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Abstract

Let M be an n-dimensional orientable compact hypersurface in an (n+1)-
dimensional real space form M(c), n ≥ 2. If the lengths ‖R‖, ‖A‖ and ‖∇α‖
of the curvature tensor field R, the shape operator A, the gradient ∇α of the
mean curvature α and the scalar curvature S of the hypersurface M satisfy
the inequality

1

2
‖R‖2 ≤ cS + δ ‖A‖2 − n(n − 1) ‖∇α‖2

where δ = minRic = min
p∈M v∈TpM ‖v‖=1

Ricp(v), Ric is Ricci curvature of the

hypersurface, then it is shown that M is an extrinsic sphere in M (c). In par-
ticular we deduce that the condition 1

2
‖R‖2 ≤ δ ‖A‖2 −n(n− 1) ‖∇α‖2 char-

acterizes spheres in the Euclidean space Rn+1 among the compact orientable
hypersurfaces whose Ricci curvatures are bounded below by a constant δ > 0.

1 Introduction:

A totally umbilical hypersurface in a real space form M(c) (Riemannian manifold
of constant curvature c) is called an extrinsic sphere. The class of compact hyper-
surfaces in a real space form M(c) is quite large and therefore it is an interesting
question in Geometry to obtain conditions which characterize extrinsic spheres in
this class. This question has been of considerable interest to many geometers and
had been approached using various invariants of the hypersurfaces. Most natural
invariants of a hypersurface are the mean curvature, Ricci curvature and scalar
curvature. Nomizu and Smyth have studied non-negatively curved hypersurfaces
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with constant mean curvature in real space form and in particular they have shown
that such compact hypersurfaces in a Euclidean space are spheres (cf. [10],[11]).
Hypersurfaces with constant mean curvature and higher order mean curvatures in
a real space form have also been studied by Chen, Montiel-Ros, Ripoll, Ros and
obtained different characterizations for extrinsic spheres (cf. [2], [3], [4], [9], [12],
[14]). Similarly Ros[13] has studied compact embedded hypersurfaces with constant
scalar curvature in an Euclidean space and proved that they are essentially spheres.
We denote by R the curvature tensor field of the hypersurface M of the real space
form M(c). For a local orthonormal frame {e1, .., en} on M the length ‖R‖ of the
curvature tensor field is given by ‖R‖2 =

∑

ijk ‖R(ei, ej)ek‖2. In this paper we use
the invariant ‖R‖ of the hypersurface to characterize the extrinsic spheres. Let A

be the shape operator of the hypersurface, α its mean curvature and S be its scalar
curvature. An interesting question would be, using the invariants α, S, ‖A‖ , ‖R‖ of
the hypersurface, how to characterize extrinsic spheres in the real space form M(c)?
The motivation of this question comes from the following: A sphere Sn(c) in Rn+1,
satisfies the equality

1

2
‖R‖2 = δ ‖A‖2 − n(n − 1) ‖∇α‖2

δ = min Ric = min
p∈M v∈TpM ‖v‖=1

Ricp(v), Ric being the Ricci curvatures and ∇α

being the gradient of the mean curvature α (This follows from the Gauss equation for
the hypersurface in a Euclidean space and the fact that α is constant for the sphere
Sn(c)) . This raises a question, does a compact hypersurface of Rn+1 satisfying
above equality necessarily a sphere? In this paper we show that the answer to this
question is in affirmative, and indeed we prove the following general result which
gives a characterization for extrinsic spheres in a real space form M(c) and as a
particular case we get the characterization of spheres in Rn+1.

Theorem: Let M be an n-dimensional orientable compact hypersurface of the
simply connected real space form M(c), n ≥ 2. If the scalar curvature S, the shape
operator A, the mean curvature α and the curvature tensor field R of M satisfy

1

2
‖R‖2 ≤ cS + δ ‖A‖2 − n(n − 1) ‖∇α‖2 ,

where δ = min Ric = min
p∈M v∈TpM ‖v‖=1

Ricp(v), then M is an extrinsic sphere.

As a particular case of above theorem we have

Corollary: Let M be an n-dimensional orientable compact hypersurface of the
Euclidean space Rn+1, n ≥ 2. If the shape operator A, the mean curvature α and
the curvature tensor field R of M satisfy

1

2
‖R‖2 ≤ δ ‖A‖2 − n(n − 1) ‖∇α‖2 ,

where δ = min Ric = min
p∈M v∈TpM ‖v‖=1

Ricp(v), then M is a sphere.
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2 Preliminaries

Let M be an orientable hypersurface of the real space form M(c). We denote the
induced metric on M by g. Let ∇ be the Riemannian connection on the real space
form M(c) and ∇ be the Riemannian connection on M with respect to the induced
metric g. Let N be the unit normal vector field and A be the shape operator of M .
Then the Gauss and Weingarten formulas for the hypersurface are (cf. [1])

∇XY = ∇XY + g(AX, Y )N, ∇XN = −AX, X, Y ∈ X(M) (2.1)

where X(M) is the Lie algebra of smooth vector fields on M. We also have the
following Gauss and Codazzi equations

R(X, Y )Z = c{g(Y, Z)X − g(X, Z)Y } + g(AY, Z)AX − g(AX, Z)AY (2.2)

(∇A)(X, Y ) = (∇A)(Y, X), X, Y ∈ X(M) (2.3)

where R is the curvature tensor field of the hypersurface and (∇A)(X, Y ) = ∇XAY −
A∇XY . The mean curvature α of the hypersurface is given by nα =

∑

i
g(Aei, ei),

where {e1, .., en} is a local orthonormal frame on M . If A = λI holds for a constant
λ, then the hypersurface is said to be totally umbilical and a totally umbilical
hypersurface is called and an extrinsic sphere. The square of the length of the shape
operator A is given by

‖A‖2 =
∑

ij

g(Aei, ej)
2 = tr.A2

From equation (2.2) we get the following expression for the Ricci tensor field

Ric(X, Y ) = (n − 1)cg(X, Y ) + nαg(AX, Y ) − g(AX, AY ) (2.4)

The scalar curvature S of the hypersurface is given by

S = n(n − 1)c + n2α2 − ‖A‖2 (2.5)

3 Some Lemmas

Let M be an orientable hypersurface of the real space form M(c) and ∇α be the
gradient of the mean curvature function α. Then we have

Lemma 3.1 Let M be an n-dimensional orientable hypersurface of the real
space form M(c) and {e1, .., en} be a local orthonormal frame on the hypersurface
M . Then

∑

i

(∇A)(ei, ei) = n∇α.

The proof is straightforward and follows from the symmetry of A and the equa-
tion (2.3).

Lemma 3.2 Let M be an orientable hypersurface of the real space form M(c).
Then the Ricci curvature tensor field of the hypersurface M satisfies

Ric(AX, Y ) = Ric(X, AY ), X, Y ∈ X(M).
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The proof follows immediately from equation (2.4) and the symmetry of A.

Lemma 3.3 Let M be an n-dimensional orientable hypersurface of the real space
form M(c). Then for a local orthonormal frame {e1, .., en} on M the following holds

∑

ij

g(R(ej, ei; Aej , Aei) = cS − 1

2
‖R‖2 ,

where R(X, Y ; Z, W ) = g(R(X, Y )Z, W ), X, Y, Z, W ∈ X(M).

Proof. Using equations (2.2) and (2.5) we compute

‖R‖2 =
∑

ijk

g(R(ei, ej)ek, R(ei, ej)ek)

=
∑

ijk

R(ei, ej ; ek, R(ei, ej)ek)

= 2cS + 2
∑

ij

g(R(ei, ej, Aej , Aei)

and this proves the Lemma.

Lemma 3.4 Let M be an n-dimensional orientable hypersurface of the real
space form M(c), n ≥ 2. Then

‖∇A‖2 ≥ n ‖∇α‖2 ,

where ‖∇A‖2 =
∑

ij ‖(∇A)(ei, ej)‖2 for a local orthonormal frame {e1, .., en} on M ,
moreover the equality holds if and only if α is constant and A is parallel.

Proof. Define an operator B : X(M) → X(M) by B = A − αI. Then we have

(∇B)(X, Y ) = (∇A)(X, Y ) − (Xα)Y ,

which gives

‖∇B‖2 = ‖∇A‖2 + n ‖∇α‖2 − 2
∑

ij

g ((∇A)(ei, ej), ej) g(∇α, ei)

= ‖∇A‖2 + n ‖∇α‖2 − 2
∑

j

g (∇α, (∇A)(ej, ej))

= ‖∇A‖2 − n ‖∇α‖2

This proves that ‖∇A‖2 ≥ n ‖∇α‖2. The equality holds if and only if
∇B = 0 that is, (∇A) (X, Y ) = X(α)Y . Using Codazzi equation (2.3) and n ≥ 2
we get that α is a constant and that ∇A = 0.

Lemma 3.5 Let M be an n-dimensional orientable compact hypersurface of the
real space form M(c). Then

∫

M

(

∑

i

g(∇ei
(∇α), Aei)

)

dV = −n

∫

M

‖∇α‖2
dV
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where {e1, .., en} is a local orthonormal frame on M .

Proof. Choosing a point wise covariant constant local orthonormal frame {e1, ..., en}
on M , we compute

div (A(∇α)) =
∑

i
eig(∇α, Aei) =

∑

i
g(∇ei

(∇α), Aei) +
∑

i
g(∇α, (∇A)(ei, ei))

=
∑

i

g(∇ei
(∇α), Aei) + n ‖∇α‖2

Integrating this equation we get the Lemma.

We define the second covariant derivative (∇2A)(X, Y, Z) as

(∇2A)(X, Y, Z) = ∇X(∇A)(Y, Z) − A(∇XY, Z) − A(Y,∇XZ),

then using the Ricci identity we get

(∇2A)(X, Y, Z) − (∇2A)(Y, X, Z) = R(X, Y )AZ − AR(X, Y )Z (3.1)

4 Proof of the Theorem

Let M be an n-dimensional orientable compact hypersurface of the real space form
M(c). Define a function f : M → R by f = 1

2
‖A‖2. Then by a straightforward

computation we get the Laplacian ∆f of the smooth function f as

∆f = ‖∇A‖2 +
∑

g
ij

(

(∇2A)(ej , ej, ei), Aei

)

(4.1)

where {e1, ..., en} is local orthonormal frame on M .
Using the equation (2.3), we arrive at

g(
(

∇2A
)

(ej, ej , ei), Aei) = g(
(

∇2A
)

(ej, ei, ej), Aei)

Now using the Ricci identity (3.1) in above equation we get

g((∇2A) (ej , ej , ei), Aei) = g((∇2A) (ei, ej, ej), Aei) +
g(R(ej, ei)Aej, Aei) − g(R(ej, ei)ej , A

2ei)

Thus in light of this equation the equation (4.1) takes the form

∆f = ‖∇A‖2 +
∑

ij

g((∇2A) (ei, ej, ej), Aei)

+
∑

ij

[g(R(ej, ei)Aej , Aei) − g(R(ej, ei)ej , A
2ei)]

(4.2)

Using Lemma 3.1, we get
∑

j

(

∇2A
)

(ei, ej , ej) = n∇ei
(∇α). (4.3)

Now we use Lemmas 3.2 and 3.3 to compute

∑

ij

[

g(R(ej, ei)Aej , Aei) − g(R(ej, ei)ej, A
2ei)

]

= cS − 1

2
‖R‖2

+
∑

i

Ric(Aei, Aei)
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Using this last equation together with (4.3) in (4.2), we arrive at

∆f = ‖∇A‖2 + n
∑

i

g(∇ei
(∇α), Aei) + cS − 1

2
‖R‖2 +

∑

i

Ric(Aei, Aei)

Integrating this equation and using Lemma 3.5 we arrive at

∫

M

{

[

‖∇A‖2 − n ‖∇α‖2
]

+ cS − 1

2
‖R‖2 − n(n − 1) ‖∇α‖2

+
∑

i Ric(Aei, Aei)

}

dV = 0 (4.4)

Since Ric ≥ δ, the above equation takes the form

∫

M

{

[

‖∇A‖2 − n ‖∇α‖2
]

+ cS − 1

2
‖R‖2 − n(n − 1) ‖∇α‖2 + δ ‖A‖2

}

dV ≤ 0

The condition in the statement of the theorem together with Lemma 3.4 and above
inequality yields

‖∇A‖2 = n ‖∇α‖2 (4.5)

cS − 1

2
‖R‖2 − n(n − 1) ‖∇α‖2 + δ ‖A‖2 = 0 (4.6)

Using (4.5) and (4.6) in equation (4.4) we conclude

Ric (Aei, Aei) = δg (Aei, Aei) (4.7)

for each i. Thus equation (4.5) together with Lemma 3.4 we get that α is a constant
and the shape operator A is parallel.

If c = 0, then by Theorem 4 in [8] we see that M being compact is an extrinsic
sphere. If c = 1, then by the same result in [8] together with equation (4.7) implies

that M is an extrinsic sphere as the tori Sk(r) × Sn−k
(√

1 − r2

)

, 1 ≤ k < n does

not satisfy the equation (4.7) for each i. Finally if c = −1, the result in [8] together
with compactness of M implies that M is an extrinsic sphere.
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