n), \nabla u_n) \nabla u_n \, dx \ \le \ \epsilon \int_{\{|u_n| > t\}} |f| dx.$$

Dividing both sides by ϵ and using (1.2), we get

$$\frac{1}{\epsilon} \int_{\{t < |u_n| \le t + \epsilon\}} h^{p-1}(|u_n|) |\nabla u_n|^p dx \le \int_{\{|u_n| > t\}} |f| dx.$$

Since h is a nonnegative and decreasing function, one has

$$\frac{1}{\epsilon}h^{p-1}(t+\epsilon)\int_{\{t<|u_n|\leq t+\epsilon\}}|\nabla u_n|^p dx \leq \int_{\{|u_n|>t\}}|f|dx$$

Then, letting ϵ tends to 0^+ we have

$$h^{p-1}(t)\left(-\frac{d}{dt}\int_{\{|u_n|>t\}} |\nabla u_n|^p dx\right) \le \int_{\{|u_n|>t\}} |f| dx.$$
(4.2)

On the other hand, Hölder's inequality implies that

$$\begin{split} \int_{\{t<|u_n|\leq t+\epsilon\}} |\nabla u_n| dx &\leq |\{t<|u_n|\leq t+\epsilon\}|^{\frac{1}{p'}} \left(\int_{\{t<|u_n|\leq t+\epsilon\}} |\nabla u_n|^p dx\right)^{\frac{1}{p}} \\ &\leq (\mu_n(t)-\mu_n(t+\epsilon))^{\frac{1}{p'}} \left(\int_{\{t<|u_n|\leq t+\epsilon\}} |\nabla u_n|^p dx\right)^{\frac{1}{p}}, \end{split}$$

where μ_n denotes the distribution function of u_n , that is

$$\mu_n(t) = |\{x \in \Omega : |u_n(x)| > t\}|.$$

Then, dividing both sides of the last inequality by ϵ we obtain

$$\frac{1}{\epsilon} \int_{\{t < |u_n| \le t + \epsilon\}} |\nabla u_n| dx \le \left(-\frac{1}{\epsilon} (\mu_n(t+\epsilon) - \mu_n(t)) \right)^{\frac{1}{p'}} \left(\frac{1}{\epsilon} \int_{\{t < |u_n| \le t + \epsilon\}} |\nabla u_n|^p dx \right)^{\frac{1}{p}}.$$

Letting $\epsilon \to 0^+$, we get

$$-\frac{d}{dt} \int_{\{|u_n|>t\}} |\nabla u_n| dx \le (-\mu'(t))^{\frac{1}{p'}} \left(-\frac{d}{dt} \int_{\{|u_n|>t\}} |\nabla u_n|^p dx\right)^{\frac{1}{p}}.$$
 (4.3)

Now, let us recall the wellknown inequality (see [7])

$$NC_N^{\frac{1}{N}}(\mu_n(t))^{1-\frac{1}{N}} \le -\frac{d}{dt} \int_{\{|u_n|>t\}} |\nabla u_n| dx$$
(4.4)

where C_N denotes the measure of the unit ball in \mathbb{R}^N . Combining (4.2), (4.3) and (4.4), we obtain

$$h(t) \leq \frac{-\mu'_n(t)}{N^{p'}C_N^{\frac{p'}{N}}(\mu_n(t))^{p'(1-\frac{1}{N})}} \left(\int_{\{|u_n|>t\}} |f| dx \right)^{\frac{p'}{p}}.$$

Using Hölder's inequality in Orlicz spaces, the above inequality becomes

$$h(t) \leq \frac{-\mu'_n(t)}{N^{p'}C_N^{\frac{p'}{N}}(\mu_n(t))^{p'(1-\frac{1}{N})}} 2^{\frac{p'}{p}} \|f\|_{L^{\frac{N}{p}}log^{\alpha}L}^{\frac{p'}{p}} \|\chi_{|u_n|>t}\|_{L^{\frac{N}{N-p}}log^{-\alpha}\frac{p}{N-p}L}^{\frac{p'}{p}}.$$

Thanks to (2.1), we get

$$h(t) \leq \frac{2^{\frac{p'}{p}} \|f\|_{L^{\frac{p}{p}} \log^{\alpha} L}^{\frac{p'}{p}}}{N^{p'} C_N^{\frac{p'}{N}}} \frac{-\mu'_n(t)}{\mu_n(t) \log^{\alpha \frac{p'}{N}} (e + \frac{1}{\mu_n(t)})}.$$

Thus, integrating both sides of the above inequality between 0 and τ gives

,

$$H(\tau) \leq \frac{2^{\frac{p'}{p}} \|f\|_{L^{\frac{N}{p}} \log^{\alpha} L}^{\frac{p'}{p}}}{N^{p'} C_{N}^{\frac{p'}{N}}} \int_{0}^{\tau} \frac{-\mu'_{n}(t)}{\mu_{n}(t) \log^{\alpha \frac{p'}{N}} (e + \frac{1}{\mu_{n}(t)})} dt,$$

and a change of variables yields

$$H(\tau) \leq \frac{2^{\frac{p'}{p}} \|f\|_{L^{\frac{N}{p}} \log^{\alpha} L}^{\frac{p'}{p}}}{N^{p'} C_{N}^{\frac{p'}{N}}} \int_{\frac{1}{|\Omega|}}^{\frac{1}{\mu_{n}(\tau)}} \frac{ds}{s \log^{\alpha \frac{p'}{N}}(e+s)}.$$

The definition of the rearrangement allows us to have

$$H(u_n^*(\sigma)) \, \leq \, \frac{2^{\frac{p'}{p}} \|f\|_{L^{\frac{N}{p}} \log^{\alpha}L}^{\frac{p'}{p}}}{N^{p'} C_N^{\frac{p'}{N}}} \int_{\frac{1}{|\Omega|}}^{\frac{1}{\sigma}} \frac{ds}{s \log^{\alpha \frac{p'}{N}}(e+s)}$$

hence follows the inequality

$$H(\|u_n\|_{\infty}) \leq \frac{2^{\frac{p'}{p}} \|f\|_{L^{\frac{p}{p}} \log^{\alpha} L}^{\frac{p'}{p}}}{N^{p'} C_N^{\frac{p'}{N}}} \int_{\frac{1}{|\Omega|}}^{\infty} \frac{ds}{s \log^{\alpha \frac{p'}{N}} (e+s)}.$$
(4.5)

Since $\alpha \frac{p'}{N} > 1$, the integral in (4.5) converges, and the assumptions made on the function H ensures that $||u_n||_{\infty}$ is uniformly bounded, indeed one has

$$||u_n||_{\infty} \le H^{-1} \left(\frac{2^{\frac{p'}{p}} ||f||_{L^{\frac{N}{p}} \log^{\alpha} L}}{N^{p'} C_N^{\frac{p'}{N}}} \int_{\frac{1}{|\Omega|}}^{\infty} \frac{ds}{s \log^{\alpha \frac{p'}{N}} (e+s)} \right),$$
(4.6)

where H^{-1} denotes the inverse function of H.

In what follows, let us denote by λ the constant on the right of (4.6), that is

$$\|u_n\|_{\infty} \le \lambda. \tag{4.7}$$

Step2: $W_0^{1,p}$ -estimate

Thanks to (1.2) and (4.7), it is easy to get an estimation in $W_0^{1,p}(\Omega)$. Taking u_n as test function in (4.1), we get

$$h^{p-1}(\lambda) \int_{\Omega} |\nabla u_n|^p dx \le c ||f||_{L^{\frac{N}{p}} \log^{\alpha} L},$$

where c is a constant not depending on n.

Therefore, we can deduce that there exist a subsequence of $\{u_n\}$, still denoted by $\{u_n\}$, and a function u in $W_0^{1,p}(\Omega)$ such that

$$u_n \to u$$
 weakly in $W_0^{1,p}(\Omega)$ and a.e in Ω . (4.8)

Step3: Passage to the limit

In order to pass to the limit in the equation (4.1), we need to prove the almost everywhere convergence of the gradients of solutions, that is

$$\nabla u_n \to \nabla u$$
 a.e in Ω . (4.9)

This can be proved as previously done in [4], indeed this is easy since u_n is a bounded function. For $n \ge \lambda$, thanks to (4.7), (4.8) and (4.9) one can pass to the limit in (4.1), for all ϕ in $\mathcal{D}(\Omega)$, and conclude, since f belongs at least to $L^1(\Omega)$, that u is a bounded solution to problem (1.1) in the sense of (3.1).

References

- Alvino, A., Ferone, V., Trombetti, G.: A priori estimates for a class of non uniformly elliptic equations, Atti Semin. Mat. Fis. Univ. Modena 46-suppl., 381-391(1998)
- [2] Alvino, A., Boccardo, L., Ferone, V., Orsina, L., Trombetti, G.: Existence results for nonlinear elliptic equations with degenerate coercivity, Annali di Mat. 182, 53-79(2003)
- Boccardo, L., Dall'Aglio, A., Orsina, L.: Existence and regularity results for some nonlinear equations with degenerate coercivity, Atti Sem. Mat. Fis. Univ. Modena 46-suppl., 51-81(1998)
- [4] Del Vecchio, T.: Nonlinear elliptic equations with measure data, Potential Analysis 4, 185-203(1995)
- [5] Krasnosel'skii, M., Rutikii, Ya.: Convex functions and Orlicz spaces, Groningen, Nordhooff (1969)
- [6] Leray, J., Lions, J. L.: Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Mat. France 93, 97-107(1965)
- [7] Talenti, G.: Nonlinear elliptic equations, Rearrangements of functions and Orlicz spaces, Ann. Mat. Pura Appl., IV. Ser. 120, 159-184(1979)
- [8] Talenti, G.: Linear elliptic P.D.E's: Level sets, rearrangements and a priori estimates of solutions, Boll. Un. Mat. Ital. 4-B(6), 917-949(1985)

Département de Mathématiques et Informatique Faculté des Sciences Dhar-Mahraz B.P 1796 Atlas, Fès, Morocco. emails : a.benkirane@menara.ma, ahmed.youssfi@caramail.com, driss.meskine@laposte.net