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Abstract

Some necessary and/or sufficient conditions for the uniform exponential
dichotomy are pointed out. Thus are extended known results due to Bar-
bashin[1], Datko [7], Lovelady [10], Pazy[14], Preda[15, 16, 17].

1 Introduction and Preliminaries

Let X be a real or complex Banach space and B(X) the Banach algebra of all
linear and bounded operators acting on X. We denote by || · || the norms of vectors
and operators on X.

Consider the Cauchy Problem

du(t, x)

dt
= A(t)u(t, x), u(0, x) = x ∈ X, t ≥ 0

with A(·) locally integrable on R+.
Roughly speaking, by dichotomy we understand the existence of a projector-

valued function P (·), such that the solutions which start in ImP (0) decay (in norm)
to zero, and the solutions which start in Im(I − P (0)) are unbounded.

It is widely known that dichotomy and, in particular exponential dichotomy
plays an important role in the investigation of the qualitative properties of nonlinear
evolution equations such as linearized (in-)stability or the existence of the invariant
and center manifolds (see for instance [5], [19]).
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In order to employ the modern techniques of functional analysis and operator
theory in the study of the asymptotic behaviour of the solutions of the above system
(u̇(t) = A(t)u(t)) it can be associated a two-parameters family of bounded and linear
operators Φ(t, t0) = U(t)U−1(t0), where U is the unique solution of the Cauchy
Problem denoted by (A, 0, I):

{

U̇(t) = A(t)U(t)
U(0) = I, the identity on X

We refer the reader to [3], [5], [12], [14], [20] for details.
Definition 1. 1. An operator-valued two variables function

Φ : {(t, s) ∈ R×R : t ≥ s ≥ 0} 7→ B(X) is called an evolution family if the following
properties hold:

e1) Φ(t, t) = I, for all t ≥ 0;

e2) Φ(t, s)Φ(s, r) = Φ(t, r), for all t ≥ s ≥ r ≥ 0;

e3) Φ(·, s)x is continuous on [s,∞), for all s ≥ 0, x ∈ X;

Φ(t, ·)x is continuous on [0, t], for all t ≥ 0, x ∈ X;

e4) there are M, ω > 0 such that

‖Φ(t, s)‖ ≤ Meω(t−s), for all t ≥ s ≥ 0.

Example 1.1. Consider the above operator Cauchy Problem (A, 0, I). If

sup
t≥0

t+1
∫

t

A(τ)dτ < ∞ then Φ(t, t0) = U(t)U−1(t0) is an evolution family which has

the additional property that (e2) holds for any t, s, r ∈ R+. See for instance [4], [5],
[12].

Throughout in this paper we suppose that for every t0 ≥ 0 the vector subspace

X1(t0) = {x0 ∈ X : Φ(·, t0) ∈ L∞
[t0,∞)(X)}

is closed in X, where L∞
[t0,∞)(X) is the Banach space of X-valued function f defined

a.e. on [t0,∞), such that f is strongly measurable and essentially bounded. Also
we assume that X1(t0) admits a complement X2(t0) and we will denote by P (t0) a
projector (that is P (t0) ∈ B(X), P 2(t0) = P (t0)) such that Ker P (t0) = X2(t0).
Also we denote by Q(t0) = I − P (t0).

Remark 1.1. For any evolution family Φ we have that
(i) Φ(t, t0) X1(t0) ⊂ X1(t) (or equivalent Φ(t, t0)P (t0) = P (t)Φ(t, t0)P (t0)), for

all t ≥ t0 ≥ 0;
(ii) Φ(t, s)P (s)Φ(s, t0)P (t0) = Φ(t, t0)P (t0), for all t ≥ s ≥ t0 ≥ 0;
(iii) Φ(t, t0)Q(t0)x 6= 0, for all t ≥ t0 ≥ 0 and x ∈ X with Q(t0)x 6= 0;

Remark 1.2. If Φ is the evolution family from the Example 1.1., then
X1(t0) = U(t0)X1(0), X2(t0) = U(t0)X2(0) and P (t0) = U(t0)P (0)U−1(t0), for all
t0 ≥ 0. Thus, in the case of the evolution families generated by differential systems
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the splitting at any moment t0 ≥ 0 can be obtained by the splitting at the moment
zero.

We will assume in what follows that the projector-valued function P (·) is strongly
continuous and bounded on R+. Also, we will say that P (·) is a dichotomy projector
family if in addition it satisfies

• Φ(t, t0)P (t0) = P (t)Φ(t, t0), for all t ≥ t0 ≥ 0

• Φ(t, t0) : KerP (t0) → KerP (t) is an isomorphism for all t ≥ t0 ≥ 0;

Definition 1.2. An evolution family Φ is said to be uniformly exponentially
dichotomic (u.e.d) if there exist P a projector family and N1, N2, ν > 0 such that

d1) ||Φ(t, t0)P (t0)x|| ≤ N1e
−ν(t−t0)||P (t0)x||, for all x ∈ X and all t ≥ t0 ≥ 0.

d2) ||Φ(t, t0)Q(t0)x|| ≥ N2e
ν(t−t0)||Q(t0)x||, for all x ∈ X and all t ≥ t0 ≥ 0.

Recall now that the well-known theorem of A.M. Lyapunov states that if A is a
n×n complex matrix then A has all its characteristic roots with real parts negative
if only if for any positive definite Hermitian matrix H there exists a unique positive
definite Hermitian matrix W satisfying the equation A∗W + WA = −H (where ∗

denotes the conjugate transpose of a matrix) (see [2]).
The passing to the infinite-dimensional Hilbert spaces is due to Krein and Daleckij

in [5] by considering a time-invariant linear system which generates one-parameter
semigroups T (t) = etA where A is a bounded linear operator. Their result is el-
egantly extended by R. Datko in [6], for the general case of linear time-invariant
systems u̇(t) = Au(t) where A is an unbounded linear operator which generates a
C0− semigroup.

Interesting to note here is that in the proof of the main theorem from [6], R. Datko
establishes a result which have come into widespread usage in the theory of stabil-
ity for strongly continuous semigroups of linear operators. More exactly, Datko
states that the semigroup T = {T (t)}t≥0 is exponentially stable if and only if, for
each vector x from a general Hilbert space X, the function t → ‖T (t)x‖ lies in
L2(R+, R+) (where R+ = [0,∞)). Later, A.Pazy (see for instance [14]) shows that
the result remains valid even if L2(R+, R+) is replaced by any Lp(R+, R+), where
p ∈ [1,∞) and X is a general Banach space. In 1973, R.Datko [7] generalize the re-
sults above, stating that an evolutionary process {Φ(t, s)}t≥s≥0, on a Banach space
X, is uniformly exponentially stable if and only if there is p ∈ [1,∞) such that

sup
s≥0

∞
∫

s
‖Φ(t, s)x‖pdt < ∞, for each x ∈ X. Also, a nonlinear version of Datko’s theo-

rem is obtained in [8] by Ichikawa in 1984. It is worth to mention here that a version
of Datko’s result could be already found in the monograph of Daleckij and Krein
(see Theorem 6.2., page 133 from [5]) for evolution families generated by differential
systems (see Example 1.1.).

Datko-Pazy theorem was improved by Rolewicz in 1986(see [18]) when he proved
that if ϕ : R+ → R+ is a continuous, nondecreasing function with ϕ(0) = 0 and
ϕ(u) > 0 for each strictly positive u, and {Φ(t, s)}t≥s≥0 is an evolution family
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on X such that sup
s≥0

∞
∫

s
ϕ(‖Φ(t, s)x‖dt < ∞ for each x ∈ X then Φ is uniformly

exponentially stable. A shorter proof of the Rolewicz theorem was given in [22] by
Q. Zheng in 1988 removing also the continuity assumption on ϕ. Also, we note that
an analogous result to Rolewicz theorem was obtained independently by Littman
[9] in 1989, in the case of C0-semigroup, but also without continuity hypothesis
for ϕ. Also, a discrete-time version, for the case of C0-semigroups was provided
by Zabczyk [21] in 1974, with the additional requirement that the above function
ϕ is also convex. Jan van Neerven generalize the results above in the case of C0-
semigroups and he present an unified treatment in terms of Banach function spaces
as in [13], Theorem 3.1.5. In fact he states that the semigroup T = {T (t)}t≥0 is
uniformly exponentially stable if there exists a Banach function space E over R+

with the property that lim
t→∞

||χ[0,t]|| = ∞ such that ||T (·)x|| ∈ E for all x ∈ X. The

Datko-Pazy theorem follows from this by taking E = Lp(R+) and Rolewicz’s result
can be derived as well by taking for E a suitable Orlicz space over R+.

A first extension of Datko theorem to the general case of exponential dichotomy
is due to Popescu and Preda in [15], where it is analyzed the case of differential
systems. Later Preda and Megan generalize the Datko-Pazy theorem for dichotomy,
first for C0-semigroups [16] and second for evolution families [17]. Since we use
essentially the result from [17] in our proofs, we will list it bellow.

Theorem 1.1. (Preda and Megan, 1985, [17]) The evolution family Φ is uni-
formly exponentially dichotomic if there exist m, N > 0 and p ≥ 1 such that

• (
∞
∫

t0

‖Φ(t, t0)P (t0)x0‖
pdt)

1

p ≤ N‖P (t0)x0‖,

• (
t
∫

t0

‖Φ(s, t0)Q(t0)x0‖
pdt)

1

p ≤ N‖Φ(t, t0)Q(t0)x0‖,

• ‖Φ(t0 + 1, t0)Q(t0)x0‖ ≥ m‖Q(t0)x0‖,

for all t ≥ t0 ≥ 0 and x0 ∈ X.

Note that, in all above integral conditions, the integrand is the first parameter
of the evolution family. Integral characterizations with the second parameter as
integrand are obtained firstly by Barbashin in 60’s. Thus in [1], E.A. Barbashin
proved that an evolution family Φ is uniformly exponentially stable if and only if
there is K > 0 such that

∫ t
t0
||Φ(t, τ)|| dτ ≤ K, for all t ≥ t0 ≥ 0. This result

is extended to the general case of dichotomy for differential systems in [10], [17],
[4] and it states that an evolution family Φ is uniformly exponentially dichotomic

if and only if there is K > 0 and p > 0 such that (
∫ t
t0
||Φ(t)P1Φ

−1(τ)||p dτ)
1

p +

(
∫ ∞
t ||Φ(t)P2Φ

−1(τ)||p dτ)
1

p ≤ K, for all t ≥ t0 ≥ 0.
Analyzing the technique of proof of the above results we can distinguish that

Datko’s type related results are connected with the Lyapunov method for the study
of the asymptotic behaviour if differential systems and Barbashin’s type results are
related to Perron’s method (test functions). The present approach extends both
Datko-Pazy and Barbashin line of results to the general case of uniform exponential
dichotomy of abstract evolution families.



Integral characterizations for the dichotomy of evolution families 207

Thus, Theorem 2.1. is a version of Theorem 1.1. [17] when it is assumed the
existence of a dichotomic projector family (i.e. we assume the invertibility of the
operator Φ(t, t0) on KerP (t0)). Theorem 2.2. is a generalization of Datko Theorem
from [7] to the general case of uniform exponential dichotomy. Theorems 2.3, 2.4.,
2.5. are extension of the above Barbashin’s result from [1], and respectively of some
theorems pointed out by Coppel [5], Lovelady [10], Preda-Megan [16, 17].

2 Main Results

Lemma 2.1.Let f, g : R+ → R+ with g continuous on R+. If
i) f(t) ≤ g(t − t0)f(t0), for each t ≥ t0 ≥ 0;
ii) there exists δ > 0 with g(δ) < 1.
Then there exist N, ν > 0, independently of f , such that f(t) ≤ Ne−ν(t−t0)f(t0),

for each t ≥ t0 ≥ 0.

Proof. See for instance [11].

Theorem 2.1 Assume that {P (t)}t≥0 is a dichotomic projector family associ-
ated with the evolution family Φ. Then Φ is uniformly exponential dichotomic if and
only if there exist the constants p, k, m > 0 such that:

i)
(

∫ ∞
t ||Φ(τ, t)P (t)x||pdτ

)
1

p

+
(

∫ t
0 ||Φ

−1(t, τ)Q(t)x||pdτ

)
1

p

≤ k||x||, for each t ≥

0 and x ∈ X;

ii) m||Q(t)x|| ≤ ||Φ(t + 1, t)Q(t)x||, for each t ≥ 0 and x ∈ X.

Proof. Sufficiency: By (i) we have that

(
∫ ∞

t
||Φ(τ, t)P (t)x||pdτ

)
1

p

≤ k||x||, for all t ≥ 0, and x ∈ X.

Applying (i) for t ≥ t0 ≥ 0 and x = Φ(t, t0)Q(t0)y, y ∈ X we obtain that

(
∫ t

t0

||Φ(τ, t0)Q(t0)y||
pdτ

)
1

p

≤ k||Φ(t, t0)Q(t0)y||,

for all t ≥ t0 ≥ 0 and y ∈ X. Using Theorem 1.1. we get that Φ is uniformly
exponentially dichotomic.

Necessity. It follows easily by taking into account that

||Φ−1(t, t0)Q(t)y|| ≤
1

N2
e−ν(t−t0)||y||.

(see Definition 1.2.) and by setting k = 1

(νp)
1
p
(N1 sup

t≥0
‖P (t)‖ + 1

N2

sup
t≥0

‖Q(t)‖).

Theorem 2.2 Assume that {P (t)}t≥0 is a dichotomic projector family associ-
ated with the evolution family Φ. If there exist k, p > 0 with

(
∫ ∞

t
||Φ(τ, t)P (t)x||pdτ

)
1

p

+
(

∫ t

0
||Φ−1(t, τ)Q(t)x||pdτ

)
1

p

≤ k||x||,

for all t ≥ 0 and x ∈ X, then there exist N1, ν > 0 such that for each α > 0 we can
find Nα > 0 with:
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i) ||Φ(t, t0)P (t0)x|| ≤ N1e
−ν(t−s)||Φ(s, t0)P (t0)x||, for all t ≥ s ≥ t0 ≥ 0 and

x ∈ X;

ii) ||Φ(t, t0)Q(t0)x|| ≥ Nαeν(t−s)||Φ(s, t0)Q(t0)x||, for all t ≥ s ≥ t0 + α and
x ∈ X.

Proof. By hypothesis we get that

(
∫ ∞

t
||Φ(τ, t)P (t)x||pdτ

)
1

p

≤ k||x||, for all t ≥ 0, and x ∈ X.

Applying Theorem 1.1. we get that there exist N1, ν1 > 0 such that

||Φ(t, t0)P (t0)x|| ≤ N1e
−ν1(t−t0)||x||, for all t ≥ t0 ≥ 0, and x ∈ X.

Writing the hypothesis for t ≥ t0 ≥ 0 and x = Φ(t, t0)Q(t0)y, y ∈ X, it follows that

(
∫ t

t0

||Φ−1(t, τ)Q(t)Φ(t, t0)Q(t0)y||
pdτ

)
1

p

≤ k||Φ(t, t0)Q(t0)y||

and hence
∫ t

t0

||Φ(τ, t0)Q(t0)y||
pdτ ≤ kp||Φ(t, t0)Q(t0)y||

p, for all t ≥ t0 ≥ 0, and y ∈ X.

Therefore we deduce that

(⋄) ϕ(s)e
1

kp (t−s) ≤ ϕ(t) ≤ kp||Φ(t, t0)y||
p, for all t ≥ s ≥ t0 ≥ 0, and y ∈ X,

where

ϕ(t) =
∫ t

t0

||Φ(τ, t0)Q(t0)y||
pdτ.

For s ≥ t0 ≥ 0 and τ ∈ [t0, s], we have that

||Φ(s, t0)Q(t0)y||
p ≤ ||Φ(s, τ)||p ||Φ(τ, t0)Q(t0)y||

p ≤

≤ Mpeωp(s−τ)||Φ(τ, t0)Q(t0)y||
p.

Then
1

Mpωp
(1 − e−ωp(s−t0))||Φ(s, t0)Q(t0)y||

p ≤ ϕ(s).

For α > 0 and s − t0 ≥ α we obtain that

(1 − e−ωpα)
1

Mpωp
||Φ(s, t0)Q(t0)y||

p ≤ ϕ(s), for all s ≥ t0 + α,

and by (⋄) we get that for each α > 0, there exists

Nα = (1 − e−ωpα)
1

p
1

kM(ωp)
1

p

,

with

Nαe
1

pkp (t−s)||Φ(s, t0)Q(t0)y|| ≤ ||Φ(t, t0)Q(t0)y||, for all t ≥ s ≥ t0 + α.
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Thus there exists ν2 = 1
pkp > 0 such that for each α > 0, there exists Nα > 0 with

||Φ(t, t0)Q(t0)x|| ≥ Nαeν2(t−s)||Φ(s, t0)Q(t0)x||, for all t ≥ s ≥ t0 + α, for all x ∈ X.

Thus there exist ν = min{ν1, ν2} > 0 and N1 > 0 such that for any α > 0, we can
find Nα > 0 with

||Φ(t, t0)P (t0)x|| ≤ N1e
−ν(t−s)||Φ(s, t0)P (t0)x||, for all t ≥ s ≥ t0

and

||Φ(t, t0)Q(t0)x|| ≥ Nαeν(t−s)||Φ(s, t0)Q(t0)x||, for all t ≥ s ≥ t0 + α, and x ∈ X.

Theorem 2.3.Let Φ be an evolution family. If there exist p, k > 0 such that:

i)
(

∫ t
0 ||Φ(t, τ)P (τ)||pdτ

)
1

p

≤ k, for each t ≥ 0;

ii)
(

∫ ∞
t

dτ
||Φ(τ,t0)Q(t0)x||p

)
1

p

≤ k
||Φ(t,t0)Q(t0)x||

, for each t ≥ t0 ≥ 0 and x ∈ X with

Q(t0)x 6= 0;

then Φ is uniformly exponentially dichotomic.

Proof. Let t ≥ t0 + 1 and r(t) = M sup
τ≥0

||P (τ)||eωt. Then

||Φ(t, t0)P (t0)||
p

∫ t

t0

r−p(τ − t0)dτ =
∫ t

t0

||Φ(t, τ)P (τ)Φ(τ, t0)P (t0)||
pr−p(τ − t0)dτ

≤
∫ t

t0

||Φ(t, τ)P (τ)||pdτ ≤
∫ t

0
||Φ(t, τ)P (τ)||pdτ ≤ kp.

But
∫ t

t0

r−p(τ − t0)dτ =
∫ t−t0

0
r−p(s)ds ≥

∫ 1

0
r−p(s)ds = α > 0

and hence

α
1

p ||Φ(t, t0)P (t0)|| ≤ k, for all t ≥ t0 + 1,

which implies that

||Φ(t, t0)P (t0)|| ≤
k

α
1

p

, for all t ≥ t0 + 1.

Taking now t0 ≤ t < t0 + 1 we have that

||Φ(t, t0)P (t0)|| ≤ Meω sup
t≥0

||P (t)||.

Denoting

L = max{
k

α
1

p

, Meω sup
t≥0

||P (t)||},
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we obtain that

(⋄⋄) ||Φ(t, t0)P (t0)|| ≤ L, for all t ≥ t0 ≥ 0.

Taking by this time t ≥ t0 ≥ 0 and τ ∈ [t0, t] we get that

||Φ(t, t0)P (t0)|| ≤ L||Φ(t, τ)P (τ)||,

which implies that

(⋄ ⋄ ⋄) (t − t0)
1

p ||Φ(t, t0)P (t0)|| ≤ Lk, for all t ≥ t0 ≥ 0.

Adding up (⋄⋄) with (⋄ ⋄ ⋄) we deduce that

||Φ(t, t0)P (t0)|| ≤
L(1 + k)

1 + (t − t0)
1

p

, for all t ≥ t0 ≥ 0,

and hence
||Φ(t, t0)P (t0)|| ≤ ||Φ(t, τ)P (τ)|| ||Φ(τ, t0)P (t0)|| ≤

≤
L(1 + k)

1 + (t − τ)
1

p

||Φ(τ, t0)P (t0)||, for all t ≥ τ ≥ t0 ≥ 0.

Applying Lemma 2.1. we have that there exist N1, ν1 > 0 such that

||Φ(t, t0)P (t0)|| ≤ N1e
−ν1(t−t0), for all t ≥ t0 ≥ 0.

Take now x ∈ X with Q(t0)x 6= 0 and t ≥ t0 ≥ 0. Denoting

ϕ(t) =
∫ ∞

t

dτ

||Φ(τ, t0)Q(t0)x||p
,

by (ii) we have that
ϕ(t) ≤ −kpϕ̇(t),

and hence
1

kp
≤ −

ϕ̇(t)

ϕ(t)
,

which implies

e
1

kp (t−t0) ≤
ϕ(t0)

ϕ(t)
, ∀ t ≥ t0 ≥ 0.

Thus
∫ ∞

t

dτ

||Φ(τ, t0)Q(t0)x||p
e

1

kp (t−t0) ≤
kp

||Q(t0)x||p
, for all t ≥ t0 ≥ 0.

From here it follows that
∫ t+1

t

dτ

||Φ(τ, t0)Q(t0)x||p
e

1

kp (t−t0) ≤
kp

||Q(t0)x||p
.

Taking into account that

||Φ(τ, t0)Q(t0)x|| = ||Φ(τ, t)Φ(t, t0)Q(t0)x|| ≤
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≤ Meω||Φ(t, t0)Q(t0)x||, for all τ ∈ [t, t + 1].

Thus, we obtain that

1

Mpeωp||Φ(t, t0)Q(t0)x||p
≤

∫ t+1

t

dτ

||Φ(τ, t0)Q(t0)x||p
,

which implies
1

Mpeωp||Φ(t, t0)Q(t0)x||p
e

1

kp (t−t0) ≤
kp

||Q(t0)x||p
,

and hence

||Φ(t, t0)Q(t0)x|| ≥
1

kMeω
e

1

pkp (t−t0)||Q(t0)x||, for all t ≥ t0 ≥ 0.

Denoting

N2 =
1

kMeω
and ν2 =

1

pkp
,

we have that

||Φ(t, t0)Q(t0)x|| ≥ N2e
ν2(t−t0)||Q(t0)x||, for all t ≥ t0 ≥ 0.

Thus Φ is uniformly exponentially dichotomic.

Theorem 2.4Assume that {P (t)}t≥0 be a projector-family associated to Φ with
the property that

P (t)Φ(t, t0) = Φ(t, t0)P (t0), for all t ≥ t0 ≥ 0.

Then Φ is uniformly exponentially dichotomic if and only if there exist p > 0, k > 0
such that:

i)
(

∫ t
0 ||Φ(t, τ)P (τ)||pdτ

)
1

p

≤ k, for each t ≥ 0;

ii)
(

∫ ∞
t

dτ
||Φ(τ,t0)Q(t0)x||p

)
1

p

≤ k
||Φ(t,t0)Q(t0)x||

, for each t ≥ t0 ≥ 0 and x ∈ X with

Q(t0)x 6= 0.

Proof. Necessity. Since Φ is uniformly exponentially dichotomic, then for each
p > 0 we have that

(
∫ t

0
||Φ(t, τ)P (τ)||pdτ

)
1

p

≤ N1

(
∫ t

0
e−νp(t−τ)dτ

)
1

p

sup
t≥0

||P (t)|| ≤

≤
N1 supt≥0 ||P (t)||

(νp)
1

p

, for all t ≥ 0.

Let x ∈ X with Q(t0)x 6= 0 and τ ≥ t ≥ t0 ≥ 0. Then

||Φ(τ, t0)Q(t0)x|| = ||Φ(τ, t)Q(t)Φ(t, t0)x|| ≥ N2e
ν(τ−t)||Φ(t, t0)Q(t0)x||,
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for all τ ≥ t ≥ t0 ≥ 0. Thus

(
∫ ∞

t

1

||Φ(τ, t0)Q(t0)x||p
dτ

)
1

p

≤
1

N2

(
∫ ∞

t
e−νp(τ−t)dτ

)
1

p 1

||Φ(t, t0)Q(t0)x||
.

From here we have that

(
∫ ∞

t

dτ

||Φ(τ, t0)Q(t0)x||p

)
1

p

≤
1

N2(νp)
1

p

1

||Φ(t, t0)Q(t0)x||
,

for all t ≥ t0 ≥ 0, and x ∈ X with Q(t0)x 6= 0. Setting now

k = max{N1 sup
t≥0

||P (t)||,
1

N2
}

1

(νp)
1

p

we complete the proof.

Sufficiency: It follows by Theorem 2.3.

Theorem 2.5. Assume that {P (t)}t≥0 is a dichotomic projector family associ-
ated with the evolution family Φ. Then Φ is uniformly exponentially dichotomic if
and only if there exist p, k > 0 such that

(
∫ t

0
||Φ(t, τ)P (τ)||pdτ

)
1

p

+
(

∫ ∞

t
||Φ−1(τ, t)Q(τ)||pdτ

)
1

p

≤ k, ∀ t ≥ 0.

Proof. Sufficiency. It follows identically as in Theorem 2.3. that there exist
N1, ν1 > 0 such that

||Φ(t, t0)P (t0)|| ≤ N1e
−ν1(t−t0), for all t ≥ t0 ≥ 0.

Take now τ ≥ t ≥ t0 ≥ 0 and x ∈ X \ {0}. Then

Φ(τ, t0)Q(t0) = Φ(τ, t)Φ(t, t0)Q(t0),

which implies that

Φ−1(τ, t)Φ(τ, t0)Q(t0) = Φ(t, t0)Q(t0),

and hence

||Φ(t, t0)Q(t0)x||
p

∫ ∞

t

dτ

||Φ(τ, t0)Q(t0)x||p
=

∫ ∞

t

||Φ−1(τ, t)Q(τ)Φ(τ, t0)Q(t0)x||
p

||Φ(τ, t0)Q(t0)x||p
dτ ≤

≤
∫ ∞

t
||Φ−1(τ, t)Q(τ)||pdτ ≤ kp, for all t ≥ t0 ≥ 0 and x ∈ X \ {0}.

Thus we get that

(
∫ ∞

t

dτ

||Φ(τ, t0)Q(t0)x||p

)
1

p

≤
k

||Φ(t, t0)Q(t0)x||
, for all t ≥ t0 ≥ 0, and x ∈ X\{0}.

Applying Theorem 2.3. we obtain that Φ is uniformly exponentially
dichotomic.
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Necessity. Since Φ is exponentially dichotomic we have that

(
∫ t

0
||Φ(t, τ)P (τ)||pdτ

)
1

p

≤ N1

(
∫ t

0
e−νp(t−τ)dτ

)
1

p

sup
τ≥0

||P (τ)|| ≤

≤
N1 supt≥0 ||P (t)||

(νp)
1

p

, for all t ≥ 0.

Moreover, if
Φ(t, t0)Q(t0)x = y,

then
||y|| ≥ N2e

ν(t−t0)||Φ−1(t, t0)Q(t)y||

hence

||Φ−1(t, t0)Q(t)|| ≤
1

N2

e−ν(t−t0)||Q(t)||, for all t ≥ t0 ≥ 0.

Thus, for each p > 0 we have that

(
∫ ∞

t
||Φ−1(τ, t)Q(τ)||pdτ

)
1

p

≤
1

N2

(
∫ ∞

t
e−νp(τ−t)dτ

)
1

p

sup
t≥0

||Q(t)|| =

=
1

N2(νp)
1

p

sup
t≥0

||Q(t)||.

Denoting by

k = (N1 sup
t≥0

||P (t)|| +
1

N2
sup
t≥0

||Q(t)||)
1

(νp)
1

p

,

we obtain that

(
∫ t

0
||Φ(t, τ)P (τ)||pdτ

)
1

p

+
(

∫ ∞

t
||Φ−1(τ, t)Q(τ)||pdτ

)
1

p

≤ k,

for all t ≥ 0 and p > 0.
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