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Abstract

Given two harmonic functions u+(x, y), u−(x, y) defined on opposite sides
of the y-axis in R

2 and periodic in y, we consider the problem of constructing
a family of gluing elliptic functions, i.e. a family of functions uǫ(x, y) of
class C1,1 that coincide with u+ and u− outside neighborhoods of the y-axis
of width less than ǫ and are solutions to linear, uniformly elliptic equations
without zero order terms. We first show that not always there is such a family
and we give a necessary condition for its existence. Then we give a sufficient
condition for the existence of a family of gluing elliptic functions and a way
for its construction.

1 Introduction

Let u+(x, y) and u−(x, y) be two different harmonic functions defined on a neigh-
bourhood Ω of the y-axis in R2, periodic of period 2π in y and such that u+ ≡ u− on
{x = 0}. For given ǫ > 0, by the unique continuation property of analytic functions
(see e.g. [6]), it is well known that there exists no harmonic function uǫ with the
property that uǫ ≡ u− in Ω ∩ {x ≤ −ǫ} and uǫ ≡ u+ in Ω ∩ {x ≥ ǫ} .

Nevertheless, one could look for functions uǫ, which satisfy the above matching
conditions and are solutions to linear, uniformly elliptic equations Lǫuǫ = 0 without
zero order terms. Such functions would satisfy several useful properties, like e.g. the
maximum principle and Harnack inequalities ([5]).

In this paper, we study the existence of a family of gluing elliptic functions uǫ

of class C1,1(Ω) for all ǫ is some interval ]0, ǫo[. When a pair (u−, u+) admits such a
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class of gluing elliptic functions, we will say that it is a gluable pair (see §2, for the
exact definitions).

In [9], M. V. Safonov constructed a smooth “patching” between two functions
on the unit sphere S2 ⊂ R

3, satisfying an elliptic equation. In [1], the authors
make some modifications of Safonov’s construction and they obtain the existence of
gluing elliptic functions for pairs (u−, u+) of some special kind. In particular they
prove two “gluing theorems”: the first one allows to patch together u+ and u− if
the derivative with respect to x of the difference u+ −u− on the y-axis has constant
sign; the second one gives the existence of a family of gluing elliptic function under
weaker conditions on u+,x − u−,x, but assumes other hypotheses on the values of
u+ and u− on {x = 0}. A similar result for pairs of harmonic functions of three
variables can be found in [4].

In this paper we determine a condition that must be satisfied by any gluable
pair (Th. 3.1). It states that if the trivial non-smooth patching of u− and u+ (see
formula (2.2)) has a strict local maximum or minimum, then (u−, u+) is not gluable.
By means of an example, we show that this claim is no longer true if the trivial non-
smooth patching has a weak local maximum (or minimum) (Remark 3.3). Finally,
using some ideas of [1], we determine a new sufficient condition for a given pair
(u−, u+) to be gluable (Th. 5.1).

Notice that, via the transformation x = ln r, y = θ, the functions u+(x, y),
u−(x, y) can be always seen as harmonic functions defined in an annulus {1 − δ <
r < 1 + δ} and coinciding on the circumference S1. In particular, the results of this
paper can be reformulated as patching conditions for pairs of harmonic functions
defined on a neighbourhood of S1.

We conclude pointing out that the question on the existence of gluing elliptic
functions is naturally related with the following inverse problem (see e.g. [10, 2, 3]):
given a pair of functions f , g on the boundary of a domain D, find an elliptic equation
Lu = 0 in D and a solution u0 of such equation, which has f and g as Dirichlet and
Neumann boundary values, respectively. In [2], the authors construct a non trivial
solution of such problem in a sufficiently large disc with f = g = 0 and u0 ∈ W 2,p,
with 1 < p < 2. In [3], another construction is given and provides a solution of the
same problem in the unit disc and with f and g real analytic. In both papers, a key
ingredient is represented by the gluing theorems for harmonic functions of [1] and
it is expected that general results on patching of harmonic functions will be useful
in finding new constructions and solutions to the above problem for boundary data
f , g of weaker regularity.

2 The definition of gluing elliptic function

Throughout the paper, T = R/(2πZ) ∼ (−π, π] will denote the 1-dimensional torus.
Any real function u on the cylinder R×T is naturally identified with a real function
of two real variables x and y, which is periodic in y of period 2π. We will also
indicate by Ω the region Ω := (−α, α) × T ⊂ R × T , α > 0, and by Γ the periodic
axis Γ := {0} × T ⊂ Ω.
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Finally, we will always denote by u− and u+ two harmonic functions defined in
Ω and such that

u+ ≡ u− on Γ; u+ 6≡ u− in Ω. (2.1)

We give the following definition.

Definition 2.1. We say that (u−, u+) is a gluable pair if there exists a positive
constant ǫ0 such that for any 0 < ǫ < ǫ0 there exists a function uǫ of class C1,1(Ω)
such that

i) uǫ solves a linear, uniformly elliptic equation Lǫuǫ = 0, with bounded measur-
able coefficients in Ω and without zero order term;

ii) uǫ ≡ u− in Ω ∩ {x ≤ −ǫ} and uǫ ≡ u+ in Ω ∩ {x ≥ ǫ};

iii) there exists a positive constant M such that |uǫ,x| < M in [−ǫ, ǫ] × T for all
ǫ < ǫ0.

A family {uǫ : ǫ ∈ (0, ǫ0)} which satisfies i), ii), iii) is called a family of gluing
elliptic functions for (u−, u+).

Notice that condition iii) in Definition 2.1 implies that any sequence {uǫn
}, with

ǫn → 0 for n → ∞, converges uniformly in Ω to the trivial nonsmooth patching of
u− and u+

u0 =

{

u− in Ω ∩ {x ≤ 0}
u+ in Ω ∩ {x > 0}.

(2.2)

3 A necessary condition for a gluable pair

Theorem 3.1. If the function u0 defined in (2.2) has a point of strict local minimum
(maximum) on Γ, then the pair (u−, u+) is not gluable.

Proof. Let z0 = (0, y0) ∈ Γ be a point of strict local minimum for u0. By the
definition of u0, it means that there exists a square Qr(z0) = {|x| < r, |y − y0| < r}
such that

u−(z) ≥ u−(z0) = u0(z0) ∀z ∈ Q̄r(z0) ∩ {x ≤ 0}

u+(z) ≥ u+(z0) = u0(z0) ∀z ∈ Q̄r(z0) ∩ {x ≥ 0}

and in both inequalities we have the equal sign only for z = z0. Now, let us take
m = min∂Qr(z0) u0 and η = m − u0(z0) > 0. Since u0 is a continuous function, there
exists 0 < δ < r such that |u0(z) − u0(z0)| < η/2 for all z ∈ Q̄δ(z0). It follows that
the minimum of u0 on D = Q̄r(z0) ∩ {|x| ≥ δ} is achieved on x = −δ or x = δ. In
fact, we have that

min
Qr(z0)∩{|x|=δ}

u0 ≤ u0(z0) + η/2 = m − η/2 ,

while, on the other parts of the boundary, u0 is bigger or equal than m. Let z1 be
a point on x = −δ or x = δ such that u0(z1) = minD u0. Now, let us assume that
the pair (u−, u+) is gluable and let uδ be a gluing elliptic function of a family which
satisfies conditions i), ii) and iii) in Definition 2.1. Since uδ satisfies a uniformly
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elliptic equation Luδ = 0, without zero order term in Ω, the minimum of uδ in
H = Q̄r(z0) ∩ {|x| ≤ δ} is achieved on ∂H . Let us prove that it is assumed on
x = −δ or x = δ. In fact, by conditions ii) and iii) in Definition 2.1, we have that

min
∂H∩∂Qr(z0)

uδ ≥ m − Mδ .

Thus, we can choose δ in such a way that

min
∂H∩∂Qr(z0)

uδ ≥ m −
η

4
.

On the other hand, uδ coincides with u0 on x = −δ and x = δ. Then we have

min
∂H∩{|x|=δ}

uδ < m −
η

2
.

It follows that uδ(z1) = minH̄ uδ. But, since uδ ≡ u0 for |x| ≥ δ/2, we have also

uδ(z1) = min
Qr

uδ

contradicting Alexandrov-Pucci maximum principle. �

Remark 3.2. Assume that u0 has a local minimum at z0 = (0, y0) ∈ Γ. From the
fact that u0 is harmonic outside Γ and u0|Γ is analytic, it follows that either u0 has
a strict local minimum at z0 or u0 is constant on Γ.

Remark 3.3. By minor modifications of the proof of Theorem 3.1, one can see that
if u0|Γ = const. and such value is a global minimum for u0, then the pair (u−, u+)
is not gluable. For instance, the pair u−(x, y) = −x, u+(x, y) = x is not gluable.

On the other hand, it may happen that u0 has a point of (non strict) local
minimum (maximum) on Γ and that the pair (u−, u+) is gluable. For instance, let
us consider u−(x, y) = − sinh x cos y and u+(x, y) = sinh x cos y. Then u0(x, y) =
| sinh x| cos y is identically zero on Γ and any point (0, y) ∈ Γ with y ∈ (−π/2, π/2)
is of local minimum for u0. Now, let us show that the pair (u−, u+) is gluable. For
any ǫ > 0, let us define

uǫ(x, y) =

{

aǫ cosh(bǫx) cos y for |x| < ǫ
u0 for |x| ≥ ǫ,

where bǫ is the unique positive solution of the equation bǫ tanh(ǫbǫ) = tanh−1(ǫ)
and aǫ = sinh ǫ/ cosh(ǫbǫ) in such a way that uǫ is of class C1,1(R2). Then, we have
|uǫ,x| ≤ aǫbǫ| sinh(ǫbǫ)| ≤ cosh ǫ ≤ cosh 1 in |x| ≤ ǫ for any ǫ < 1, so that condition
iii) in Definition 2.1 is satisfied. Moreover, we have that uǫ solves the equation
uxx + b2

ǫuyy = 0 in |x| ≤ ǫ and hence it is a gluing elliptic function for (u−, u+).

4 An interpolating function for (u−, u+)

In this section, it is given the definition of interpolating function uǫ for a pair (u−, u+)
of harmonic functions. A sufficient condition for uǫ to be a gluing elliptic function
will be proved in the next section.
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In what follows, let us denote by U the difference U = u+ − u−. Notice that U
is harmonic in Ω, it satisfies

U ≡ Uy ≡ 0 on Γ (4.1)

and it is odd in the x variable.
We start with the following lemma.

Lemma 4.1. The derivative with respect to x of the function U has at most a finite
number of zeros on Γ.

Proof. The restriction Ux|Γ of Ux to the compact curve Γ is real analytic and thus it
is either identically zero or with a finite number of zeros. Let us prove that it cannot
be Ux|Γ ≡ 0. In fact, if Ux|Γ ≡ 0, by (4.1), it follows that the function f = Ux − iUy,
which is holomorphic in Ω, is identically zero on Γ and hence in all Ω. Then U is
constant and, in particular, U ≡ 0 in Ω, in contradiction with (2.1). �

In the next proposition we summarize some facts on the zeros of harmonic func-
tions in two variables that one can obtain by considering them as real parts of
holomorphic functions (see e.g. [11]).

Proposition 4.2. Let v be a non identically vanishing harmonic function on a
simply connected domain D ⊂ R2 = C. Let also z0 ∈ D be such that v(z0) = 0.
Then there exist a neighbourhood U(z0) of z0 and a biholomorphism h : Br → U(z0)
from Br = {|z| < r} to U(z0) such that h(0) = z0 and v(h(ζ)) = Re ζn for an integer
n ≥ 1, which is uniquely determined by u and z0.

Moreover, the zeros set {v = 0} ∩ U(z0) is of the form

{v = 0} ∩ U(z0) = ∪n
k=1γk(I) ,

where γk : I = (−1, 1) → U(z0) are n analytic curves, such that γk(0) = z0 and the
angles between γk and γk+1 at z0 are equal to π/n for any k (we set γn+1 = γ1).

Notice that the number n coincides with the order of the zero at z0 of the unique
holomorphic function f in D, with Re f = u and such that f(z0) = 0. In the sequel,
we will call such integer the order of the zero z0.

An a consequence of Proposition 4.2 we have the following lemma.

Lemma 4.3. Let z1 = (0, y1) and z2 = (0, y2) be two consecutive zeros of Ux on Γ,
with y1 < y2. Then, for any y ∈ (y1, y2), there exists a neighbourhood U(z) of the
point z = (0, y) in R2 such that the only zeros of U in U(z) are on Γ.

Proof. Let y0 ∈ (y1, y2) and z0 = (0, y0) ∈ Γ. Since Ux(z0) 6= 0, from Proposition
4.2 it follows that the order of z0 is equal to 1 and hence there exists a neighbourhood
U(z0) in which Γ is the unique curve of zeros of U . �

The situation is different at the points z1 and z2, where the gradient of U vanishes
and hence the orders n1 and n2 of z1 and z2, respectively, are larger than 1. By
Proposition 4.2, there exist neighbourhoods U(z1) and U(z2) such that the set of
zeros of U in U(z1) is given by n1 analytic curves throughout z1 and the set of zeros
of U in U(z2) is given by n2 analytic curves throughout z2. In both cases, one of
these curves coincides with Γ and the others form with Γ positive angles.

This brings to the following lemma.
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Lemma 4.4. Let 0 < ǫ < α and let z1 = (0, y1) and z2 = (0, y2) be two consecutive
zeros of Ux on Γ, with y1 < y2. Assume also that Ux(0, y) > 0 for all y ∈ (y1, y2).
Then there exist two regular curves γǫ

− and γǫ
+ contained in Ω ∩ {−ǫ ≤ x ≤ 0} and

Ω ∩ {0 ≤ x ≤ ǫ} respectively, such that the following holds:

i) γǫ
− is symmetric to γǫ

+ with respect to Γ;

ii) γǫ
+ has z1 and z2 as endpoints, forms positive angles with Γ at those points

and it admits a parameterization of the form γǫ
+(y) = (γǫ,x

+ (y), y), y1 ≤ y ≤ y2

with γǫ,x
+ (y1) = γǫ,x

+ (y2) = 0 and 0 < γǫ,x
+ (y) ≤ ǫ for y1 < y < y2;

iii) the domain Dǫ bounded by γǫ
− and γǫ

+ is so that Ux > 0 on Dǫ and hence U > 0
on D̄ǫ ∩ {x > 0} and U < 0 on D̄ǫ ∩ {x < 0}.

Proof. Consider the function Ux which is harmonic and equal to zero in z1 and z2.
By Proposition 4.2, in a neighbourhood U(z1) of z1 the zeros of Ux are located on a
finite number of curves throughout z1 which form positive angles with Γ. The same
holds in a suitable neighbourhood U(z2) of z2. Moreover, for each point z = (0, y),
y ∈ (y1, y2), there exists a neighbourhood U(z) such that Ux > 0 in U(z). Therefore
we may consider a finite open subcover {U(z1),U(z2),U(z3), . . . ,U(zN))} of {(0, y) :
y ∈ [y1, y2]} out of the collection {U(z1),U(z2)} ∪ {U(z), z = (0, y), y ∈ (y1, y2)}.

Thus, we can take two symmetric curves γǫ
+ and γǫ

−, which are graphs of two
functions of y, so that they are contained in ∪N

i=1U(zk) and they form sufficiently
small angles with Γ in z1 and z2 so that they intersect the curves of zeros of Ux

only at the endpoints z1 and z2. With such choice of γǫ
+ and γǫ

−, we have Ux > 0 in
Dǫ. �

If Dǫ is the region in Lemma 4.4, the restriction of U on each horizontal segment
in Dǫ is an increasing function. In particular, notice that

U(−γǫ,x
+ (y), y) ≤ U(x, y) ≤ U(γǫ,x

+ (y), y) ∀(x, y) ∈ Dǫ . (4.2)

On the other hand, in case Ux(0, y) < 0 at any y ∈ (y1, y2), it is possible to choose
γǫ

+ and γǫ
− so that U > 0 in Dǫ ∩{x < 0}, U < 0 in Dǫ ∩{x > 0} and Ux < 0 in Dǫ.

In this case, the restriction of U to each horizontal segment in Dǫ is a decreasing
function and the inequalities in (4.2) are reversed.

Now, with the help of Lemma 4.4, for any ǫ ∈ (0, α) we define two special curves
Γǫ

+(y) := (Γǫ,x(y), y) and Γǫ
−(y) := (−Γǫ,x(y), y), for any y ∈ T , which are symmetric

with respect to Γ and which bound a region Dǫ on which we are going to modify
the function u0. The modified function will be called “interpolating” and will be a
candidate for being a gluing elliptic function.

If Ux|Γ never vanishes, we set Γǫ,x
+ (y) equal to the constant function Γǫ,x(y) = ǫ,

so that Γǫ
+ and Γǫ

− bound a strip around Γ. Otherwise, let us first denote by z1,
z2, . . . , zn the zeros of Ux|Γ (which we know are in finite number by Lemma 4.1)
and assume that they are ordered so that their coordinates are zi = (0, yi) with
y1 < y2 < · · · < yn. Let us also denote by zn+1 = (0, yn+1) the point of Γ with
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yn+1 = y1 + 2π, so that zn+1 = z1 on Γ. Then, for any i = 1, . . . , n, we fix a pair of
symmetric curves

γǫ
+,[zi,zi+1]

= (γǫ,x
i (y), y) , γǫ

−,[zi,zi+1]
= (−γǫ,x

i (y), y)

satisfying the conditions in Lemma 4.4 with endpoints zi and zi+1, and we indicate
with Dǫ

[zi,zi+1]
the domain bounded by these two curves. Finally, we define as Γǫ

+ =
(Γǫ,x(y), y) and Γǫ

− = (−Γǫ,x(y), y) the two piecewise regular curves given by the
union of the curves γǫ

+,[zi,zi+1]
and γǫ

−,[zi,zi+1]
, respectively, and we call Dǫ the set

bounded by these two curves, namely Dǫ := ∪n
i=1D

ǫ
[zi,zi+1]

.
Now, we are able to give the definition of interpolating function.

Definition 4.5. For any set Dǫ ⊂ Ω, bounded by two symmetric curves Γǫ
+ and

Γǫ
− defined as above, we call interpolating function of the pair (u−, u+) on Dǫ the

function uǫ defined as follows:

uǫ(x, y) = u−(x, y) if (x, y) ∈ (Ω \ Dǫ) ∩ {x ≤ 0};

uǫ(x, y) = u+(x, y) if (x, y) ∈ (Ω \ Dǫ) ∩ {x > 0};

uǫ(x, y) =
u+(x, y) + u−(x, y)

2
+

U2(x, y)

4Uǫ(y)
+

Uǫ(y)

4
if (x, y) ∈ Dǫ ,

where Uǫ(y) := U(Γǫ,x(y), y).

The regularity properties of the interpolating functions are given in the next
lemma.

Lemma 4.6. For any 0 < ǫ < α, let Dǫ be as in Definition 4.5 and uǫ be the
corresponding interpolating function. Then the family of the functions uǫ satisfies
conditions ii) and iii) of Definition 2.1 and each uǫ is of class C1,1(Ω). In particular,
the second derivatives of uǫ are discontinuous only on Γǫ

− and Γǫ
+.

Proof. Notice that from definitions and (4.2)

|U(x, y)|

Uǫ(y)
≤ 1 for any (x, y) ∈ Dǫ.

It follows that uǫ is continuous in D̄ǫ. Moreover, we have that uǫ = u− on Γǫ
− and

uǫ = u+ on Γǫ
+ and this implies that uǫ is continuous in Ω. Since Γǫ

+, Γǫ
− ⊂ {|x| ≤ ǫ},

we also have that condition ii) in Definition 2.1 is satisfied.
Moreover, on Dǫ we have

uǫ,x =
u+,x + u−,x

2
+

UUx

2Uǫ

uǫ,y =
u+,y + u−,y

2
+

UUy

2Uǫ

+
U ′

ǫ

4

(

1 −
U2

U2
ǫ

)

.

Observe that uǫ,x = u−,x and uǫ,y = u−,y on Γǫ
−, uǫ,x = u+,x and uǫ,y = u+,y on

Γǫ
+, and that u−,x(zi) = u+,x(zi) and u−,y(zi) = u+,y(zi) at any point zi. It follows
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that uǫ is C1(Ω). Moreover, we have |uǫ,x| ≤ |u+,x|+ |u−,x| and so also condition iii)
of Definition 2.1 holds.

Now let us consider the second derivatives of uǫ in Dǫ:

uǫ,xx = u+,xx

(

1

2
+

U

2Uǫ

)

+ u−,xx

(

1

2
−

U

2Uǫ

)

+
U2

x

2Uǫ

uǫ,xy = u+,xy

(

1

2
+

U

2Uǫ

)

+ u−,xy

(

1

2
−

U

2Uǫ

)

+
UxUy

2Uǫ

−
UxUU ′

ǫ

2U2
ǫ

uǫ,yy = u+,yy

(

1

2
+

U

2Uǫ

)

+ u−,yy

(

1

2
−

U

2Uǫ

)

+
U2

y

2Uǫ

−
UyUU ′

ǫ

U2
ǫ

+

+
U2(U ′

ǫ)
2

2U3
ǫ

+
U ′′

ǫ

4

(

1 −
U2

U2
ǫ

)

.

It is clear that the second derivatives of uǫ are discontinuous only on Γǫ
− and

Γǫ
+. We have to prove that they are bounded. It is sufficient to prove it in suitable

neighbourhoods of the points zi, 1 ≤ i ≤ n. To check that uǫ,xx is bounded it is
enough to show that the quotient U2

x(x, y)/Uǫ(y) is bounded. By Proposition 4.2
and the remarks after Lemma 4.3, there exist a neighbourhood U(zi) of zi and a
biholomorphism h : Br → U(zi) such that h(0) = zi and U(h(ζ)) = Re ζni for some
integer ni ≥ 2. Then we have U(z) = Re((h−1(z))ni) and

Ux = Re
(

ni(h
−1(z))ni−1(h−1(z))′

)

= Re

(

niζ
ni−1 1

h′(ζ)

)

.

Now, let z = (x, y) ∈ U(z1), z̃ = (γǫ,x
+ (y), y), ζ = h−1(z) and ζ̃ = h−1(z̃). We have

U2
x(x, y)

|Uǫ(y)|
=

[

Re
(

niζ
ni−1 1

h′(ζ)

)]2

|Re ζ̃ni|
≤

n2
i

|h′(ζ)|2
|ζ |2ni−2

|Re ζ̃ni|
.

Now the claim is proved if we prove that the quotient |ζ |2ni−2/|Re ζ̃ni| is bounded.

Let ζ = ρeiθ and ζ̃ = ρ̃eiθ̃. Since the curve Γǫ
+ is not tangent to Γ in zi, it follows

that there exists a positive constant ai such that | cos(niθ̃)| ≥ ai and thus

|ζ |2ni−2

|Re ζ̃ni|
=

ρ2ni−2

ρ̃ni | cos(niθ̃)|
≤

ρ2ni−2

aiρ̃ni

.

Moreover, since h is a biholomorphism, there exist positive constants K1 and K2

such that
K1 dist (z, zi) ≤ |ζ | ≤ K2 dist (z, zi)

K1 dist (z̃, zi) ≤ |ζ̃| ≤ K2 dist (z̃, zi) .

Since dist (z, zi) ≤ dist (z̃, zi) we obtain |ζ | ≤ (K2/K1)|ζ̃| so that

|ζ |2ni−2

|Re ζ̃ni|
≤ cost ρni−2

and it is bounded, since ni ≥ 2. This concludes the proof that uǫ,xx is bounded in
Ω. Similar arguments show that also uǫ,xy and uǫ,yy are bounded in Ω. �
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Remark 4.7. In Definition 2.1 we require that uǫ coincides with the function u0 in
(2.2) outside the strip {|x| ≤ ǫ}. Notice that the function uǫ we have defined satisfies
something more. In fact, it coincides with u0 on a set which is strictly larger than
{|x| > ǫ}, namely, it contains also the points z1,. . . , zn on Γ, i.e. the points on Γ on
which u0 is C1.

5 A sufficient condition for a pair to be gluable

Now, we give sufficient conditions on u+ and u− so that the interpolating function
uǫ satisfies also condition i) of Definition 2.1. This means that (u−, u+) is gluable.

Theorem 5.1. Assume that the restriction u+|Γ = u−|Γ satisfies

u+,x(z)u−,x(z) > 0 at any z ∈ Γ s.t. u+,y(z) = u−,y(z) = 0 . (5.1)

Then the pair (u−, u+) is gluable. In fact, for any ǫ sufficiently small, there exists
an interpolating function uǫ that is a gluing elliptic function for such pair.

Proof. By Lemma 4.6, it is sufficient to prove that uǫ satisfies condition i) in Defi-
nition 2.1. We may reduce to consider the closed strip S between the two horizontal
lines which pass through two consecutive zeros zi and zi+1 of Ux|Γ. Without loss of
generality, we may also assume that Ux > 0 on Γ ∩ S. To simplify the notation, in
what follows we will always write γǫ

−, γǫ
+ and Dǫ in place of γǫ

−,[zi,zi+1]
, γǫ

+,[zi,zi+1]
and

Dǫ
[zi,zi+1]

respectively.
Now, in order to prove that uǫ is a solution to a uniformly elliptic equation

Luǫ = 0 with bounded measurable coefficients and without zero order term, we
want to show that |graduǫ| ≥ C > 0 in Dǫ. In fact, if this occurs, then for any given

uniformly elliptic operator L̃ =
∑2

ij=1 aij∂ij , if we set b = − L̃uǫ

|graduǫ|2
graduǫ, then uǫ

satisfies the equation L̃u + b · gradu = 0.
To obtain a lower bound for |graduǫ| we will show that, for any z0 ∈ Γ ∩ S, we

can choose a neighbourhood U(z0) so that, for any sufficiently small ǫ, |graduǫ| ≥
C(z0) > 0 on U(z0) ∩ Dǫ, where C(z0) is a constant depending only on z0. Taking
a finite subcover {U(zk) : k = 1 · · ·n} and the curves γǫ

− and γǫ
+ so that they are

contained in ∪n
k=1U(zk), it follows that |graduǫ| ≥ C > 0 in Dǫ as we need.

Let z0 ∈ Γ and suppose that u+,y(z0) = u−,y(z0) 6= 0. For any choice of Dǫ, we
have that at all its points

|uǫ,y| ≥

∣

∣

∣

∣

u+,y + u−,y

2

∣

∣

∣

∣

−

∣

∣

∣

∣

U

2

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

U ′
ǫ

4

(

1 −
U2

U2
ǫ

)
∣

∣

∣

∣

∣

.

If z → z0, we have that (u+,y + u−,y)/2 → u+,y(z0) = u−,y(z0) 6= 0, while U → 0.
Then, there exist a neighbourhood U(z0) and k > 0, both of them independent of
ǫ, such that

∣

∣

∣

∣

u+,y + u−,y

2

∣

∣

∣

∣

≥ k and |U | ≤
k

2
in U(z0) .

Moreover, in Dǫ
∣

∣

∣

∣

∣

U ′
ǫ

4

(

1 −
U2

U2
ǫ

)∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

U ′
ǫ

4

∣

∣

∣

∣

∣

.
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We claim that, for any ǫ sufficiently small, the definition of the curves γǫ
− and γǫ

+

can be given so that |U ′
ǫ(y)| ≤ k for all y ∈ (y1, y2). In fact,

U ′
ǫ(y) = Ux(γ

ǫ,x
+ (y), y)(γǫ,x

+ )′(y) + Uy(γ
ǫ,x
+ (y), y) .

Moreover, for any ǫ sufficiently small, |Uy| < k/2 in Dǫ and we may assume that
the curve (γǫ,x

+ ) satisfies |(γǫ,x
+ )′(y)| < M for some constant M . Since |Ux| < k

2M

on two suitable neighbourhoods of z1 and z2, if we define the curve (γǫ,x
+ ) so that

(γǫ,x
+ )′(y) is identically zero outside such neighbourhoods, we have |U ′

ǫ(y)| ≤ k for all
y ∈ (y1, y2). Fixing the curves γǫ

− and γǫ
+ in this way, for any ǫ so small that they

intersect U(z0), we have

|graduǫ|
2 ≥ |uǫ,y|

2 ≥ (
k

2
)2 > 0 in Dǫ ∩ U(z0) .

It remains to consider the case of a point z0 ∈ Γ such that u+,y(z0) = u−,y(z0) =
0. By hypothesis, we have u+,x(z0)u−,x(z0) > 0 and so there exist k̃ > 0 and
a neighbourhood U(z0) of z0 such that u+,x(z)u−,x(z) > k̃ for z ∈ U(z0). Since
u−,x ≤ uǫ,x ≤ u+,x in Dǫ, if ǫ is so small so that γǫ

− and γǫ
+ intersect U(z0), we have

that
|graduǫ|

2 ≥ |uǫ,x|
2 ≥ k̃ > 0 in Dǫ ∩ U(z0) .

This concludes the proof. �

Remark 5.2. In the previous proof, the fact that uǫ satisfies a uniformly elliptic
equation without zero order term is obtained as a consequence of the inequality
|graduǫ| ≥ C > 0. The hypothesis of the theorem have been selected just to
obtain such inequality. On the other hand, other sufficient conditions for gluability
(maybe not so simple as in Theorem 5.1) might be found using the criterion for a
function to be solution of elliptic equations proved by Pucci in [7, 8]. For reader’s
convenience, we recall such theorem. It is stated in terms of the so called Pucci’s
extremal operators (see also [5], Ch. 17): for any given α ∈ (0, 1/2] and β ≥ 0 such
operators on functions of two variables are defined as

Mα,β[u] = αC1(u) + (1 − α)C2(u) + β |gradu| ,

mα,β[u] = (1 − α)C1(u) + αC2(u) − β |gradu|,

where C1(u) ≤ C2(u) are the eigenvalues of the Hessian matrix of u. Pucci’s criterion
is the following: Let D be a bounded domain in the plane and u ∈ C1,1(Ω). Then
Lu = 0 a.e. in D for some linear, uniformly elliptic operator L without zero order
term and with bounded, measurable coefficients in D if and only if there exist α ∈
(0, 1/2] and β ≥ 0 for which the inequalities

mα,β [u] ≤ 0 ≤ Mα,β[u]

hold a.e.in D.

Example 5.3. By Theorem 5.1, it is immediate to see that the pair u−(x, y) = x
and u+(x, y) = 2x is gluable.
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Remark 5.4. Theorem 2.1 of [1] gives a different sufficient condition for the exis-
tence of a family of gluing elliptic functions. Using our notation, it states that a
pair (u−, u+) is gluable if Ux|Γ > 0, (u+,yy + u+,x)|Γ < 0 and (u−,yy + u−,x)|Γ < 0. In
particular, it may be used only in the cases in which gradU never vanishes on Γ.

In Theorem 2.2 of the same paper, the authors consider pairs (u−, u+) with
u−|Γ = u+|Γ = sin y. Under some additional hypothesis, they prove the existence
of a family of gluing elliptic functions all satisfying elliptic equations with only
principal part. We point out that by the hypothesis in that theorem, one can obtain
gluability also by our Theorem 5.1. On the other hand, the gluing elliptic functions
we construct solve elliptic equations with non zero first order terms. It would be nice
to determine general sufficient conditions that give the existence of gluing elliptic
functions satisfying elliptic equations with zero first order term.
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