Multiple periodic solutions of some Liénard equations with p-Laplacian

Cristian Bereanu

Abstract

The existence, non-existence and multiplicity of solutions to periodic boundary value problems of Liénard type $$
\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+f(u) u^{\prime}+g(u)=e(t)+s, \quad u(0)-u(T)=0=u^{\prime}(0)-u^{\prime}(T),
$$ is discussed, where $p>1, f$ is arbitrary and g is assumed to be bounded, positive and $g(\pm \infty)=0$. The function e is continuous on $[0, T]$ with mean value 0 and s is a parameter.

1 Introduction and the main result

Consider periodic boundary value problems of the form

$$
\begin{equation*}
\left(\phi\left(u^{\prime}\right)\right)^{\prime}+g(u)=e(t)+s, \quad u(0)-u(T)=0=u^{\prime}(0)-u^{\prime}(T), \tag{1}
\end{equation*}
$$

where $\phi:(-a, a) \rightarrow \mathbb{R}$ is an increasing homeomorphism such that $\phi(0)=0$ and $0<a \leq+\infty, g: \mathbb{R} \rightarrow \mathbb{R}, e:[0, T] \rightarrow \mathbb{R}$ are continuous functions and $s \in \mathbb{R}$ is a parameter. Assume that the following assumptions are satisfied.
(H1) $\int_{0}^{T} e(t) d t=0$.
(H2) $g(u)>0$ for all $u \in \mathbb{R}$.
(H3) $g(\pm \infty)=\lim _{u \rightarrow \pm \infty} g(u)=0$.

[^0]By solution of (1) we mean a function $u \in C^{1}([0, T])$ such that $\phi \circ u^{\prime} \in C^{1}([0, T])$ and which verifies (1). The main result in [1] is the following one.

Theorem 1. If $\phi:(-a, a) \rightarrow \mathbb{R}$ with $0<a \leq+\infty$ and conditions (H1)-(H3) hold, there exists $s^{*}(e) \in\left(0, \sup _{R} g\right]$ such that problem (1) has zero, at least one or at least two solutions according to $s \notin\left(0, s^{*}(e)\right], s=s^{*}(e)$ or $s \in\left(0, s^{*}(e)\right)$.

This type of result has been initiated by Ward [6] without multiplicity conclusion and $\phi(v)=v$. In the case $\phi(v)=|v|^{p-2} v$ for some $p>1$, we generalize the result above as follows.

Consider periodic boundary value problems of Liénard type

$$
\begin{equation*}
\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+f(u) u^{\prime}+g(u)=e(t)+s, \quad u(0)-u(T)=0=u^{\prime}(0)-u^{\prime}(T), \tag{2}
\end{equation*}
$$

where $p>1, f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function and g, e and s are as above. The main result of this paper is the following one.

Theorem 2. If conditions (H1)-(H3) hold, there exists $s^{*}(e) \in\left(0, \sup _{R} g\right]$ such that problem (2) has zero, at least one or at least two solutions according to $s \notin\left(0, s^{*}(e)\right]$, $s=s^{*}(e)$ or $s \in\left(0, s^{*}(e)\right)$.

To prove our main result, we use an approach similar to that in [1], but with technical differences due to the presence of $f(u) u^{\prime}$. In what follows $\phi: \mathbb{R} \rightarrow \mathbb{R}$ denotes the increasing homeomorphism defined by

$$
\phi(v)=|v|^{p-2} v .
$$

If $\Omega \subset X$ is an open set of a normed space X and if $S: \bar{\Omega} \rightarrow X$ is completely continuous and such that $0 \notin(I-S)(\partial \Omega)$, then $d_{L S}[I-S, \Omega, 0]$ denotes the LeraySchauder degree with respect to Ω and 0 . For the definition and properties of the Leray-Schauder degree see [3].

2 Notation and auxiliary results

Let C denote the Banach space of continuous functions on $[0, T]$ endowed with the uniform norm $\|\cdot\|_{\infty}, C^{1}$ denotes the Banach space of continuously differentiable functions on $[0, T]$, equipped with the norm $\|u\|=\|u\|_{\infty}+\left\|u^{\prime}\right\|_{\infty}$. We consider its closed subspace

$$
C_{\#}^{1}=\left\{u \in C^{1}: u(0)=u(T), u^{\prime}(0)=u^{\prime}(T)\right\},
$$

and denote corresponding open balls of center 0 and radius r by B_{r}. We denote by $P, Q: C \rightarrow C$ the continuous projectors defined by

$$
P, Q: C \rightarrow C, \quad P u(t)=u(0), \quad Q u(t)=\frac{1}{T} \int_{0}^{T} u(\tau) d \tau \quad(t \in[0, T]),
$$

and define the continuous linear operator $H: C \rightarrow C^{1}$ by

$$
H u(t)=\int_{0}^{t} u(\tau) d \tau \quad(t \in[0, T])
$$

A technical result from [4] is needed for the construction of the equivalent fixed point problems.

Proposition 1. For each $h \in C$, there exists a unique $\alpha:=Q_{\phi}(h) \in$ Range h such that

$$
\int_{0}^{T} \phi^{-1}(h(t)-\alpha) d t=0 .
$$

Moreover, the function $Q_{\phi}: C \rightarrow \mathbb{R}$ is continuous.
The following fixed point reformulation of periodic boundary value problems like (2) is taken from [4].

Proposition 2. Assume that $F: C^{1} \rightarrow C$ is continuous and takes bounded sets into bounded sets. Then u is a solution of the abstract periodic problem

$$
\left(\phi\left(u^{\prime}\right)\right)^{\prime}=F(u), \quad u(0)-u(T)=0=u^{\prime}(0)-u^{\prime}(T)
$$

if and only if $u \in C_{\#}^{1}$ is a fixed point of the operator $M_{\#}^{F}$ defined on $C_{\#}^{1}$ by

$$
M_{\#}^{F}(u)=P u+Q F(u)+H \circ \phi^{-1} \circ\left(I-Q_{\phi}\right) \circ[H(I-Q) F](u) .
$$

Furthermore, $M_{\#}^{F}$ is completely continuous on $C_{\#}^{1}$.
The following result is a continuation theorem due to Manásevich and Mawhin [4].
Proposition 3. Let $h:[0, T] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a continuous function and assume that there exists $R>0$ such that the following conditions hold.
(i) For each $\lambda \in(0,1]$ the problem

$$
\left(\phi\left(u^{\prime}\right)\right)^{\prime}=\lambda h\left(t, u, u^{\prime}\right), \quad u(0)-u(T)=0=u^{\prime}(0)-u^{\prime}(T),
$$

has no solution on ∂B_{R}.
(ii) The continuous function $\eta: \mathbb{R} \rightarrow \mathbb{R}$

$$
\eta(d):=\frac{1}{T} \int_{0}^{T} h(t, d, 0) d t=0
$$

is such that $\eta(-R) \eta(R)<0$.
Then problem

$$
\begin{equation*}
\left(\phi\left(u^{\prime}\right)\right)^{\prime}=h\left(t, u, u^{\prime}\right), \quad u(0)-u(T)=0=u^{\prime}(0)-u^{\prime}(T), \tag{3}
\end{equation*}
$$

has a least one solution in B_{R}, and

$$
\left|d_{L S}\left[I-M_{\#}^{h}, B_{R}, 0\right]\right|=1
$$

where $M_{\#}^{h}$ denotes the fixed point operator associated to (3).
Let us decompose any $u \in C_{\#}^{1}$ in the form

$$
u=\bar{u}+\widetilde{u} \quad(\bar{u}=u(0), \quad \widetilde{u}(0)=0),
$$

and let

$$
\widetilde{C_{\#}^{1}}=\left\{u \in C_{\#}^{1}: u(0)=0\right\} .
$$

The following inequality will be very useful in the sequel:

$$
\|\widetilde{u}\|_{\infty} \leq T^{1 / q}\left\|u^{\prime}\right\|_{p} \quad \forall u \in C_{\#}^{1}, \quad(\text { Sobolev })
$$

where $1 / p+1 / q=1$ and $\|u\|_{p}=\left(\int_{0}^{T} u(t) d t\right)^{1 / p}$ for all $u \in C$.

3 Proof of the main result

For $s \in \mathbb{R}$, we define the continuous nonlinear operator $N_{s}: C^{1} \rightarrow C$ by

$$
N_{s}(u)(t)=e(t)+s-g(u(t))-f(u(t)) u^{\prime}(t) \quad(t \in[0, T]) .
$$

Using Proposition 2, it follows that $u \in C_{\#}^{1}$ is a solution of (2) if and only if

$$
u=P u+Q N_{s}(u)+H \circ \phi^{-1} \circ\left(I-Q_{\phi}\right) \circ\left[H(I-Q) N_{s}\right](u)=: \mathcal{G}(s, u),
$$

and the nonlinear operator $\mathcal{G}(s, \cdot): C_{\#}^{1} \rightarrow C_{\#}^{1}$ is completely continuous.
A strict lower solution α (resp. strict upper solution β) of (2) is a function $\alpha \in C^{1}$ such that $\phi\left(\alpha^{\prime}\right) \in C^{1}, \alpha(0)=\alpha(T), \alpha^{\prime}(0) \geq \alpha^{\prime}(T)\left(\right.$ resp. $\beta \in C^{1}, \phi\left(\beta^{\prime}\right) \in C^{1}$, $\left.\beta(0)=\beta(T), \beta^{\prime}(0) \leq \beta^{\prime}(T)\right)$ and

$$
\left(\phi\left(\alpha^{\prime}(t)\right)\right)^{\prime}+f(\alpha(t)) \alpha^{\prime}(t)+g(\alpha(t))>e(t)+s
$$

(resp.

$$
\left.\left(\phi\left(\beta^{\prime}(t)\right)\right)^{\prime}+f(\beta(t)) \beta^{\prime}(t)+g(\beta(t))<e(t)+s\right)
$$

for all $t \in[0, T]$.
Lemma 1. If $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions, $e \in C$ and if (2) has a strict lower solution α and a strict upper solution β such that $\alpha(t) \leq \beta(t)$ for all $t \in[0, T]$, then problem (2) has a solution u such that $\alpha(t)<u(t)<\beta(t)$ for all $t \in[0, T]$. Moreover,

$$
\left|d_{L S}\left[I-\mathcal{G}(s, \cdot), \Omega_{\alpha, \beta}^{r}, 0\right]\right|=1,
$$

where

$$
\Omega_{\alpha, \beta}^{r}=\left\{u \in C_{\#}^{1}: \alpha(t)<u(t)<\beta(t) \quad \text { for all } t \in[0, T], \quad\left\|u^{\prime}\right\|_{\infty}<r\right\},
$$

and r is sufficiently large.
Proof. I. A modified problem.
Let $\gamma:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ be the continuous function defined by

$$
\gamma(t, u)= \begin{cases}\beta(t), & u>\beta(t) \\ u, & \alpha(t) \leq u \leq \beta(t) \\ \alpha(t), & u<\alpha(t)\end{cases}
$$

We consider the modified problem

$$
\begin{array}{r}
\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}-[u-\gamma(t, u)]+f(\gamma(t, u)) u^{\prime}+g(\gamma(t, u))=e(t)+s, \\
u(0)-u(T)=0=u^{\prime}(0)-u^{\prime}(T) . \tag{4}
\end{array}
$$

It is not difficult to show that if u is a solution of (4), then $\alpha(t)<u(t)<\beta(t)$ for all $t \in[0, T]$ and hence u is a solution of (2) (see [5], [2]).
II. A priori estimations.

In order to apply Manásevich-Mawhin continuation theorem to problem (4), we consider the family of problems

$$
\begin{array}{r}
\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}-\lambda[u-\gamma(t, u)]+\lambda f(\gamma(t, u)) u^{\prime}+\lambda g(\gamma(t, u))=\lambda(e(t)+s), \\
u(0)-u(T)=0=u^{\prime}(0)-u^{\prime}(T), \tag{5}
\end{array}
$$

where $\lambda \in(0,1]$. Let u be a possible solution of (5). Let $\tau \in[0, T)$ be such that $u(\tau)=\max _{[0, T]} u$. This implies that $\left(\phi\left(u^{\prime}(\tau)\right)\right)^{\prime} \leq 0$ and $u^{\prime}(\tau)=0$. Hence, using (5), it follows that

$$
\lambda u(\tau) \leq \lambda[\gamma(\tau, u(\tau))+g(\gamma(\tau, u(\tau)))-e(\tau)-s]
$$

and there exists a constant $C_{1}>0$ which not depends upon λ and u such that $u(\tau)<C_{1}$. Analogously, we can prove that there exists a constant C_{2} which not depends upon λ and u such that $\min _{[0, T]} u>C_{2}$. So, there exists $C_{3}>0$ such that

$$
\begin{equation*}
\|u\|_{\infty}<C_{3} . \tag{6}
\end{equation*}
$$

Multiplying both members of (5) by u, integrating over $[0, T]$ and using (6), we deduce that there exists $C_{4}, C_{5}>0$ such that

$$
\left\|u^{\prime}\right\|_{p}^{p}<C_{4}+C_{5}\left\|u^{\prime}\right\|_{p},
$$

which implies that there exists a constant $C_{6}>0$ such that

$$
\begin{equation*}
\left\|u^{\prime}\right\|_{p}<C_{6} . \tag{7}
\end{equation*}
$$

Using (5), (6) and (7) it follows easily that there exists $R>0$ such that $\|u\|<R$, and because, in this case, the function η is given by

$$
\eta(d)=d-\frac{1}{T} \int_{0}^{T}[\gamma(t, d)+g(\gamma(t, d))] d t+\frac{1}{T} \int_{0}^{T} e(t) d t+s
$$

we deduce that R can be chosen such that $\eta(-R) \eta(R)<0$.
III. End of the proof.

Using II and Manásevich-Mawhin continuation theorem, we deduce that

$$
\left|d_{L S}\left[I-\mathcal{H}(s, \cdot), B_{R}, 0\right]\right|=1,
$$

where $\mathcal{H}(s, \cdot)$ is the fixed point operator associated to (4). On the other hand, using I, II and Proposition 2, it follows that every fixed point of the nonlinear operator $\mathcal{H}(s, \cdot)$ belongs to $\Omega_{\alpha, \beta}^{r}$ for r sufficiently large, and by excision property of the LeraySchauder degree, we deduce that

$$
\left|d_{L S}\left[I-\mathcal{H}(s, \cdot), \Omega_{\alpha, \beta}^{r}, 0\right]\right|=1
$$

Because $\mathcal{G}(s, \cdot)=\mathcal{H}(s, \cdot)$ on $\overline{\Omega_{\alpha, \beta}^{r}}$, it follows that

$$
\left|d_{L S}\left[I-\mathcal{G}(s, \cdot), \Omega_{\alpha, \beta}^{r}, 0\right]\right|=1,
$$

and by existence property of the Leray-Schauder degree, $\mathcal{G}(s, \cdot)$ has a fixed point in $\Omega_{\alpha, \beta}^{r}$, which is a solution of (2).

Let $M: C^{1} \rightarrow C$ be the continuous nonlinear operator defined by

$$
M(u)(t)=e(t)-g(u(t))-f(u(t)) u^{\prime}(t) \quad(t \in[0, T]),
$$

and $\widetilde{M}: \mathbb{R} \times \widetilde{C_{\#}^{1}} \rightarrow \widetilde{C_{\#}^{1}}$ be the completely continuous operator defined by

$$
\widetilde{M}(\bar{u}, \widetilde{u})=H \circ \phi^{-1} \circ\left(I-Q_{\phi}\right) \circ[H(I-Q) M](\bar{u}+\widetilde{u}) .
$$

If u is a solution of (2), then

$$
\begin{equation*}
\frac{1}{T} \int_{0}^{T} g(u(t)) d t=s \tag{8}
\end{equation*}
$$

and $\widetilde{u}=\widetilde{M}(\bar{u}, \widetilde{u})$. Reciprocally, if $(\bar{u}, \widetilde{u}) \in \mathbb{R} \times \widetilde{C_{\#}^{1}}$ is such that $\widetilde{u}=\widetilde{M}(\bar{u}, \widetilde{u})$, then $u=\bar{u}+\widetilde{u}$ is a solution of (2) with $s=\frac{1}{T} \int_{0}^{T} g(u(t)) d t$. In other words, $(\bar{u}, \widetilde{u}) \in \mathbb{R} \times \widetilde{C_{\#}^{1}}$ satisfies $\widetilde{u}=\widetilde{M}(\bar{u}, \widetilde{u})$ if and only if

$$
\left(\left|\widetilde{u}^{\prime}\right|^{p-2} \widetilde{u}^{\prime}\right)^{\prime}+f(\bar{u}+\widetilde{u}) \widetilde{u}^{\prime}+g(\bar{u}+\widetilde{u})=e(t)+\frac{1}{T} \int_{0}^{T} g(\bar{u}+\widetilde{u}(t)) d t
$$

Lemma 2. If $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions such that g is bounded and if $e \in C$ satisfies (H1), then the set \mathcal{S} of solutions $(\bar{u}, \widetilde{u}) \in \mathbb{R} \times \widetilde{C_{\#}^{1}}$ of problem

$$
\widetilde{u}=\widetilde{M}(\bar{u}, \widetilde{u})
$$

contains a subset \mathcal{C} whose projection on \mathbb{R} is \mathbb{R}. Moreover, there exists $\rho_{1}>0$ such that

$$
\begin{equation*}
\|\widetilde{u}\|_{\infty} \leq \rho_{1} \quad \forall(\bar{u}, \widetilde{u}) \in \mathcal{S} \tag{9}
\end{equation*}
$$

and for all $\epsilon>0$, there exists $r_{\epsilon}>0$ such that

$$
\begin{equation*}
\left\|\widetilde{u}^{\prime}\right\|_{\infty} \leq r_{\epsilon} \quad \forall(\bar{u}, \widetilde{u}) \in \mathcal{S},|\bar{u}| \leq \epsilon . \tag{10}
\end{equation*}
$$

Proof. For each $\lambda \in[0,1]$ consider the problem

$$
\begin{equation*}
\left(\left|\widetilde{u}^{\prime}\right|^{p-2} \widetilde{u}^{\prime}\right)^{\prime}+\lambda f(\bar{u}+\widetilde{u}) \widetilde{u}^{\prime}+\lambda g(\bar{u}+\widetilde{u})=\lambda e(t)+\frac{\lambda}{T} \int_{0}^{T} g(\bar{u}+\widetilde{u}(t)) d t \tag{11}
\end{equation*}
$$

and assume that $(\bar{u}, \widetilde{u}) \in \mathbb{R} \times \widetilde{C_{\#}^{1}}$ is a solution of (11). Integrating (11) over $[0, T]$ after multiplication by \widetilde{u}, we get, after integration by parts

$$
\left\|\widetilde{u}^{\prime}\right\|_{p}^{p}=\lambda \int_{0}^{T}[g(\bar{u}+\widetilde{u}(t))-e(t)] \widetilde{u} d t-\frac{\lambda}{T} \int_{0}^{T} g(\bar{u}+\widetilde{u}(t)) d t \int_{0}^{T} \widetilde{u}(t) d t .
$$

Hence, using Sobolev inequality it follows that

$$
\|\widetilde{u}\|_{\infty}^{p} \leq T^{p / q}\left\|\widetilde{u}^{\prime}\right\|_{p}^{p} \leq T^{p / q}\left[2 T \sup _{\mathbb{R}}|g|+\|e\|_{1}\right]\|\widetilde{u}\|_{\infty},
$$

and hence

$$
\begin{equation*}
\|\widetilde{u}\|_{\infty} \leq\left\{T^{p / q}\left[2 T \sup _{\mathbb{R}}|g|+\|e\|_{1}\right]\right\}^{1 / p-1}=: \rho_{1} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\widetilde{u}^{\prime}\right\|_{p} \leq\left\{\left[2 T \sup _{\mathbb{R}}|g|+\|e\|_{1}\right] \rho_{1}\right\}^{1 / p} \tag{13}
\end{equation*}
$$

Let $\epsilon>0$ be fixed and assume that $|\bar{u}| \leq \epsilon$. Using (11), (12) and (13) it follows that

$$
\left\|\left(\left|\widetilde{u}^{\prime}\right|^{p-2} \widetilde{u}^{\prime}\right)^{\prime}\right\|_{1} \leq C_{\epsilon},
$$

where C_{ϵ} depends only on $e, \sup _{\mathbb{R}}|g|$ and $\sup _{\left[-\left(\rho_{1}+\epsilon\right), \rho_{1}+\epsilon\right]}|f|$. As \widetilde{u}^{\prime} necessarily vanishes at one point, this gives

$$
\begin{equation*}
\left\|\widetilde{u}^{\prime}\right\|_{\infty} \leq \phi^{-1}\left(C_{\epsilon}\right)=: r_{\epsilon} . \tag{14}
\end{equation*}
$$

Taking $\lambda=1$ in (11) and using (12) and (14) we deduce (9) and (10).
Let $\bar{u} \in \mathbb{R}$ be fixed and $\mathcal{M}_{\bar{u}}:[0,1] \times \widetilde{C_{\#}^{1}} \rightarrow \widetilde{C_{\#}^{1}}$ be the completely continuous operator defined by

$$
\mathcal{M}_{\bar{u}}(\lambda, \widetilde{u})=H \circ \phi^{-1} \circ\left(I-Q_{\phi}\right) \circ[\lambda H(I-Q) M](\bar{u}+\widetilde{u}) .
$$

For $(\lambda, \widetilde{u}) \in[0,1] \times \widetilde{C_{\#}^{1}}$, we have that $\mathcal{M}_{\bar{u}}(\lambda, \widetilde{u})=\widetilde{u}$ if and only if (\bar{u}, \widetilde{u}) is a solution of (11). Hence, using (12), (14) and the homotopy invariance property of the LeraySchauder degree, it follows that

$$
\begin{aligned}
d_{L S}\left[I-\mathcal{M}_{\bar{u}}(1, \cdot), B_{r}, 0\right] & =d_{L S}\left[I-\mathcal{M}_{\bar{u}}(0, \cdot), B_{r}, 0\right] \\
& =d_{L S}\left[I, B_{r}, 0\right]=1
\end{aligned}
$$

for some r sufficiently large. This, together with the existence property of the LeraySchauder degree give the existence of some $\widetilde{u} \in \widetilde{C_{\#}^{1}}$ such that $\widetilde{M}(\bar{u}, \widetilde{u})=\mathcal{M}_{\bar{u}}(1, \widetilde{u})=$ \widetilde{u}. This completes the proof.

In what follows we assume that (H1)-(H3) hold.
Let us define

$$
S_{j}=\{s \in \mathbb{R}:(2) \text { has at least } \mathrm{j} \text { solutions }\} \quad(j \geq 1)
$$

Lemma 3. If $s \in S_{1}$, then $0<s \leq \sup _{\mathbb{R}}|g|$.
Proof. Assumptions (H2) and (H3) imply that g is bounded and $0<g(u) \leq \sup _{\mathbb{R}}|g|$ for all $u \in \mathbb{R}$. Hence, if u is a solution of (2) then, using (H1), it follows that (8) holds and $0<s \leq \sup _{\mathbb{R}}|g|$.

Let $\gamma: \mathbb{R} \times \widetilde{C_{\#}^{1}} \rightarrow \mathbb{R}$ be the continuous function defined by

$$
\gamma(\bar{u}, \widetilde{u})=\frac{1}{T} \int_{0}^{T} g(\bar{u}+\widetilde{u}(t)) d t
$$

Lemma 4. $S_{1} \neq \varnothing$.
Proof. Let $(\bar{u}, \widetilde{u}) \in \mathcal{C}$, where \mathcal{C} is given in Lemma 2. Then $u=\bar{u}+\widetilde{u}$ is a solution of (2) with $s=\gamma(\bar{u}, \widetilde{u})$.

Let us consider

$$
s^{*}(e)=\sup S_{1} .
$$

Lemma 5. We have that $0<s^{*}(e) \leq \sup _{\mathbb{R}}|g|$ and $s^{*}(e) \in S_{1}$.

Proof. The first assertion follows from Lemma 3. Let $\left\{s_{n}\right\}$ be a sequence belonging to S_{1} which converges to $s^{*}(e)$. Let $u_{n}=\bar{u}_{n}+\widetilde{u}_{n}$ be a solution of (2) with $s=$ $s_{n}=\gamma\left(\bar{u}_{n}, \widetilde{u}_{n}\right)$. It follows that $\widetilde{u}_{n}=\widetilde{M}\left(\bar{u}_{n}, \widetilde{u}_{n}\right)$. Hence, if up to a subsequence $\bar{u}_{n} \rightarrow \pm \infty$, then using (9) and (H3), it follows that $\gamma\left(\bar{u}_{n}, \widetilde{u}_{n}\right) \rightarrow 0$, which means that $s^{*}(e)=0$, contradiction. We have proved that $\left\{\bar{u}_{n}\right\}$ is a bounded sequence in \mathbb{R} and using (9) and (10) it follows that $\left\{\left(\bar{u}_{n}, \widetilde{u}_{n}\right)\right\}$ is a bounded sequence in $\mathbb{R} \times \widetilde{C_{\#}^{1}}$. Because \widetilde{M} is completely continuous, we can assume, passing to a subsequence, that $\widetilde{M}\left(\bar{u}_{n}, \widetilde{u}_{n}\right) \rightarrow \widetilde{u}$ and $\bar{u}_{n} \rightarrow \bar{u}$. We deduce that $\widetilde{u}=\widetilde{M}(\bar{u}, \widetilde{u}), \gamma(\bar{u}, \widetilde{u})=s^{*}(e)$ and u is a solution of (2) with $s=s^{*}(e)$.

Arguing as in the proof of Lemma 5 we deduce the following a priori estimate result.

Lemma 6. Let $0<s_{1}<s^{*}(e)$. Then, there is $\rho^{\prime}>0$ such that any possible solution u of (2) with $s \in\left[s_{1}, s^{*}(e)\right]$ belongs to $B_{\rho^{\prime}}$.

Lemma 7. We have $\left(0, s^{*}(e)\right) \subset S_{2}$.

Proof. Let $s_{1}, s_{2} \in \mathbb{R}$ such that $0<s_{1}<s^{*}(e)<s_{2}$. Using Lemma 3, Lemma 6 and the invariance property of the Leray-Schauder degree, it follows that there is $\rho^{\prime}>0$ sufficiently large such that $d_{L S}\left[I-\mathcal{G}(s, \cdot), B_{\rho^{\prime}}, 0\right]$ is well defined and independent of $s \in\left[s_{1}, s_{2}\right]$. However, using Lemma 3 we deduce that $u-\mathcal{G}\left(s_{2}, u\right) \neq 0$ for all $u \in C_{\#}^{1}$. This implies that $d_{L S}\left[I-\mathcal{G}\left(s_{2}, \cdot\right), B_{\rho^{\prime}}, 0\right]=0$, so that $d_{L S}\left[I-\mathcal{G}\left(s_{1}, \cdot\right), B_{\rho^{\prime}}, 0\right]=0$ and, by excision property of the Leray-Schauder degree,

$$
\begin{equation*}
d_{L S}\left[I-\mathcal{G}\left(s_{1}, \cdot\right), B_{\rho^{\prime \prime}}, 0\right]=0 \quad \text { if } \quad \rho^{\prime \prime} \geq \rho^{\prime} . \tag{15}
\end{equation*}
$$

Let u_{*} be a solution of (2) with $s=s^{*}(e)$ given by Lemma 5 . Then, u_{*} is a strict lower solution of (2) with $s=s_{1}$. Using Lemma 2 and (H3), there is $\left(\bar{u}^{*}, \widetilde{u}^{*}\right) \in \mathcal{C}$ such that $u^{*}=\bar{u}^{*}+\widetilde{u}^{*}>u_{*}$ on $[0, T]$ and $\gamma\left(\bar{u}^{*}, \widetilde{u}^{*}\right)<s_{1}$. It follows that u^{*} is a strict upper solution of (2) with $s=s_{1}$. So, using Lemma 1, we have that

$$
\begin{equation*}
\left|d_{L S}\left[I-\mathcal{G}\left(s_{1}, \cdot\right), \Omega_{u_{*}, u^{*}}^{r}, 0\right]\right|=1, \tag{16}
\end{equation*}
$$

for some $r>0$, and (1) has a solution in $\Omega_{u_{*}, u^{*}}^{r}$. Taking $\rho^{\prime \prime}$ sufficiently large and using (15) and (16), we deduce from the additivity property of the Leray-Schauder degree that

$$
\begin{aligned}
\left|d_{L S}\left[I-\mathcal{G}\left(s_{1}, \cdot\right), B_{\rho^{\prime \prime}} \backslash \overline{\Omega^{r}}{ }_{u_{*}, u^{*}}, 0\right]\right| & =\mid d_{L S}\left[I-\mathcal{G}\left(s_{1}, \cdot\right), B_{\rho^{\prime \prime}}, 0\right] \\
-d_{L S}\left[I-\mathcal{G}\left(s_{1}, \cdot\right), \Omega_{u_{*}, u^{*}}^{r}, 0\right] \mid & =\left|d_{L S}\left[I-\mathcal{G}\left(s_{1}, \cdot\right), \Omega_{u_{*}, u^{*}}^{r}, 0\right]\right|=1,
\end{aligned}
$$

and (2) with $s=s_{1}$ has a second solution in $B_{\rho^{\prime \prime}} \backslash \overline{\Omega^{r}} u_{*}, u^{*}$.
End of the proof of Theorem 2. The conclusion of Theorem 2 follows from Lemmas 3, 5 and 7.

References

[1] C. Bereanu, J. Mawhin, Multiple periodic solutions of ordinary differential equations with bounded nonlinearities and ϕ-Laplacian, NoDEA Nonlin. Differential Eq. Appl., to appear.
[2] C. Bereanu, J. Mawhin, Periodic solutions of nonlinear perturbations of ϕ Laplacians with possibly bounded ϕ, Nonlinear Anal. TMA. 68 (2008), 16681681.
[3] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.
[4] R. Manásevich, J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian-like operators, J. Differential Equations 145 (1998), 367-393.
[5] J. Mawhin, The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian, J. European Math. Soc. 8 (2006), 375-388.
[6] J.R. Ward, Periodic solutions of ordinary differential equations with bounded nonlinearities, Topol. Methods Nonlinear Anal., 19 (2002), 275-282.

Département de Mathématique,
Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium bereanu@math.ucl.ac.be

[^0]: Received by the editors March 2007.
 Communicated by J. Mawhin.
 2000 Mathematics Subject Classification : 34B15, 34B16, 34C25.
 Key words and phrases : p-Laplacian, Liénard equations, periodic solutions, Leray-Schauder degree.

