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Abstract

The existence, non-existence and multiplicity of solutions to periodic bound-
ary value problems of Liénard type

(|u′|p−2u′)′ + f(u)u′ + g(u) = e(t) + s, u(0) − u(T ) = 0 = u′(0) − u′(T ),

is discussed, where p > 1, f is arbitrary and g is assumed to be bounded,
positive and g(±∞) = 0. The function e is continuous on [0, T ] with mean
value 0 and s is a parameter.

1 Introduction and the main result

Consider periodic boundary value problems of the form

(φ(u′))′ + g(u) = e(t) + s, u(0) − u(T ) = 0 = u′(0) − u′(T ), (1)

where φ : (−a, a) → R is an increasing homeomorphism such that φ(0) = 0 and
0 < a ≤ +∞, g : R → R, e : [0, T ] → R are continuous functions and s ∈ R is a
parameter. Assume that the following assumptions are satisfied.

(H1)
∫ T
0 e(t)dt = 0.

(H2) g(u) > 0 for all u ∈ R.

(H3) g(±∞) = limu→±∞ g(u) = 0.
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By solution of (1) we mean a function u ∈ C1([0, T ]) such that φ ◦ u′ ∈ C1([0, T ])
and which verifies (1). The main result in [1] is the following one.

Theorem 1. If φ : (−a, a) → R with 0 < a ≤ +∞ and conditions (H1)-(H3) hold,
there exists s∗(e) ∈ (0, supR g] such that problem (1) has zero, at least one or at least
two solutions according to s /∈ (0, s∗(e)], s = s∗(e) or s ∈ (0, s∗(e)).

This type of result has been initiated by Ward [6] without multiplicity conclusion
and φ(v) = v. In the case φ(v) = |v|p−2v for some p > 1, we generalize the result
above as follows.

Consider periodic boundary value problems of Liénard type

(|u′|p−2u′)′ + f(u)u′ + g(u) = e(t) + s, u(0) − u(T ) = 0 = u′(0) − u′(T ), (2)

where p > 1, f : R → R is a continuous function and g, e and s are as above. The
main result of this paper is the following one.

Theorem 2. If conditions (H1)-(H3) hold, there exists s∗(e) ∈ (0, supR g] such that
problem (2) has zero, at least one or at least two solutions according to s /∈ (0, s∗(e)],
s = s∗(e) or s ∈ (0, s∗(e)).

To prove our main result, we use an approach similar to that in [1], but with
technical differences due to the presence of f(u)u′. In what follows φ : R → R

denotes the increasing homeomorphism defined by

φ(v) = |v|p−2v.

If Ω ⊂ X is an open set of a normed space X and if S : Ω → X is completely
continuous and such that 0 /∈ (I − S)(∂Ω), then dLS[I − S, Ω, 0] denotes the Leray-
Schauder degree with respect to Ω and 0. For the definition and properties of the
Leray-Schauder degree see [3].

2 Notation and auxiliary results

Let C denote the Banach space of continuous functions on [0, T ] endowed with the
uniform norm ‖ · ‖∞, C1 denotes the Banach space of continuously differentiable
functions on [0, T ], equipped with the norm ‖u‖ = ‖u‖∞ + ‖u′‖∞. We consider its
closed subspace

C1
# = {u ∈ C1 : u(0) = u(T ), u′(0) = u′(T )},

and denote corresponding open balls of center 0 and radius r by Br. We denote by
P, Q : C → C the continuous projectors defined by

P, Q : C → C, Pu(t) = u(0), Qu(t) =
1

T

∫ T

0
u(τ) dτ (t ∈ [0, T ]),

and define the continuous linear operator H : C → C1 by

Hu(t) =
∫ t

0
u(τ) dτ (t ∈ [0, T ]).

A technical result from [4] is needed for the construction of the equivalent fixed
point problems.
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Proposition 1. For each h ∈ C, there exists a unique α := Qφ(h) ∈ Range h such
that

∫ T

0
φ−1(h(t) − α) dt = 0.

Moreover, the function Qφ : C → R is continuous.

The following fixed point reformulation of periodic boundary value problems like
(2) is taken from [4].

Proposition 2. Assume that F : C1 → C is continuous and takes bounded sets into
bounded sets. Then u is a solution of the abstract periodic problem

(φ(u′))′ = F (u), u(0) − u(T ) = 0 = u′(0) − u′(T )

if and only if u ∈ C1
# is a fixed point of the operator MF

# defined on C1
# by

MF
#(u) = Pu + QF (u) + H ◦ φ−1 ◦ (I − Qφ) ◦ [H(I − Q)F ](u).

Furthermore, MF
# is completely continuous on C1

#.

The following result is a continuation theorem due to Manásevich and Mawhin
[4].

Proposition 3. Let h : [0, T ] × R
2 → R be a continuous function and assume that

there exists R > 0 such that the following conditions hold.

(i) For each λ ∈ (0, 1] the problem

(φ(u′))′ = λh(t, u, u′), u(0) − u(T ) = 0 = u′(0) − u′(T ),

has no solution on ∂BR.

(ii) The continuous function η : R → R

η(d) :=
1

T

∫ T

0
h(t, d, 0)dt = 0,

is such that η(−R)η(R) < 0.

Then problem

(φ(u′))′ = h(t, u, u′), u(0) − u(T ) = 0 = u′(0) − u′(T ), (3)

has a least one solution in BR, and

|dLS[I − Mh
#, BR, 0]| = 1,

where Mh
# denotes the fixed point operator associated to (3).

Let us decompose any u ∈ C1
# in the form

u = u + ũ (u = u(0), ũ(0) = 0),

and let

C̃1
# = {u ∈ C1

# : u(0) = 0}.

The following inequality will be very useful in the sequel:

||ũ||∞ ≤ T 1/q||u′||p ∀u ∈ C1
#, (Sobolev),

where 1/p + 1/q = 1 and ||u||p = (
∫ T
0 u(t)dt)1/p for all u ∈ C.
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3 Proof of the main result

For s ∈ R, we define the continuous nonlinear operator Ns : C1 → C by

Ns(u)(t) = e(t) + s − g(u(t)) − f(u(t))u′(t) (t ∈ [0, T ]).

Using Proposition 2, it follows that u ∈ C1
# is a solution of (2) if and only if

u = Pu + QNs(u) + H ◦ φ−1 ◦ (I − Qφ) ◦ [H(I − Q)Ns](u) =: G(s, u),

and the nonlinear operator G(s, ·) : C1
# → C1

# is completely continuous.
A strict lower solution α (resp. strict upper solution β) of (2) is a function α ∈ C1

such that φ(α′) ∈ C1, α(0) = α(T ), α′(0) ≥ α′(T ) (resp. β ∈ C1, φ(β ′) ∈ C1,
β(0) = β(T ), β ′(0) ≤ β ′(T )) and

(φ(α′(t)))′ + f(α(t))α′(t) + g(α(t)) > e(t) + s

(resp.

(φ(β ′(t)))′ + f(β(t))β ′(t) + g(β(t)) < e(t) + s)

for all t ∈ [0, T ].

Lemma 1. If f, g : R → R are continuous functions, e ∈ C and if (2) has a strict
lower solution α and a strict upper solution β such that α(t) ≤ β(t) for all t ∈ [0, T ],
then problem (2) has a solution u such that α(t) < u(t) < β(t) for all t ∈ [0, T ].
Moreover,

|dLS[I − G(s, ·), Ωr
α,β, 0]| = 1,

where

Ωr
α,β = {u ∈ C1

# : α(t) < u(t) < β(t) for all t ∈ [0, T ], ‖u′‖∞ < r},

and r is sufficiently large.

Proof. I. A modified problem.
Let γ : [0, T ] × R → R be the continuous function defined by

γ(t, u) =





β(t), u > β(t)
u, α(t) ≤ u ≤ β(t)
α(t), u < α(t).

We consider the modified problem

(|u′|p−2u′)′ − [u − γ(t, u)] + f(γ(t, u))u′ + g(γ(t, u)) = e(t) + s,

u(0) − u(T ) = 0 = u′(0) − u′(T ). (4)

It is not difficult to show that if u is a solution of (4), then α(t) < u(t) < β(t) for
all t ∈ [0, T ] and hence u is a solution of (2) (see [5], [2]).
II. A priori estimations.
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In order to apply Manásevich-Mawhin continuation theorem to problem (4), we
consider the family of problems

(|u′|p−2u′)′ − λ[u − γ(t, u)] + λf(γ(t, u))u′ + λg(γ(t, u)) = λ(e(t) + s),

u(0) − u(T ) = 0 = u′(0) − u′(T ), (5)

where λ ∈ (0, 1]. Let u be a possible solution of (5). Let τ ∈ [0, T ) be such that
u(τ) = max[0,T ] u. This implies that (φ(u′(τ)))′ ≤ 0 and u′(τ) = 0. Hence, using (5),
it follows that

λu(τ) ≤ λ[γ(τ, u(τ)) + g(γ(τ, u(τ)))− e(τ) − s],

and there exists a constant C1 > 0 which not depends upon λ and u such that
u(τ) < C1. Analogously, we can prove that there exists a constant C2 which not
depends upon λ and u such that min[0,T ] u > C2. So, there exists C3 > 0 such that

||u||∞ < C3. (6)

Multiplying both members of (5) by u, integrating over [0, T ] and using (6), we
deduce that there exists C4, C5 > 0 such that

||u′||pp < C4 + C5||u
′||p,

which implies that there exists a constant C6 > 0 such that

||u′||p < C6. (7)

Using (5), (6) and (7) it follows easily that there exists R > 0 such that ||u|| < R,
and because, in this case, the function η is given by

η(d) = d −
1

T

∫ T

0
[γ(t, d) + g(γ(t, d))]dt +

1

T

∫ T

0
e(t)dt + s,

we deduce that R can be chosen such that η(−R)η(R) < 0.
III. End of the proof.
Using II and Manásevich-Mawhin continuation theorem, we deduce that

|dLS[I −H(s, ·), BR, 0]| = 1,

where H(s, ·) is the fixed point operator associated to (4). On the other hand, using
I, II and Proposition 2, it follows that every fixed point of the nonlinear operator
H(s, ·) belongs to Ωr

α,β for r sufficiently large, and by excision property of the Leray-
Schauder degree, we deduce that

|dLS[I −H(s, ·), Ωr
α,β, 0]| = 1.

Because G(s, ·) = H(s, ·) on Ωr
α,β, it follows that

|dLS[I − G(s, ·), Ωr
α,β, 0]| = 1,

and by existence property of the Leray-Schauder degree, G(s, ·) has a fixed point in
Ωr

α,β, which is a solution of (2). �
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Let M : C1 → C be the continuous nonlinear operator defined by

M(u)(t) = e(t) − g(u(t)) − f(u(t))u′(t) (t ∈ [0, T ]),

and M̃ : R × C̃1
# → C̃1

# be the completely continuous operator defined by

M̃(u, ũ) = H ◦ φ−1 ◦ (I − Qφ) ◦ [H(I − Q)M ](u + ũ).

If u is a solution of (2), then

1

T

∫ T

0
g(u(t))dt = s, (8)

and ũ = M̃(u, ũ). Reciprocally, if (u, ũ) ∈ R × C̃1
# is such that ũ = M̃(u, ũ), then

u = u+ũ is a solution of (2) with s = 1
T

∫ T
0 g(u(t))dt. In other words, (u, ũ) ∈ R×C̃1

#

satisfies ũ = M̃(u, ũ) if and only if

(|ũ′|p−2ũ′)′ + f(u + ũ)ũ′ + g(u + ũ) = e(t) +
1

T

∫ T

0
g(u + ũ(t))dt

Lemma 2. If f, g : R → R are continuous functions such that g is bounded and if

e ∈ C satisfies (H1), then the set S of solutions (u, ũ) ∈ R × C̃1
# of problem

ũ = M̃(u, ũ)

contains a subset C whose projection on R is R. Moreover, there exists ρ1 > 0 such
that

||ũ||∞ ≤ ρ1 ∀(u, ũ) ∈ S (9)

and for all ǫ > 0, there exists rǫ > 0 such that

||ũ′||∞ ≤ rǫ ∀(u, ũ) ∈ S, |u| ≤ ǫ. (10)

Proof. For each λ ∈ [0, 1] consider the problem

(|ũ′|p−2ũ′)′ + λf(u + ũ)ũ′ + λg(u + ũ) = λe(t) +
λ

T

∫ T

0
g(u + ũ(t))dt, (11)

and assume that (u, ũ) ∈ R × C̃1
# is a solution of (11). Integrating (11) over [0, T ]

after multiplication by ũ, we get, after integration by parts

||ũ′||pp = λ
∫ T

0
[g(u + ũ(t)) − e(t)]ũdt −

λ

T

∫ T

0
g(u + ũ(t))dt

∫ T

0
ũ(t)dt.

Hence, using Sobolev inequality it follows that

||ũ||p
∞

≤ T p/q||ũ′||pp ≤ T p/q[2T sup
R

|g|+ ||e||1]||ũ||∞,

and hence

||ũ||∞ ≤ {T p/q[2T sup
R

|g|+ ||e||1]}
1/p−1 =: ρ1 (12)
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and

||ũ′||p ≤ {[2T sup
R

|g| + ||e||1]ρ1}
1/p. (13)

Let ǫ > 0 be fixed and assume that |u| ≤ ǫ. Using (11), (12) and (13) it follows that

||(|ũ′|p−2ũ′)′||1 ≤ Cǫ,

where Cǫ depends only on e, sup
R
|g| and sup[−(ρ1+ǫ),ρ1+ǫ] |f |. As ũ′ necessarily van-

ishes at one point, this gives

||ũ′||∞ ≤ φ−1(Cǫ) =: rǫ. (14)

Taking λ = 1 in (11) and using (12) and (14) we deduce (9) and (10).

Let u ∈ R be fixed and Mu : [0, 1] × C̃1
# → C̃1

# be the completely continuous
operator defined by

Mu(λ, ũ) = H ◦ φ−1 ◦ (I − Qφ) ◦ [λH(I − Q)M ](u + ũ).

For (λ, ũ) ∈ [0, 1]× C̃1
#, we have that Mu(λ, ũ) = ũ if and only if (u, ũ) is a solution

of (11). Hence, using (12), (14) and the homotopy invariance property of the Leray-
Schauder degree, it follows that

dLS[I −Mu(1, ·), Br, 0] = dLS[I −Mu(0, ·), Br, 0]

= dLS[I, Br, 0] = 1,

for some r sufficiently large. This, together with the existence property of the Leray-

Schauder degree give the existence of some ũ ∈ C̃1
# such that M̃(u, ũ) = Mu(1, ũ) =

ũ. This completes the proof. �

In what follows we assume that (H1)-(H3) hold.
Let us define

Sj = {s ∈ R : (2) has at least j solutions } (j ≥ 1).

Lemma 3. If s ∈ S1, then 0 < s ≤ sup
R
|g|.

Proof. Assumptions (H2) and (H3) imply that g is bounded and 0 < g(u) ≤ sup
R
|g|

for all u ∈ R. Hence, if u is a solution of (2) then, using (H1), it follows that (8)
holds and 0 < s ≤ sup

R
|g|. �

Let γ : R × C̃1
# → R be the continuous function defined by

γ(u, ũ) =
1

T

∫ T

0
g(u + ũ(t)) dt.

Lemma 4. S1 6= ∅.

Proof. Let (u, ũ) ∈ C, where C is given in Lemma 2. Then u = u + ũ is a solution of
(2) with s = γ(u, ũ). �

Let us consider
s∗(e) = sup S1.
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Lemma 5. We have that 0 < s∗(e) ≤ sup
R
|g| and s∗(e) ∈ S1.

Proof. The first assertion follows from Lemma 3. Let {sn} be a sequence belonging
to S1 which converges to s∗(e). Let un = un + ũn be a solution of (2) with s =
sn = γ(un, ũn). It follows that ũn = M̃(un, ũn). Hence, if up to a subsequence
un → ±∞, then using (9) and (H3), it follows that γ(un, ũn) → 0, which means
that s∗(e) = 0, contradiction. We have proved that {un} is a bounded sequence in

R and using (9) and (10) it follows that {(un, ũn)} is a bounded sequence in R× C̃1
#.

Because M̃ is completely continuous, we can assume, passing to a subsequence, that
M̃(un, ũn) → ũ and un → u. We deduce that ũ = M̃(u, ũ), γ(u, ũ) = s∗(e) and u is
a solution of (2) with s = s∗(e). �

Arguing as in the proof of Lemma 5 we deduce the following a priori estimate
result.

Lemma 6. Let 0 < s1 < s∗(e). Then, there is ρ′ > 0 such that any possible solution
u of (2) with s ∈ [s1, s

∗(e)] belongs to Bρ′.

Lemma 7. We have (0, s∗(e)) ⊂ S2.

Proof. Let s1, s2 ∈ R such that 0 < s1 < s∗(e) < s2. Using Lemma 3, Lemma 6 and
the invariance property of the Leray-Schauder degree, it follows that there is ρ′ > 0
sufficiently large such that dLS[I −G(s, ·), Bρ′, 0] is well defined and independent of
s ∈ [s1, s2]. However, using Lemma 3 we deduce that u−G(s2, u) 6= 0 for all u ∈ C1

#.
This implies that dLS[I−G(s2, ·), Bρ′, 0] = 0, so that dLS[I−G(s1, ·), Bρ′, 0] = 0 and,
by excision property of the Leray-Schauder degree,

dLS[I − G(s1, ·), Bρ′′, 0] = 0 if ρ′′ ≥ ρ′. (15)

Let u∗ be a solution of (2) with s = s∗(e) given by Lemma 5. Then, u∗ is a strict
lower solution of (2) with s = s1. Using Lemma 2 and (H3), there is (u∗, ũ∗) ∈ C
such that u∗ = u∗ + ũ∗ > u∗ on [0, T ] and γ(u∗, ũ∗) < s1. It follows that u∗ is a strict
upper solution of (2) with s = s1. So, using Lemma 1, we have that

|dLS[I − G(s1, ·), Ω
r
u∗,u∗ , 0]| = 1, (16)

for some r > 0, and (1) has a solution in Ωr
u∗,u∗. Taking ρ′′ sufficiently large and

using (15) and (16), we deduce from the additivity property of the Leray-Schauder
degree that

|dLS[I − G(s1, ·), Bρ′′\Ωr
u∗,u∗ , 0]| = |dLS[I − G(s1, ·), Bρ′′, 0]

−dLS[I − G(s1, ·), Ω
r
u∗,u∗ , 0]| = |dLS[I − G(s1, ·), Ω

r
u∗,u∗ , 0]| = 1,

and (2) with s = s1 has a second solution in Bρ′′ \ Ωr
u∗,u∗. �

End of the proof of Theorem 2. The conclusion of Theorem 2 follows from
Lemmas 3, 5 and 7. �
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