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Abstract

In the paper we consider the spaces of entire functions f(z), z ∈ Cn, sat-
isfying the condition

∫

Rn

(
∫

Rn
|f(x + iy)|pdx

)s

|y|αe−σ|y|ρdy < +∞.

For these classes the following integral representation is obtained:

f(z) =

∫

Cn
f(u + iv)Φ(z, u + iv)|v|αe−σ|v|ρdudv, z ∈ Cn,

where the reproducing kernel Φ(z, u + iv) is written in an explicit form as a
Fourier type integral. Also, an estimate for Φ is obtained.

Introduction

0.1. It is well known that the Hardy class H2(Rez > 0) is defined as the set of all
holomorphic functions f(z), Rez > 0, satisfying the condition

sup
x>0

(
∫ +∞

−∞
|f(x + iy)|2dy

)

< +∞. (0.1)

The following result was established by R. Paley and N. Wiener [1]:

Received by the editors July 2006 - In revised form in February 2007.
Communicated by F. Brackx.
1991 Mathematics Subject Classification : 32A15, 32A25, 32A37, 26D15, 30D10, 30E20,

42B10, 44A10.
Key words and phrases : weighted spaces of entire functions, Paley-Wiener type theorems,

reproducing kernels, weighted integral representations.

Bull. Belg. Math. Soc. Simon Stevin 15 (2008), 287–302



288 A. H. Karapetyan

Theorem 0.1. The class H2(Rez > 0) admits an integral representation of the
form

f(z) =
∫ +∞

0
F (t)e−ztdt, Rez > 0, (0.2)

where F (t) ∈ L2(0; +∞).

Theorem 0.1 initiated numerous investigations, where this classical result was
generalized in various directions.

M.M. Djrbashian and A.E. Avetisian [2] (see also [3, Chapter 7]) introduced
Hardy type weighted classes in arbitrary angular domains and established Paley-
Wiener type integral representations for these classes by means of Mittag-Leffler
type kernels

Eρ(z; µ) =
∞
∑

k=0

zk

Γ(µ + k/ρ)
. (0.3)

S. Bochner [4](see also [5]) established an analogue of Theorem 0.1 for multidi-
mensional Hardy classes H2 over radial tube domains in Cn. Later on S.G. Gindikin
[6] extended Bochner’s result in the case of Siegel domains of type two, which are
much more general than radial tube domains. Moreover, in [6, §5] a somewhat
different problem was set and solved: to obtain Paley-Wiener type integral repre-
sentations for classes of functions holomorphic in Siegel domains of type two and
belonging to L2 over the whole domain. On the basis of these integral representa-
tions reproducing kernels for the classes were constructed in an explicit form.

In order to give a brief survey of works where S.G. Gindikin’s investigation was
continued and developed, we need some notations.

0.2. For arbitrary z = (z1, . . . , zn) ∈ Cn and w = (w1, . . . , wn) ∈ Cn set

< z, w >=
n
∑

k=1

zkwk. (0.4)

Suppose that B ⊂ Rn is a domain and γ(y) > 0, y ∈ B, is an arbitrary continuous
function. We put

γ∗(t) =
∫

B
e−<y,t>γ(y)dy, t ∈ Rn. (0.5)

Further, for p, s ∈ (0; +∞) we denote by Hp
s,γ(TB) the set of all functions f(z) ≡

f(x + iy) holomorphic in the tube domain

TB = {z = x + iy ∈ Cn : x ∈ Rn, y ∈ B} (0.6)

and satisfying the condition

Mp
s,γ(f) ≡

∫

B

(
∫

Rn
|f(x + iy)|pdx

)s

γ(y)dy < +∞. (0.7)

Note that for s = 1 the space Hp
s,γ(TB) = Hp

1,γ(TB) consists of those functions
holomorphic in TB, which belong to Lp{TB; γ(y)dxdy}. Besides, when B = Rn, i.e.
TB = Cn, the corresponding spaces are denoted by Hp

s,γ(C
n).
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The following theorem is valid:

Theorem 0.2.

1. Assume that 2 ≤ p < +∞, 1/p + 1/q = 1, 0 < s < +∞ and a measurable
function F (t), t ∈ Rn, satisfies the condition

∫

B

(
∫

Rn
|F (t)|qe−q<y,t>dt

)s(p−1)

γ(y)dy < +∞. (0.8)

Then the function

f(z) =
1

(2π)n/2

∫

Rn
F (t)ei<z,t>dt, z ∈ TB, (0.9)

belongs to the space Hp
s,γ(TB) and

Mp
s,γ(f) ≤

1

(2π)
n
2

s(p−2)

∫

B

(
∫

Rn
|F (t)|qe−q<y,t>dt

)s(p−1)

γ(y)dy < +∞. (0.10)

2. Assume that 1 ≤ p ≤ 2 and 0 < s < +∞. Then each function f ∈ Hp
s,γ(TB)

admits an integral representation of the form (0.9), where:

— if p = 1, F (t), t ∈ Rn, is continuous and satisfies the condition

sup
t∈Rn

{|F (t)|γ∗(st)} ≤
M1

s,γ(f)

(2π)
n
2

s
< +∞; (0.11)

— if 1 < p ≤ 2, F (t), t ∈ Rn, is measurable and satisfies the condition

∫

B

(
∫

Rn
|F (t)|qe−q<y,t>dt

)s(p−1)

γ(y)dy ≤
Mp

s,γ(f)

(2π)
n
2
s(2−p)

< +∞ (1/p + 1/q = 1).

(0.12)
Also, for a.e. y ∈ B we have

f̂y(t) = F (t)e−<y,t>, t ∈ Rn, (0.13)

where f̂y is the Fourier transform of

fy(x) ≡ f(x + iy), x ∈ Rn.

3. For p = 2 and 0 < s < +∞ the formula (0.9) gives an integral representation
of the whole class Hp

s,γ(TB), i.e. H2
s,γ(TB) coincides with the set of all functions f(z)

representable in the form (0.9) with a measurable function F (t), t ∈ Rn, satisfying
the condition

∫

B

(
∫

Rn
|F (t)|2e−2<y,t>dt

)s

γ(y)dy < +∞. (0.14)

Moreover, the Parseval identity holds:

M2
s,γ(f) =

∫

B

(
∫

Rn
|F (t)|2e−2<y,t>dt

)s

γ(y)dy. (0.15)
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For n ≥ 1, γ(y) ≡ 1(y ∈ B) and p = 2, s = 1 Theorem 0.2 follows from S.G.
Gindikin’s results [6] for Siegel domains.

For n ≥ 1, γ(y) ≡ 1(y ∈ B) and under the assumptions 1 ≤ p ≤ 2, s = 1
or 1 < p < 2, s = 1/(p − 1) the formulated assertions were established by T.G.
Genchev [7-9].

For n = 1, γ(y) ≡ 1(y ∈ B) the theorem follows from more general results by
M.M. Djrbashian and V.M. Martirosian [10].

Finally, in the form formulated above, Theorem 0.2 was established in [11, The-
orems 2.3-2.5] and [12, Theorem 2].

It turns out that the supports of the functions F (t) in Theorem 0.2 (2,3) become
significantly narrower if the domain B ⊂ Rn and the weight function γ(y), (y ∈ B)
satisfy certain conditions. We mean the following cases:

(a) (see [13]) B = V is a sharp (or an acute) open convex cone in Rn and

lim|y|→+∞

ln γ(y)

|y|
≥ 0 (y ∈ V );

(b) (see [14]) B = V is a sharp open convex cone in Rn and γ(y) is of a form
ϕ(ρV (y)), where ρV (y) = dist(y, ∂V ), y ∈ V and ϕ(τ) > 0, τ ∈ (0; +∞), is a
continuous function such that

limτ→+∞

ln ϕ(τ)

τ
≥ 0;

( particularly, ϕ(τ) = τα ) ;
(c) (see [15]) B = V is an affine-homogeneous sharp open convex cone (see [6])

in Rn and γ(y) is defined in accordance with the inner structure of V .
In all these cases we have supp F (t) ⊂ V ∗ , where V ∗ is a cone conjugate to

V . Furthermore, in [13-15] for 1 ≤ p ≤ 2 and under additional conditions on
γ(y), y ∈ V and on the parameter s, a reproducing kernel for the class Hp

s,γ(TV ) was
constructed. In other words, a kernel Φ(z, w), z, w ∈ TV was constructed, such that
for all f ∈ Hp

s,γ(TV )

f(z) =
1

(2π)n

∫

TV

f(w)Φ(z, w)γ(v)dudv, z ∈ TV (w = u + iv). (0.16)

S. Saitoh [16-18] considered and solved, in a sense, a converse problem: given a
domain D ⊂ Rn, integrals of the form

f(z) =
1

(2π)n/2

∫

D
F (t)ei<z,t>dt, (0.17)

were considered for, in general, arbitrary functions F (t), t ∈ D. Then, requiring for
holomorphic functions f(z) to belong to Hardy type spaces (including the condition
of square integrability over the domain), S. Saitoh determined the corresponding
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conditions on functions F (t) and the maximal tube domain in Cn where the func-
tions (0.17) can be extended. For the considered spaces reproducing kernels were
constructed.

It should be mentioned that for the case p = 2, s = 1, γ(y) ≡ 1 the results of
[11-15] are close to [16-18].

R.A. Zalik and T. Abuabara Saad [19] considered a case of Theorem 0.2 when
n = 1, s = 1/(p − 1), B = R and γ(y) ≡ |y|αe−σ|y|ρ , y ∈ R(α > −1).

Due to this explicit form of γ(y) they obtained an explicit asymptotic behaviour
of γ∗(t) when |t| → +∞. As a consequence, the conditions (0.8), (0.11), (0.12) sim-

plified. Roughly speaking (see [19]), F (t) belongs to a space of type Lq

{

R; ea|t|
ρ

ρ−1
dt
}

for some a > 0.
A.M. Sedletskii [20] extended the result of [19] on the case of entire functions

satisfying the condition of type

∫

R

(
∫

R
|f(x + iy)|p|x|sdx

)
1

p−1

|y|αe−σ|y|ρdy < +∞. (0.18)

In the present paper for the spaces Hp
s,γ(C

n)(1 ≤ p ≤ 2), where γ(y) ≡ |y|αe−σ|y|ρ , y ∈
Rn(α > −n), reproducing kernels (in the sense of (0.16)) are constructed and appli-
cations are given.

1 Main integral representations

1.1. From now on we suppose that n > 1, 1 ≤ p ≤ 2 (1/p + 1/q = 1), 0 < s < ∞
and α > −n, 0 < σ < ∞, 1 < ρ < ∞. For these parameters put

γ(y) ≡ |y|αe−σ|y|ρ , y ∈ Rn. (1.1)

According to (0.5) we have

γ∗(t) =
∫

Rn
e−<y,t>|y|αe−σ|y|ρdy, t ∈ Rn. (1.2)

Obviously, γ∗ is continuous in t ∈ Rn and γ∗(t) > 0, t ∈ Rn .
Further, we shall consider the space Hp

s,γ(C
n), i.e. the space of all entire functions

f(z), z ∈ Cn, satisfying the condition

Mp
s,γ(f) =

∫

Rn

(
∫

Rn
|f(x + iy)|pdx

)s

|y|αe−σ|y|ρdy < +∞. (1.3)

Below we shall construct reproducing kernels (in the sense of (0.16)) for these
spaces. To this end we establish some auxiliary results.

1.2. First of all, let us obtain an asymptotic behaviour of γ∗(t), t ∈ Rn.
We put

cρ = max[0;1]

{

x
1

ρ−1 (1 − x)
}

= (
1

ρ
)

1
ρ−1 (1 −

1

ρ
). (1.4)
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It is easy to verify that 0 < cρ < 1.
The following estimates for γ∗(t) are valid:

Lemma 1.1.

1. When |t| ≥ 1, then

γ∗(t) ≤ const(n, α, ρ, σ) · |t|
n+α
ρ−1 eσ−1/(ρ−1)cρ|t|ρ/(ρ−1)

. (1.5)

2. For an arbitrary small ε > 0, when t ∈ Rn, then

γ∗(t) ≤ const(n, α, ρ, σ, ε) · eσ−1/(ρ−1)cρ(1+ε)|t|ρ/(ρ−1)

. (1.5′)

3. For an arbitrary small ε > 0, when t ∈ Rn, then

γ∗(t) ≥ const(n, α, ρ, σ, ε) · |t|
n+α
ρ−1 eσ−1/(ρ−1)cρ(1−ε)|t|ρ/(ρ−1)

. (1.6)

4. For an arbitrary small ε > 0, when t ∈ Rn, then

γ∗(t) ≥ const(n, α, ρ, σ, ε) · eσ−1/(ρ−1)cρ(1−ε)|t|ρ/(ρ−1)

. (1.6′)

Proof. Let us write (1.2) in polar coordinates:

γ∗(t) =
∫ +∞

0
rn+α−1e−σrρ

∫

Sn

e−r<ζ,t>dσn(ζ)dr, t ∈ Rn, (1.7)

where Sn is the unit sphere in Rn and σn is the surface measure on Sn. Then we
have:

γ∗(t) ≤ const
∫ +∞

0
rn+α−1er(|t|−σrρ−1)dr. (1.8)

The change of variable σrρ−1 = x in the right-hand side of (1.8) yields

γ∗(t) ≤ const
∫ +∞

0
x

n+α+1−ρ
ρ−1 e( x

σ
)1/(ρ−1)(|t|−x)dx =

= const ·

{

∫ |t|

0
+
∫ +∞

|t|

}

≡ const · {γ∗
1(t) + γ∗

2(t)}. (1.9)

Further, making a change of variable x → |t|x (t 6= 0) in both the integrals γ∗
1

and γ∗
2 , we obtain:

γ∗
1(t) = |t|

n+α
ρ−1

∫ 1

0
x

n+α+1−ρ
ρ−1 eσ−1/(ρ−1) |t|ρ/(ρ−1)x1/(ρ−1)(1−x)dx ≤

≤ const · |t|
n+α
ρ−1 eσ−1/(ρ−1)cρ|t|ρ/(ρ−1)

, (1.10)

γ∗
2(t) = |t|

n+α
ρ−1

∫ ∞

1
x

n+α+1−ρ
ρ−1 e−σ−1/(ρ−1)|t|ρ/(ρ−1)x1/(ρ−1)(x−1)dx.

If |t| ≥ 1, then |t|ρ/(ρ−1) ≥ 1, consequently

γ∗
2(t) ≤ |t|

n+α
ρ−1

∫ ∞

1
x

n+α+1−ρ
ρ−1 e−σ−1/(ρ−1)x1/(ρ−1)(x−1)dx ≤ const · |t|

n+α
ρ−1 . (1.11)
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Combining (1.9) - (1.11), we obtain (1.5) when |t| ≥ 1.
The inequality (1.5′) is a direct consequence of (1.5).
To establish (1.6), fix a sufficiently small ε > 0. Then find a sufficiently small

η ∈ (0; 1
2
) such that (1 − η)

2ρ−1
ρ−1 > 1 − ε. Further, note that

− < −ζ0, ζ0 >= 1, ∀ζ0 ∈ Sn.

Hence for an arbitrary ζ0 ∈ Sn there exists a neighbourhood G(−ζ0) ⊂ Sn of the
point −ζ0 such that

− < ζ, ζ0 >≥ 1 − η, ∀ζ ∈ G(−ζ0). (1.12)

Of course, G(−ζ0) depends on ζ0, but

σn (G(−ζ0)) ≡ const > 0, ∀ζ0 ∈ Sn. (1.13)

Combining (1.12) and (1.13), we obtain the inequality
∫

Sn

e−<ζ,t>dσn(ζ) ≥ const · e(1−η)|t|, t ∈ Rn, (1.14)

where the constant does not depend on t .
Consequently, (1.7) and (1.14) give

γ∗(t) ≥ const
∫ +∞

0
rn+α−1e−σrρ

e(1−η)r|t|dr = const
∫ +∞

0
rn+α−1er[(1−η)|t|−σrρ−1]dr.

After the change of variable σrρ−1 = x we have

γ∗(t) ≥ const
∫ +∞

0
x

n+α+1−ρ
ρ−1 e( x

σ
)1/(ρ−1) [(1−η)|t|−x]dx ≥

≥ const
∫ (1−η)|t|

0
x

n+α+1−ρ
ρ−1 e( x

σ
)1/(ρ−1)[(1−η)|t|−x]dx.

Finally, after another change of variable x → (1 − η)|t|x (t 6= 0) we obtain

γ∗(t) ≥ const · [(1 − η)|t|]
n+α
ρ−1

∫ 1

0
x

n+α+1−ρ
ρ−1 eσ−1/(ρ−1)(1−η)ρ/(ρ−1) |t|ρ/(ρ−1)x1/(ρ−1)(1−x)dx.

In view of (1.4)

x
1

ρ−1 (1 − x) ≥ (1 − η)cρ, x ∈ (
1

ρ
− δ;

1

ρ
+ δ) ⊂ (0; 1), δ = δ(η) > 0.

Also,

[(1 − η)|t|]
n+α
ρ−1 > (

1

2
)

n+α
ρ−1 · |t|

n+α
ρ−1 .

Hence

γ∗(t) ≥ const · |t|
n+α
ρ−1 eσ−1/(ρ−1)(1−η)

2ρ−1
ρ−1 cρ|t|ρ/(ρ−1)

≥
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≥ const · |t|
n+α
ρ−1 eσ−1/(ρ−1)(1−ε)cρ|t|ρ/(ρ−1)

.

The inequality (1.6′) immediately follows from (1.6). Thus the lemma is proved.

Remark 1.1.

In [19] for n = 1 a more explicit (compared to (1.5)-(1.6)) asymptotic estimate was
established:

γ∗(t) ≈ const · |t|
α+1
ρ−1

− ρ
2(ρ−1) eσ−1/(ρ−1)cρ|t|ρ/(ρ−1)

, |t| → +∞. (∗)

We think that for n > 1 ”arbitrary small ε > 0 ” can not be omitted.

Remark 1.2.

When ρ = 2, α = 0, we have

γ∗(t) =
∫

Rn
e−<y,t>e−σ|y|2dy ≡ const · e

|t|2

4σ , t ∈ Rn. (1.15)

This slightly differs from (1.5)-(1.6)(for ρ = 2, α = 0) and coincides with (*)(for
n = 1). Consequently, estimates (1.5)-(1.6) are not explicit. However, this is suffi-
cient for our purposes.

Remark 1.3.

In view of Lemma 1.1 we can give a new interpretation of conditions (0.11) and
(0.12) of Theorem 0.2.
The condition (0.11) is close to the condition of the form

|F (t)| ≤ const · e−const·|t|ρ/(ρ−1)

, |t| → +∞.

For 1 < p ≤ 2, s = 1
p−1

we can change the order of integrations in the left-hand

side of (0.12). As a result we obtain

∫

Rn
|F (t)|qγ∗(qt)dt < +∞.

In view of (1.6), this implies the condition

∫

Rn
|F (t)|q|t|

n+α
ρ−1 econst·|t|ρ/(ρ−1)

dt < +∞.

Further, recall Minkowski generalized integral inequality (q ≥ 1):

{
∫

Y

{
∫

X
f(x, y)dµ(x)

}q

dν(y)
}1/q

≤
∫

X

{
∫

Y
{f(x, y)}q dν(y)

}1/q

dµ(x),

where (X; µ) and (Y ; ν) are spaces with positive measures and f is an X × Y -
measurable nonnegative function.

For 1 < p ≤ 2, s = 1
p

(when 1
q

= s(p − 1)) the application of this inequality to

(0.12) (with B = Rn)implies

+∞ >
∫

Rn

(
∫

Rn
|F (t)|qe−q<y,t>dt

)s(p−1)

γ(y)dy ≥
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≥
(
∫

Rn

(
∫

Rn
|F (t)|e−<y,t>dy

)q

dt
)1/q

=
(
∫

Rn
|F (t)|q[γ∗(t)]qdt

)1/q

.

In other words,
∫

Rn
|F (t)|q[γ∗(t)]qdt < +∞,

which, in view of (1.6), implies the condition of the form
∫

Rn
|F (t)|q|t|q

n+α
ρ−1 econst·|t|ρ/(ρ−1)

dt < +∞.

1.3. For arbitrary z = x + iy ∈ Cn and v ∈ Rn set

Rz,v(t) = (2π)n/2 ei<z+iv,t>

γ∗(2t)
, t ∈ Rn. (1.16)

In view of Lemma 1.1(4) Rz,v(t) ∈ Lp(Rn) for all 0 < p ≤ ∞. Further, set

Rz(v) = ‖Rz,v(t)‖p = (2π)n/2

(

∫

Rn

e−p<y+v,t>

[γ∗(2t)]p
dt

)1/p

, 0 < p < ∞. (1.17)

Note that Rz(v) is continuous in v ∈ Rn and Rz(v) > 0, v ∈ Rn.

Lemma 1.2. For an arbitrary small ε > 0

Rz(v) ≤ const(p, n, α, ρ, σ, ε) · e
σ
2ρ (1+ε)|y+v|ρ , z ∈ Cn, v ∈ Rn, (1.18)

Rz(v) ≤ const(p, n, α, ρ, σ, ε, y) · e
σ
2ρ (1+ε)|v|ρ , v ∈ Rn. (1.18′)

Proof. In what follows we suppose that ε ∈ (0; 3) is arbitrary small. Then find a
sufficiently small ε1 > 0 such that (1 − ε1)

−(ρ−1) < 1 + ε
3
. As it follows from (1.6′),

γ∗(2t) ≥ const · eσ−1/(ρ−1)cρ(1−ε1)|2t|ρ/(ρ−1)

, t ∈ Rn.

Hence

[Rz(v)]p ≤ const
∫

Rn
ep|y+v||t|−p2ρ/(ρ−1)σ−1/(ρ−1)cρ(1−ε1)|t|ρ/(ρ−1)

dt =

= const
∫ +∞

0
rn−1er{p|y+v|−p2ρ/(ρ−1)σ−1/(ρ−1)cρ(1−ε1)rρ/(ρ−1)−1}dr. (1.19)

Then note that the last integral is of type (1.8) with parameters α1 = 0 instead
of α, ρ1 = ρ/(ρ − 1) instead of ρ, σ1 = p2ρ/(ρ−1)σ−1/(ρ−1)cρ(1 − ε1) instead of σ and
t1 = p(y + v) instead of t. And since the integral at the right-hand side of (1.8) has
been already estimated (see (1.5′)), we have

[Rz(v)]p ≤ const · eσ
−1/(ρ1−1)
1 cρ1 (1+ε/3)|t1|ρ1/(ρ1−1)

, t1 ∈ Rn. (1.20)

Now we need some calculations.
First of all, |t1| = p|y + v|. Further,

1/(ρ1 − 1) = ρ − 1, ρ1/(ρ1 − 1) = ρ,
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σ
−1/(ρ1−1)
1 = σ

−(ρ−1)
1 = p−(ρ−1)2−ρσc−(ρ−1)

ρ (1 − ε1)
−(ρ−1) =

= p−(ρ−1)2−ρρ(
ρ

ρ − 1
)ρ−1σ(1 − ε1)

−(ρ−1);

cρ1 = (
1

ρ1

)1/(ρ1−1)(1 −
1

ρ1

) = (
ρ − 1

ρ
)ρ−1 1

ρ
;

|t1|
ρ1/(ρ1−1) = pρ|y + v|ρ.

Thus for z ∈ Cn, v ∈ Rn, (1.20) implies

[Rz(v)]p ≤ const · e
pσ
2ρ (1−ε1)−(ρ−1)(1+ε/3)|y+v|ρ <

< const · e
pσ
2ρ (1+ε/3)(1+ε/3)|y+v|ρ <

< const · e
pσ
2ρ (1+ε)|y+v|ρ . (1.21)

It remains to note that (1.21) implies (1.18). As to (1.18′), it directly follows from
(1.18). Lemma 1.2 is therefore proved.

1.4. For arbitrary z, w ∈ Cn set

Φ(z, w) =
∫

Rn

ei<z−w,t>

γ∗(2t)
dt. (1.22)

Lemma 1.3.

1. The kernel Φ(z, w) is holomorphic in z ∈ Cn and antiholomorphic in w ∈ Cn .
2. For fixed z ∈ Cn and v ∈ Rn the kernel Φ(z, u + iv), as a function of u ∈ Rn,

is the Fourier transform of the function Rz,v(t).
3. For an arbitrary small ε > 0 we have (z = x + iy ∈ Cn, w = u + iv ∈ Cn):

|Φ(z, w)| ≤ const(n, α, ρ, σ, ε) · e
σ
2ρ (1+ε)|y+v|ρ .

Proof. The estimate (1.6) immediately implies the assertions 1 and 2. As for 3,
it easily follows from (1.21) with p = 1 .

Theorem 1.1. Each function f ∈ Hp
s,γ(C

n) has the integral representation

f(z) =
1

(2π)n

∫

Cn
f(w)Φ(z, w)γ(v)dudv, z ∈ Cn (w = u + iv), (1.23)

if the parameter s satisfies the conditions

1

p
< s,

ps

ps − 1
< 2ρ. (1.24)

Proof. Let f be a function from Hp
s,γ(C

n). According to Theorem 0.2(2)

f(z) =
1

(2π)n/2

∫

Rn
F (t)ei<z,t>dt, z ∈ Cn, (1.25)
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where F (t), t ∈ Rn, is continuous and satisfies (0.11) for p = 1 , and F (t), t ∈ Rn, is
measurable and satisfies (0.12) for 1 < p ≤ 2. Moreover, for a.e. v ∈ Rn

f̂v(t) = F (t)e−<v,t>, t ∈ Rn, (1.26)

where fv(u) ≡ f(u + iv), u ∈ Rn.
Now fix an arbitrary z = x + iy ∈ Cn and set

I(z) =
1

(2π)n

∫

Cn
f(w)Φ(z, w)γ(v)dudv. (1.27)

Assuming absolute convergence of the integral (1.27), we establish the equality
I(z) = f(z) in the following way:

I(z) =
1

(2π)n

∫

Rn
γ(v)

∫

Rn
f(u + iv)Φ(z, u + iv)dudv =

=
1

(2π)n

∫

Rn
γ(v)

∫

Rn
fv(u) ˆ(Rz,v)(u)dudv =

=
1

(2π)n

∫

Rn
γ(v)

∫

Rn
f̂v(t)Rz,v(t)dtdv =

=
1

(2π)n/2

∫

Rn
γ(v)

∫

Rn
F (t)e−<v,t> ei<z+iv,t>

γ∗(2t)
dtdv =

=
1

(2π)n/2

∫

Rn
F (t)

ei<z,t>

γ∗(2t)

∫

Rn
γ(v)e−2<v,t>dvdt =

=
1

(2π)n/2

∫

Rn
F (t)ei<z,t>dt = f(z).

So it remains to show that the integral I(z) converges absolutely. To this end
set

Ĩ(z) =
∫

Rn
γ(v)

∫

Rn
|fv(u)||Φ(z, u + iv)|dudv. (1.28)

An application of the Hőlder integral inequality and Lemma 1.3(2) gives:

∫

Rn
|fv(u)||Φ(z, u + iv)|du ≤ f̃(v) ·

(
∫

Rn
|Φ(z, u + iv)|qdu

)1/q

=

= f̃(v) ·
(
∫

Rn
|R̂z,v(t)|

qdt
)1/q

, (1/p + 1/q = 1),

where

f̃(v) =
(
∫

Rn
|fv(u)|pdu

)1/p

, v ∈ Rn. (1.29)

Further, the condition 1 ≤ p ≤ 2 makes it possible to apply the Hausdorff-Young
theorem (see [21,p.247]):

∫

Rn
|fv(u)||Φ(z, u + iv)|du ≤ const · f̃(v) ·

(
∫

Rn
|Rz,v(t)|

pdt
)1/p

≡ const · f̃(v) ·Rz(v),
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where Rz(v), v ∈ Rn, is defined by (1.17). Hence (1.28) implies:

Ĩ(z) ≤ const
∫

Rn
f̃(v)Rz(v)γ(v)dv. (1.30)

Note that the condition f ∈ Hp
s,γ(C

n) implies
∫

Rn
[f̃(v)]psγ(v)dv < +∞. (1.31)

Therefore we set r = ps
ps−1

and apply the Hőlder integral inequality to (1.30):

Ĩ(z) ≤ const
(
∫

Rn
[f̃(v)]psγ(v)dv

)
1
ps

×

×
(
∫

Rn
[Rz(v)]rγ(v)dv

)
1
r

.

In view of (1.31) it suffices to show that

J(z) ≡
∫

Rn
[Rz(v)]rγ(v)dv < +∞. (1.32)

Using the estimate (1.18′) and (1.1), we have

J(z) ≤ const
∫

Rn
eσ|v|ρ r

2ρ (1+ε)|v|αe−σ|v|ρdv. (1.33)

Due to condition (1.24), r
2ρ < 1, therefore the integral at the right-hand side of

(1.33) converges for sufficiently small ε > 0. Thus J(z) < +∞, i.e. (1.32) holds.
This completes the proof of the theorem.

Remark 1.4. In fact, the conditions (1.24) are not complicated. For example,
the requirement s ≥ 2/p ensures (1.24).

2 Examples

In this section we discuss the particular case α = 0, ρ = 2. Remember (see(1.15))
that in this case

γ∗(t) = const · e
|t|2

4σ , t ∈ Rn.

Hence in view of (1.22) we have

Φ(z, w) = const
∫

Rn
ei<z−w,t>e−

|t|2

σ dt, z, w ∈ Cn. (2.1)

Of course, the constant in (2.1) can be easily computed. It depends only on n and
σ .

To calculate the integral in (2.1) let us set w = z = x + iy ∈ Cn. Then

Φ(z, z) = const
∫

Rn
e−2<y,t>e−

|t|2

σ dt =

= const · eσ|y|2 = const · eσ
∑n

k=1
y2

k =
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= const · e−
σ
4

∑n

k=1
(zk−zk)2 , z ∈ Cn.

The last relation means that entire functions Φ(z, w), (z, w) ∈ C2n, and const ·

e−
σ
4

∑n

k=1
(zk−wk)2 , (z, w) ∈ C2n, coincide on the set w = z, which is ”the uniqueness

set” in C2n. Hence

Φ(z, w) = const · e−
σ
4

∑n

k=1
(zk−wk)2 , z, w ∈ Cn. (2.2)

Consequently, in our case Theorem 1.1 gives:

Theorem 2.1. Each entire function f(z) ≡ f(x + iy) satisfying the condition

∫

Rn

(
∫

Rn
|f(x + iy)|pdx

)s

e−σ|y|2dy < +∞, (2.3)

has the integral representation

f(z) = const
∫

Cn
f(w)e−

σ
4

∑n

k=1
(zk−wk)2e−σ|v|2dudv, z ∈ Cn (w = u + iv), (2.4)

where the constant depends only on n > 1 and σ > 0 and where it is assumed that
1 ≤ p ≤ 2, 1/p < s, ps/(ps − 1) < 4.

This theorem has an interesting application:

Theorem 2.2.(see [22],[23],[24],[25],[26],[18],[27]) Each entire function ϕ(z) ≡
ϕ(x + iy) satisfying the condition

∫

Cn
|ϕ(z)|2e−σ|z|2dxdy < +∞, (2.5)

has the integral representation

ϕ(z) = const
∫

Cn
ϕ(w)eσ<z,w>e−σ|w|2dudv, z ∈ Cn (w = u + iv), (2.6)

where the constant depends only on n > 1 and σ > 0.
Proof. Consider an arbitrary entire function ϕ(z), z = x + iy ∈ Cn , satisfying

the condition (2.5). Then set

f(z) = ϕ(z)e−
σ
2

∑n

k=1
z2
k , z = (z1, · · · , zn) ∈ Cn. (2.7)

Obviously, f(z) is entire function and

|f(z)|2 = |ϕ(z)|2 · e−σ|x|2eσ|y|2 = |ϕ(z)|2 · e−σ|z|2e2σ|y|2 .

Hence in view of (2.5)
∫

Cn
|f(z)|2e−2σ|y|2dxdy < +∞. (2.8)

Consequently, f is an entire function satisfying (2.3) for p = 2, s = 1 and with 2σ
instead of σ. Therefore (2.4) gives:
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f(z) = const
∫

Cn
f(w)e−

σ
2

∑n

k=1
(zk−wk)2e−2σ|v|2dudv, z ∈ Cn (w = u + iv). (2.9)

The substitution of (2.7) into (2.9)gives

ϕ(z)e−
σ
2

∑n

k=1
z2
k = const

∫

Cn
ϕ(w)e−

σ
2

∑n

k=1
w2

ke−
σ
2

∑n

k=1
(zk−wk)2e−2σ|v|2dudv. (2.10)

It remains to note that after simplifications (2.10) coincides with (2.6).

Remark 2.1. It should be mentioned that in [28] for classes of entire functions
ϕ(z), z ∈ Cn, satisfying a condition of type

∫

Cn
|ϕ(z)|p|z|γe−σ|z|ρdxdy < +∞(1 < p < ∞; ρ, σ > 0; γ > −2n),

integral representations of type (2.6) were established.
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