Multiple periodic solutions of some Liénard equations with p-Laplacian

Cristian Bereanu

Abstract

The existence, non-existence and multiplicity of solutions to periodic boundary value problems of Liénard type

 $(|u'|^{p-2}u')' + f(u)u' + g(u) = e(t) + s, \quad u(0) - u(T) = 0 = u'(0) - u'(T),$

is discussed, where p > 1, f is arbitrary and g is assumed to be bounded, positive and $g(\pm \infty) = 0$. The function e is continuous on [0, T] with mean value 0 and s is a parameter.

1 Introduction and the main result

Consider periodic boundary value problems of the form

$$(\phi(u'))' + g(u) = e(t) + s, \quad u(0) - u(T) = 0 = u'(0) - u'(T), \tag{1}$$

where $\phi : (-a, a) \to \mathbb{R}$ is an increasing homeomorphism such that $\phi(0) = 0$ and $0 < a \leq +\infty, g : \mathbb{R} \to \mathbb{R}, e : [0, T] \to \mathbb{R}$ are continuous functions and $s \in \mathbb{R}$ is a parameter. Assume that the following assumptions are satisfied.

(H1) $\int_0^T e(t)dt = 0.$

- (H2) g(u) > 0 for all $u \in \mathbb{R}$.
- (H3) $g(\pm \infty) = \lim_{u \to \pm \infty} g(u) = 0.$

Received by the editors March 2007.

Communicated by J. Mawhin.

2000 Mathematics Subject Classification : 34B15, 34B16, 34C25.

Key words and phrases : p-Laplacian, Liénard equations, periodic solutions, Leray-Schauder degree.

Bull. Belg. Math. Soc. Simon Stevin 15 (2008), 277-285

By solution of (1) we mean a function $u \in C^1([0,T])$ such that $\phi \circ u' \in C^1([0,T])$ and which verifies (1). The main result in [1] is the following one.

Theorem 1. If $\phi : (-a, a) \to \mathbb{R}$ with $0 < a \leq +\infty$ and conditions (H1)-(H3) hold, there exists $s^*(e) \in (0, \sup_R g]$ such that problem (1) has zero, at least one or at least two solutions according to $s \notin (0, s^*(e)]$, $s = s^*(e)$ or $s \in (0, s^*(e))$.

This type of result has been initiated by Ward [6] without multiplicity conclusion and $\phi(v) = v$. In the case $\phi(v) = |v|^{p-2}v$ for some p > 1, we generalize the result above as follows.

Consider periodic boundary value problems of Liénard type

$$(|u'|^{p-2}u')' + f(u)u' + g(u) = e(t) + s, \quad u(0) - u(T) = 0 = u'(0) - u'(T), \quad (2)$$

where p > 1, $f : \mathbb{R} \to \mathbb{R}$ is a continuous function and g, e and s are as above. The main result of this paper is the following one.

Theorem 2. If conditions (H1)-(H3) hold, there exists $s^*(e) \in (0, \sup_R g]$ such that problem (2) has zero, at least one or at least two solutions according to $s \notin (0, s^*(e)]$, $s = s^*(e)$ or $s \in (0, s^*(e))$.

To prove our main result, we use an approach similar to that in [1], but with technical differences due to the presence of f(u)u'. In what follows $\phi : \mathbb{R} \to \mathbb{R}$ denotes the increasing homeomorphism defined by

$$\phi(v) = |v|^{p-2}v$$

If $\Omega \subset X$ is an open set of a normed space X and if $S : \overline{\Omega} \to X$ is completely continuous and such that $0 \notin (I - S)(\partial \Omega)$, then $d_{LS}[I - S, \Omega, 0]$ denotes the Leray-Schauder degree with respect to Ω and 0. For the definition and properties of the Leray-Schauder degree see [3].

2 Notation and auxiliary results

Let C denote the Banach space of continuous functions on [0, T] endowed with the uniform norm $\|\cdot\|_{\infty}$, C^1 denotes the Banach space of continuously differentiable functions on [0, T], equipped with the norm $\|u\| = \|u\|_{\infty} + \|u'\|_{\infty}$. We consider its closed subspace

$$C^1_{\#} = \{ u \in C^1 : u(0) = u(T), u'(0) = u'(T) \},\$$

and denote corresponding open balls of center 0 and radius r by B_r . We denote by $P, Q: C \to C$ the continuous projectors defined by

$$P, Q: C \to C, \quad Pu(t) = u(0), \quad Qu(t) = \frac{1}{T} \int_0^T u(\tau) \, d\tau \quad (t \in [0, T]),$$

and define the continuous linear operator $H: C \to C^1$ by

$$Hu(t) = \int_0^t u(\tau) \, d\tau \quad (t \in [0, T]).$$

A technical result from [4] is needed for the construction of the equivalent fixed point problems.

Proposition 1. For each $h \in C$, there exists a unique $\alpha := Q_{\phi}(h) \in Range h$ such that

$$\int_0^T \phi^{-1}(h(t) - \alpha) \, dt = 0.$$

Moreover, the function $Q_{\phi}: C \to \mathbb{R}$ is continuous.

The following fixed point reformulation of periodic boundary value problems like (2) is taken from [4].

Proposition 2. Assume that $F : C^1 \to C$ is continuous and takes bounded sets into bounded sets. Then u is a solution of the abstract periodic problem

$$(\phi(u'))' = F(u), \quad u(0) - u(T) = 0 = u'(0) - u'(T)$$

if and only if $u \in C^1_{\#}$ is a fixed point of the operator $M^F_{\#}$ defined on $C^1_{\#}$ by

$$M_{\#}^{F}(u) = Pu + QF(u) + H \circ \phi^{-1} \circ (I - Q_{\phi}) \circ [H(I - Q)F](u).$$

Furthermore, $M_{\#}^F$ is completely continuous on $C_{\#}^1$.

The following result is a continuation theorem due to Manásevich and Mawhin [4].

Proposition 3. Let $h: [0,T] \times \mathbb{R}^2 \to \mathbb{R}$ be a continuous function and assume that there exists R > 0 such that the following conditions hold.

(i) For each $\lambda \in (0, 1]$ the problem

$$(\phi(u'))' = \lambda h(t, u, u'), \quad u(0) - u(T) = 0 = u'(0) - u'(T),$$

has no solution on ∂B_R .

(ii) The continuous function $\eta : \mathbb{R} \to \mathbb{R}$

$$\eta(d) := \frac{1}{T} \int_0^T h(t, d, 0) dt = 0,$$

is such that $\eta(-R)\eta(R) < 0$.

Then problem

$$(\phi(u'))' = h(t, u, u'), \quad u(0) - u(T) = 0 = u'(0) - u'(T), \tag{3}$$

has a least one solution in B_R , and

$$d_{LS}[I - M^h_{\#}, B_R, 0]| = 1,$$

where $M^h_{\#}$ denotes the fixed point operator associated to (3).

Let us decompose any $u \in C^1_{\#}$ in the form

$$u = \overline{u} + \widetilde{u}$$
 $(\overline{u} = u(0), \quad \widetilde{u}(0) = 0),$

and let

$$\widetilde{C^1_{\#}} = \{ u \in C^1_{\#} : u(0) = 0 \}.$$

The following inequality will be very useful in the sequel:

$$||\tilde{u}||_{\infty} \le T^{1/q} ||u'||_p \quad \forall u \in C^1_{\#}, \qquad (Sobolev),$$

where 1/p + 1/q = 1 and $||u||_p = (\int_0^T u(t)dt)^{1/p}$ for all $u \in C$.

3 Proof of the main result

For $s \in \mathbb{R}$, we define the continuous nonlinear operator $N_s : C^1 \to C$ by

$$N_s(u)(t) = e(t) + s - g(u(t)) - f(u(t))u'(t) \quad (t \in [0, T]).$$

Using Proposition 2, it follows that $u \in C^1_{\#}$ is a solution of (2) if and only if

$$u = Pu + QN_s(u) + H \circ \phi^{-1} \circ (I - Q_\phi) \circ [H(I - Q)N_s](u) =: \mathcal{G}(s, u),$$

and the nonlinear operator $\mathcal{G}(s, \cdot) : C^1_{\#} \to C^1_{\#}$ is completely continuous.

A strict lower solution α (resp. strict upper solution β) of (2) is a function $\alpha \in C^1$ such that $\phi(\alpha') \in C^1$, $\alpha(0) = \alpha(T)$, $\alpha'(0) \ge \alpha'(T)$ (resp. $\beta \in C^1$, $\phi(\beta') \in C^1$, $\beta(0) = \beta(T)$, $\beta'(0) \le \beta'(T)$) and

$$(\phi(\alpha'(t)))' + f(\alpha(t))\alpha'(t) + g(\alpha(t)) > e(t) + s$$

(resp.

$$(\phi(\beta'(t)))' + f(\beta(t))\beta'(t) + g(\beta(t)) < e(t) + s)$$

for all $t \in [0, T]$.

Lemma 1. If $f, g : \mathbb{R} \to \mathbb{R}$ are continuous functions, $e \in C$ and if (2) has a strict lower solution α and a strict upper solution β such that $\alpha(t) \leq \beta(t)$ for all $t \in [0, T]$, then problem (2) has a solution u such that $\alpha(t) < u(t) < \beta(t)$ for all $t \in [0, T]$. Moreover,

$$|d_{LS}[I - \mathcal{G}(s, \cdot), \Omega^r_{\alpha, \beta}, 0]| = 1,$$

where

$$\Omega^{r}_{\alpha,\beta} = \{ u \in C^{1}_{\#} : \alpha(t) < u(t) < \beta(t) \quad for \ all \quad t \in [0,T], \quad \|u'\|_{\infty} < r \},$$

and r is sufficiently large.

Proof. I. A modified problem.

Let $\gamma: [0,T] \times \mathbb{R} \to \mathbb{R}$ be the continuous function defined by

$$\gamma(t, u) = \begin{cases} \beta(t), & u > \beta(t) \\ u, & \alpha(t) \le u \le \beta(t) \\ \alpha(t), & u < \alpha(t). \end{cases}$$

We consider the modified problem

$$(|u'|^{p-2}u')' - [u - \gamma(t, u)] + f(\gamma(t, u))u' + g(\gamma(t, u)) = e(t) + s,$$

$$u(0) - u(T) = 0 = u'(0) - u'(T).$$
(4)

It is not difficult to show that if u is a solution of (4), then $\alpha(t) < u(t) < \beta(t)$ for all $t \in [0, T]$ and hence u is a solution of (2) (see [5], [2]). II. A priori estimations. In order to apply Manásevich-Mawhin continuation theorem to problem (4), we consider the family of problems

$$(|u'|^{p-2}u')' - \lambda[u - \gamma(t, u)] + \lambda f(\gamma(t, u))u' + \lambda g(\gamma(t, u)) = \lambda(e(t) + s),$$

$$u(0) - u(T) = 0 = u'(0) - u'(T),$$
(5)

where $\lambda \in (0, 1]$. Let u be a possible solution of (5). Let $\tau \in [0, T)$ be such that $u(\tau) = \max_{[0,T]} u$. This implies that $(\phi(u'(\tau)))' \leq 0$ and $u'(\tau) = 0$. Hence, using (5), it follows that

$$\lambda u(\tau) \le \lambda [\gamma(\tau, u(\tau)) + g(\gamma(\tau, u(\tau))) - e(\tau) - s],$$

and there exists a constant $C_1 > 0$ which not depends upon λ and u such that $u(\tau) < C_1$. Analogously, we can prove that there exists a constant C_2 which not depends upon λ and u such that $\min_{[0,T]} u > C_2$. So, there exists $C_3 > 0$ such that

$$||u||_{\infty} < C_3. \tag{6}$$

Multiplying both members of (5) by u, integrating over [0, T] and using (6), we deduce that there exists $C_4, C_5 > 0$ such that

$$||u'||_p^p < C_4 + C_5||u'||_p,$$

which implies that there exists a constant $C_6 > 0$ such that

$$||u'||_p < C_6. (7)$$

Using (5), (6) and (7) it follows easily that there exists R > 0 such that ||u|| < R, and because, in this case, the function η is given by

$$\eta(d) = d - \frac{1}{T} \int_0^T [\gamma(t, d) + g(\gamma(t, d))] dt + \frac{1}{T} \int_0^T e(t) dt + s,$$

we deduce that R can be chosen such that $\eta(-R)\eta(R) < 0$. III. End of the proof.

Using II and Manásevich-Mawhin continuation theorem, we deduce that

$$|d_{LS}[I - \mathcal{H}(s, \cdot), B_R, 0]| = 1,$$

where $\mathcal{H}(s, \cdot)$ is the fixed point operator associated to (4). On the other hand, using I, II and Proposition 2, it follows that every fixed point of the nonlinear operator $\mathcal{H}(s, \cdot)$ belongs to $\Omega^r_{\alpha,\beta}$ for r sufficiently large, and by excision property of the Leray-Schauder degree, we deduce that

$$|d_{LS}[I - \mathcal{H}(s, \cdot), \Omega^r_{\alpha, \beta}, 0]| = 1.$$

Because $\mathcal{G}(s, \cdot) = \mathcal{H}(s, \cdot)$ on $\overline{\Omega^r_{\alpha,\beta}}$, it follows that

$$|d_{LS}[I - \mathcal{G}(s, \cdot), \Omega^r_{\alpha, \beta}, 0]| = 1,$$

and by existence property of the Leray-Schauder degree, $\mathcal{G}(s, \cdot)$ has a fixed point in $\Omega^r_{\alpha,\beta}$, which is a solution of (2).

Let $M: C^1 \to C$ be the continuous nonlinear operator defined by

$$M(u)(t) = e(t) - g(u(t)) - f(u(t))u'(t) \quad (t \in [0, T]),$$

and $\widetilde{M}: \mathbb{R} \times \widetilde{C}^1_\# \to \widetilde{C}^1_\#$ be the completely continuous operator defined by

$$\widetilde{M}(\overline{u},\widetilde{u}) = H \circ \phi^{-1} \circ (I - Q_{\phi}) \circ [H(I - Q)M](\overline{u} + \widetilde{u}).$$

If u is a solution of (2), then

$$\frac{1}{T}\int_0^T g(u(t))dt = s,\tag{8}$$

and $\tilde{u} = \widetilde{M}(\overline{u}, \tilde{u})$. Reciprocally, if $(\overline{u}, \tilde{u}) \in \mathbb{R} \times \widetilde{C}_{\#}^{1}$ is such that $\tilde{u} = \widetilde{M}(\overline{u}, \tilde{u})$, then $u = \overline{u} + \tilde{u}$ is a solution of (2) with $s = \frac{1}{T} \int_{0}^{T} g(u(t)) dt$. In other words, $(\overline{u}, \tilde{u}) \in \mathbb{R} \times \widetilde{C}_{\#}^{1}$ satisfies $\tilde{u} = \widetilde{M}(\overline{u}, \tilde{u})$ if and only if

$$(|\tilde{u}'|^{p-2}\tilde{u}')' + f(\overline{u} + \tilde{u})\tilde{u}' + g(\overline{u} + \tilde{u}) = e(t) + \frac{1}{T}\int_0^T g(\overline{u} + \tilde{u}(t))dt$$

Lemma 2. If $f, g : \mathbb{R} \to \mathbb{R}$ are continuous functions such that g is bounded and if $e \in C$ satisfies (H1), then the set S of solutions $(\overline{u}, \widetilde{u}) \in \mathbb{R} \times \widetilde{C}^1_{\#}$ of problem

$$\widetilde{u} = M(\overline{u}, \widetilde{u})$$

contains a subset C whose projection on \mathbb{R} is \mathbb{R} . Moreover, there exists $\rho_1 > 0$ such that

$$\|\widetilde{u}\|_{\infty} \le \rho_1 \quad \forall (\overline{u}, \widetilde{u}) \in \mathcal{S}$$

$$\tag{9}$$

and for all $\epsilon > 0$, there exists $r_{\epsilon} > 0$ such that

$$||\widetilde{u}'||_{\infty} \le r_{\epsilon} \quad \forall (\overline{u}, \widetilde{u}) \in \mathcal{S}, |\overline{u}| \le \epsilon.$$
(10)

Proof. For each $\lambda \in [0, 1]$ consider the problem

$$(|\tilde{u}'|^{p-2}\tilde{u}')' + \lambda f(\overline{u} + \tilde{u})\tilde{u}' + \lambda g(\overline{u} + \tilde{u}) = \lambda e(t) + \frac{\lambda}{T} \int_0^T g(\overline{u} + \tilde{u}(t))dt, \qquad (11)$$

and assume that $(\overline{u}, \widetilde{u}) \in \mathbb{R} \times \widetilde{C}^{1}_{\#}$ is a solution of (11). Integrating (11) over [0, T] after multiplication by \widetilde{u} , we get, after integration by parts

$$||\widetilde{u}'||_p^p = \lambda \int_0^T [g(\overline{u} + \widetilde{u}(t)) - e(t)]\widetilde{u}dt - \frac{\lambda}{T} \int_0^T g(\overline{u} + \widetilde{u}(t))dt \int_0^T \widetilde{u}(t)dt.$$

Hence, using Sobolev inequality it follows that

$$||\tilde{u}||_{\infty}^{p} \leq T^{p/q} ||\tilde{u}'||_{p}^{p} \leq T^{p/q} [2T \sup_{\mathbb{R}} |g| + ||e||_{1}] ||\tilde{u}||_{\infty}$$

and hence

$$||\tilde{u}||_{\infty} \leq \{T^{p/q}[2T\sup_{\mathbb{R}}|g|+||e||_{1}]\}^{1/p-1} =: \rho_{1}$$
(12)

and

$$||\tilde{u}'||_p \le \{ [2T \sup_{\mathbb{R}} |g| + ||e||_1] \rho_1 \}^{1/p}.$$
(13)

Let $\epsilon > 0$ be fixed and assume that $|\overline{u}| \leq \epsilon$. Using (11), (12) and (13) it follows that

$$||(|\widetilde{u}'|^{p-2}\widetilde{u}')'||_1 \le C_{\epsilon},$$

where C_{ϵ} depends only on $e, \sup_{\mathbb{R}} |g|$ and $\sup_{[-(\rho_1+\epsilon),\rho_1+\epsilon]} |f|$. As \tilde{u}' necessarily vanishes at one point, this gives

$$||\tilde{u}'||_{\infty} \le \phi^{-1}(C_{\epsilon}) =: r_{\epsilon}.$$
(14)

Taking $\lambda = 1$ in (11) and using (12) and (14) we deduce (9) and (10).

Let $\overline{u} \in \mathbb{R}$ be fixed and $\mathcal{M}_{\overline{u}} : [0,1] \times \widetilde{C}_{\#}^1 \to \widetilde{C}_{\#}^1$ be the completely continuous operator defined by

$$\mathcal{M}_{\overline{u}}(\lambda,\widetilde{u}) = H \circ \phi^{-1} \circ (I - Q_{\phi}) \circ [\lambda H(I - Q)M](\overline{u} + \widetilde{u}).$$

For $(\lambda, \tilde{u}) \in [0, 1] \times \widetilde{C}_{\#}^{1}$, we have that $\mathcal{M}_{\overline{u}}(\lambda, \tilde{u}) = \tilde{u}$ if and only if $(\overline{u}, \tilde{u})$ is a solution of (11). Hence, using (12), (14) and the homotopy invariance property of the Leray-Schauder degree, it follows that

$$d_{LS}[I - \mathcal{M}_{\overline{u}}(1, \cdot), B_r, 0] = d_{LS}[I - \mathcal{M}_{\overline{u}}(0, \cdot), B_r, 0]$$

= $d_{LS}[I, B_r, 0] = 1,$

for some r sufficiently large. This, together with the existence property of the Leray-Schauder degree give the existence of some $\tilde{u} \in \widetilde{C}^1_{\#}$ such that $\widetilde{M}(\overline{u}, \widetilde{u}) = \mathcal{M}_{\overline{u}}(1, \widetilde{u}) = \widetilde{u}$. This completes the proof.

In what follows we assume that (H1)-(H3) hold. Let us define

 $S_j = \{s \in \mathbb{R} : (2) \text{ has at least j solutions } \} \quad (j \ge 1).$

Lemma 3. If $s \in S_1$, then $0 < s \le \sup_{\mathbb{R}} |g|$.

Proof. Assumptions (H2) and (H3) imply that g is bounded and $0 < g(u) \le \sup_{\mathbb{R}} |g|$ for all $u \in \mathbb{R}$. Hence, if u is a solution of (2) then, using (H1), it follows that (8) holds and $0 < s \le \sup_{\mathbb{R}} |g|$.

Let $\gamma : \mathbb{R} \times \widetilde{C}^{1}_{\#} \to \mathbb{R}$ be the continuous function defined by

$$\gamma(\overline{u}, \widetilde{u}) = \frac{1}{T} \int_0^T g(\overline{u} + \widetilde{u}(t)) dt.$$

Lemma 4. $S_1 \neq \emptyset$.

Proof. Let $(\overline{u}, \widetilde{u}) \in \mathcal{C}$, where \mathcal{C} is given in Lemma 2. Then $u = \overline{u} + \widetilde{u}$ is a solution of (2) with $s = \gamma(\overline{u}, \widetilde{u})$.

Let us consider

$$s^*(e) = \sup S_1.$$

Lemma 5. We have that $0 < s^*(e) \leq \sup_{\mathbb{R}} |g|$ and $s^*(e) \in S_1$.

Proof. The first assertion follows from Lemma 3. Let $\{s_n\}$ be a sequence belonging to S_1 which converges to $s^*(e)$. Let $u_n = \overline{u}_n + \widetilde{u}_n$ be a solution of (2) with $s = s_n = \gamma(\overline{u}_n, \widetilde{u}_n)$. It follows that $\widetilde{u}_n = \widetilde{M}(\overline{u}_n, \widetilde{u}_n)$. Hence, if up to a subsequence $\overline{u}_n \to \pm \infty$, then using (9) and (H3), it follows that $\gamma(\overline{u}_n, \widetilde{u}_n) \to 0$, which means that $s^*(e) = 0$, contradiction. We have proved that $\{\overline{u}_n\}$ is a bounded sequence in \mathbb{R} and using (9) and (10) it follows that $\{(\overline{u}_n, \widetilde{u}_n)\}$ is a bounded sequence in $\mathbb{R} \times \widetilde{C}_{\#}^1$. Because \widetilde{M} is completely continuous, we can assume, passing to a subsequence, that $\widetilde{M}(\overline{u}_n, \widetilde{u}_n) \to \widetilde{u}$ and $\overline{u}_n \to \overline{u}$. We deduce that $\widetilde{u} = \widetilde{M}(\overline{u}, \widetilde{u}), \gamma(\overline{u}, \widetilde{u}) = s^*(e)$ and u is a solution of (2) with $s = s^*(e)$.

Arguing as in the proof of Lemma 5 we deduce the following a priori estimate result.

Lemma 6. Let $0 < s_1 < s^*(e)$. Then, there is $\rho' > 0$ such that any possible solution u of (2) with $s \in [s_1, s^*(e)]$ belongs to $B_{\rho'}$.

Lemma 7. We have $(0, s^*(e)) \subset S_2$.

Proof. Let $s_1, s_2 \in \mathbb{R}$ such that $0 < s_1 < s^*(e) < s_2$. Using Lemma 3, Lemma 6 and the invariance property of the Leray-Schauder degree, it follows that there is $\rho' > 0$ sufficiently large such that $d_{LS}[I - \mathcal{G}(s, \cdot), B_{\rho'}, 0]$ is well defined and independent of $s \in [s_1, s_2]$. However, using Lemma 3 we deduce that $u - \mathcal{G}(s_2, u) \neq 0$ for all $u \in C^1_{\#}$. This implies that $d_{LS}[I - \mathcal{G}(s_2, \cdot), B_{\rho'}, 0] = 0$, so that $d_{LS}[I - \mathcal{G}(s_1, \cdot), B_{\rho'}, 0] = 0$ and, by excision property of the Leray-Schauder degree,

$$d_{LS}[I - \mathcal{G}(s_1, \cdot), B_{\rho''}, 0] = 0 \quad \text{if} \quad \rho'' \ge \rho'.$$
(15)

Let u_* be a solution of (2) with $s = s^*(e)$ given by Lemma 5. Then, u_* is a strict lower solution of (2) with $s = s_1$. Using Lemma 2 and (H3), there is $(\overline{u}^*, \widetilde{u}^*) \in \mathcal{C}$ such that $u^* = \overline{u}^* + \widetilde{u}^* > u_*$ on [0, T] and $\gamma(\overline{u}^*, \widetilde{u}^*) < s_1$. It follows that u^* is a strict upper solution of (2) with $s = s_1$. So, using Lemma 1, we have that

$$|d_{LS}[I - \mathcal{G}(s_1, \cdot), \Omega^r_{u_*, u^*}, 0]| = 1,$$
(16)

for some r > 0, and (1) has a solution in $\Omega^r_{u_*,u^*}$. Taking ρ'' sufficiently large and using (15) and (16), we deduce from the additivity property of the Leray-Schauder degree that

$$\begin{aligned} |d_{LS}[I - \mathcal{G}(s_1, \cdot), B_{\rho''} \setminus \overline{\Omega^r}_{u_*, u^*}, 0]| &= |d_{LS}[I - \mathcal{G}(s_1, \cdot), B_{\rho''}, 0] \\ - d_{LS}[I - \mathcal{G}(s_1, \cdot), \Omega^r_{u_*, u^*}, 0]| &= |d_{LS}[I - \mathcal{G}(s_1, \cdot), \Omega^r_{u_*, u^*}, 0]| = 1, \end{aligned}$$

and (2) with $s = s_1$ has a second solution in $B_{\rho''} \setminus \overline{\Omega^r}_{u_*,u^*}$.

End of the proof of Theorem 2. The conclusion of Theorem 2 follows from Lemmas 3, 5 and 7.

References

- C. Bereanu, J. Mawhin, Multiple periodic solutions of ordinary differential equations with bounded nonlinearities and φ-Laplacian, NoDEA Nonlin. Differential Eq. Appl., to appear.
- [2] C. Bereanu, J. Mawhin, Periodic solutions of nonlinear perturbations of φ-Laplacians with possibly bounded φ, Nonlinear Anal. TMA. 68 (2008), 1668– 1681.
- [3] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.
- [4] R. Manásevich, J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian-like operators, J. Differential Equations 145 (1998), 367-393.
- [5] J. Mawhin, The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian, J. European Math. Soc. 8 (2006), 375-388.
- [6] J.R. Ward, Periodic solutions of ordinary differential equations with bounded nonlinearities, Topol. Methods Nonlinear Anal., 19 (2002), 275-282.

Département de Mathématique, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium bereanu@math.ucl.ac.be