Examples of non-archimedean twisted nuclear
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Abstract

A Fréchet space is called twisted if it is not isomorphic to a countable
product of Fréchet spaces with continuous norms. It is easy to show that no
non-archimedean Fréchet space with a Schauder basis is twisted. We construct
examples of non-archimedean twisted nuclear Fréchet spaces.

Introduction

In this paper all linear spaces are over a non-archimedean non-trivially valued field
K which is complete under the metric induced by the valuation |- | : K — [0, 00).
For fundamentals of locally convex Hausdorff spaces (lcs) and normed spaces we
refer to [8], [10], [3] and [9].

Any finite-dimensional lcs of dimension n is isomorphic to the Banach space K".
Every infinite-dimensional Banach space E of countable type is isomorphic to the
Banach space ¢ of all sequences in K converging to zero with the sup-norm and any
closed subspace of E is complemented ([9], Theorem 3.16). Nevertheless, the world
of Fréchet spaces of countable type is very rich (see [11], [12], [13], [14]).

It is not hard to prove that any Fréchet space with a Schauder basis is isomorphic
to a countable product of Fréchet spaces with continuous norms (see Proposition 1).
In [11] we constructed many examples of Fréchet spaces of countable type without
a Schauder basis but each of these spaces is a countable product of Fréchet spaces
with continuous norms. It arises a natural question whether any Fréchet space of
countable type is isomorphic to a countable product of Fréchet spaces with continu-
ous norms. Recall that in [15] we have shown that any infinite-dimensional Fréchet
space of countable type is homeomorphic to the Fréchet space KN with the product
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topology ([15], Corollary 5). In this paper, developing some ideas of [7] and using the
generalized Kothe spaces studied in [5], we shall prove that the answer to the above
problem is negative, even for nuclear Fréchet spaces (Theorem 7 and Proposition 8).

Preliminaries

A seminorm on a linear space E is a function p : E — [0,00) such that p(ax) =
la|p(x) for all « € K,z € E and p(z +y) < max{p(x),p(y)} for all z,y € E. A
seminorm p on E is a norm if ker p = {0}.

The set of all continuous seminorms on a les £ is denoted by P(E). A family
B C P(E) is a base in P(F) if for every p € P(FE) there exists ¢ € B with ¢ > p.

Any metrizable lcs F possesses a non-decreasing base (py) in P(E).

A Fréchet space is a metrizable complete lcs. Let (x,,) be a sequence in a Fréchet
space E. The series Y 77 x,, is convergent in E if and only if lim z,, = 0.

A sequence (x,) in a les F is a basis in E if each x € FE can be written
uniquely as x = >>° | @, x,, with (o,,) C K. If additionally the coefficient functionals
fo: E—= K, z— a,(n €N) are continuous, then (z,) is a Schauder basis in E.

Let E be a lcs. A sequence (z,,) C E is orthogonal with respect to B C P(FE)
if p(X0, ax;) = maxj<i<, p(agx;) for all p € Byn € N and ay,...,a, € K. Ev-
ery Schauder basis in a Fréchet space I is orthogonal with respect to some (non-
decreasing) base (px) in P(F') ([4], Proposition 1.7).

Put Bx = {a € K : |a] < 1}. A subset B of a les E is compactoid if for each
neighbourhood U of 0 in E there exists a finite subset {ay,...,a,} of E such that
BcCcU+ {3 ,qa;:ay,...,an € Bg}

Let E and F' be locally convex spaces. A linear map T : E — F' is compact if
there exists a neighbourhood U of 0 in E such that T'(U) is compactoid in F.

For any seminorm p on a lcs E the map p: E, — [0,00),x + kerp — p(z) is a
norm on E, = (E/kerp). Let ¢, : E — E,, v — = + kerp.

A les E is nuclear if for any p € P(F) there exists ¢ € P(E) with ¢ > p such
that the map ¢, ,: (E,;,q) — (E,, D), v + kerq — = + kerp, is compact.

Alces E is of countable type if for any p € P(E) the normed space (E,, p) contains
a linearly dense countable subset.

By a Kdthe matriz we mean an infinite matrix B = (by,,) of positive real numbers
such that Vk,n € N : by, < bgy1,. The Kothe space associated with the Kothe

matrix B is the Fréchet space
K(B) = {(&) € KN : by |¢| — 0 for any k € N}

with the base (pg) of norms: pi((&,)) = kmax,, by ,|&,], & € N. The sequence (e,,) of
coordinate vectors is a Schauder basis of K (B) ([1], Proposition 2.2).

A Kothe matrix B = (by,) is nuclear it VE € N3m € N @ (bg /b)) —n 0. The
Kothe space K (B) is nuclear if and only if B is nuclear ([1], Proposition 3.5).

Let a = (a,) be a non-decreasing unbounded sequence of positive real numbers.
Then the following Kothe spaces are nuclear:

(1) Ai(a) = K(B) with B = (brn), brm = (75);

(2) Ax(a) = K(B) with B = (bxn), ben = k.
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Aj(a) and Ay (a) are the power series spaces (of finite and infinite type, respec-
tively)(see [1]).

Let E be a lcs. We write B(E) for the family of all bounded subset of E. The
strong dual of F, that is the topological dual of E' with the strong topology, will be
denoted by E’ (not by E}). If E is of countable type then E’ separates points of E
([10], Theorem 4.4). The polar of A C E'is A° ={f € E': |f(x)| < lifx € A}. If
M is a subspace of E then M° ={f € E': f(z) =0 for x € M}.

Let E and F be locally convex spaces. The space of all linear continuous maps
from E to F is denoted by L(E,F'). An operator T" € L(FE, F) is an isomorphism
if T is injective, surjective and the inverse map 7! is continuous. E is isomorphic
to F' if there exists an isomorphism 7' : £ — F. If T € L(E,F) and T(E) = F
then the dual map 7" : F/ — E’ is continuous, injective and T"(F") = (kerT')°. If
T € L(E,F) then (T(A))° = (T')"'(A°) for A C E.

For fundamentals of projective and inductive limits of locally convex spaces we
refer to [3].

Results

First we shall prove that no Fréchet space with a Schauder basis is twisted.

Proposition 1. Let X be a Fréchet space with a Schauder basis (z,). Then X
is isomorphic to a countable product of Fréchet spaces with Schauder bases and
continuous norms. In particular X 1is not twisted.

Proof. The basis (z,) is orthogonal with respect to some non-decreasing base (py,)
in P(X). Put po(z) =0 for all x € X and My, = {n € N: 0 = pr_1(x,) < pr(z,)}
for k£ € N. Denote by X the closed linear span of {z,, : n € My} for k € N (if
My = 0, then X = {0}). Clearly, (xn)nen, is a Schauder basis in X} and pg| Xy
is a continuous norm on X, for £ € N. We shall prove that X is isomorphic to the
product space [172; X. Let (f,,) be the sequence of coefficient functionals associated
with the basis (z,). For any k& € N the map

neMj,

is a linear continuous projection from X onto Xj. For every (xy) € [, Xi the
series Y 5o, x is convergent in X, since py(x,) = 0 for all n,k € N with n > k.
Thus the linear map P : X — [ Xk, Px = (Pyx), is continuous, injective and
surjective. By the open mapping theorem P is an isomorphism. [J

In the proof our main result we will need the following two lemmas.

Lemma 2. Let Z be a closed subspace of a Fréchet space X of countable type. If
Z° is complemented in X', then Z is complemented in X .

Proof. Let S be a complement of Z° in X' and let V' = N;cgker f. Clearly
ZNV ={0}. Let (z,) C Z,(v,) C V,z0 € Zyvg € V and z, + v, — 20 + 19 in
X. Let g € Z'. By the Hahn-Banach property ([10], Theorem 4.2), there exist
fi € Z° and f, € S such that g(z) = (f1 + f2)(z) = fo(z) for all z € Z. We have



1020 W. Sliwa

fo(zn 4+ vn) = falz0 + v0), 80 fa(2n) — f2(20). Thus g(z,) — g(z0) for every g € Z',
so (z,) converges weakly to zo in Z. By [10], Theorem 4.11, z, — 2, in Z, so in
X. Hence v, — vg in X. Thus the subspace W = Z + V of X is isomorphic to the
Fréchet space Z x V. It follows that W is closed in X, so W is weakly closed in X
([10], Corollary 4.9). On the other hand it is easy to check that W is weakly dense
in X. Thus W = X, so V is a complement of Z in X. [

Lemma 3. Let X be a nuclear Fréchet space with a continuous norm p. Let A =
{x € X :p(x) < 1}. Then the set A° is bounded and linearly dense in X'.

Proof. Let B € B(X). Then there exists @ € K such that p(b) < |a] for all
be B. Let f € A°. For b € B we have |f(a™'0)| <1, s0 f € aB°. Thus A° C aB°.
It follows that A° is bounded in X’. Let M be the closed linear span of A° in X'.
Suppose, by contradiction, that M # X’. X is reflexive ([10], Theorem 10.3) and
X' is of countable type ([10], Corollary 8.7), so there exists a non-zero element zy in
X such that f(zg) = 0 for all f € M ([10], Corollaries 4.8 and 4.9 and Proposition
3.4(iv)). Let 7,8 € K with 0 < |y| < p(x) and |3| > 1. Then there exists g € X’
with g(xg) = v such that |g(x)| < |B|p(x) for all z € X ([10], Theorem 4.2). Thus
g € BA° C M, so g(xy) = 0; a contradiction. [J

We will also need the following proposition on projective limits of Fréchet spaces.

Proposition 4. Let (E,) be a sequence of nuclear Fréchet spaces and let m, be a
continuous linear map from E, 1 onto E, with kerm, # {0} for n € N. Then the
strong dual of a projective limit of the projective system ((E,), (m,)) is isomorphic
to an inductive limit of the inductive system ((E!), (7).

Proof. The closed subspace G = {(z,,) € I[I2y Ey : m(Tnt1) = 2, for n € N}
of the product space £ =[]>2, E,, with the coordinate maps ¢, : G — E,,n € N,
is a projective limit of the projective system ((E,), (7)) ([3], 1.3.2). Clearly, G is
a nuclear Fréchet space and ¢, (G) = E, for n € N. For every n € N the adjoint
operator m, : E — E ., is continuous and injective, and 7, (E},) is a proper closed
subspace of E/_ ;. Thus ((£)), (7)) is an inductive system ([3], Definition 1.1.1).

Let F be the locally convex direct sum é@:° , E! of (E!). By [6], Proposition 2.8, F’
is isomorphic to £’ and the linear map

i F = B () () = i 2 ()

is an isomorphism. Clearly, G=1J ~1(G®) is a closed subspace of F. Denote by H
the linear subspace of F' generated by the following subset of F

{(z1, —m1(21),0,...) : 21 € E1}U{(0, 25, —m5(25),0,...) s 25 € ES} U ...

We shall prove that G = H. Put Tntinm = Tp and mp, = m, o ... 0 m,_1 for
all myn € N with m > n+ 1. Let 2’ = (z])) € G. For some m € N we have

x;, = 0 for all n > m. Let z = (x,) € G. Then 0 = (J2')(x) = X", 2l (x,) =
et T (T 10 (Tman)) = (05 7T7/n+1,nx;L>('Tm+1>' Since Ym11(G) = Emy1, we get
ne1 T 10y = 0. Hence 2" = (2, ..., 27, — X0 700,20, 0,...) =

Y m?
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(21, —m1(21),0,...)4+(0, 25, —=m5(25),0, .. .)+...+(0,...,0,2 ,—=x (2.),0,...) where

2 =a, b =ah+ w2, =2, + e, . Thus o/ € H; so G C H. Let
m e N,a! € E and 2’ = (0,...,0,2,, —7, 2/ 0,...). For any 2 = (z,,) € G we

have (J2')(x) = 2!, (xm) — (7,20 ) (Tmt1) = 0, (T — Tm@my1) = 0. Hence 2’ € G
so HC G. Thus G =H ; in particular H is a closed subspace of F'.
Let n € N. Let J,, : E! — F,z! — (x}), where z}, = x/, for k = n and z}, = 0 for
k # n. Denote by T' the quotient map from F onto F'/H. It is easy to see that the
linear map
o, : B, — F/H, a,(z) = T(J,(x))

is continuous and injective, and a1 o 7, = «, for all n € N. Hence «,(F)) is a
proper subspace of o, 41(E), ;) for any n € N and U2, a,(E),) = UpZi (a1 (E]) +
ctan(E)) = TUZ (LB + -+ Ju(EL))) = T(@R%4 Ey) = F/H.

By [3], 1.1.2, the quotient space F)/H with the maps o, : E/, — F/H,n € N,
is an inductive limit of the inductive system ((E!),(m,)); by [3], 1.1.4, F/H is
the inductive limit of the inductive sequence (a,,(E!)), where a,,(E!) inherits the
topology of E! through «,, for any n € N.

Let n € N. By [2], Proposition 2.5, we get m,(B(E,+1)) = B(F,) since any
bounded subset of E,, is compactoid. For B € B(E,+1) we get a,1(B°) Nay,(E)) =
i (B2 O (EL)) = i (7, (7)1 (B%)) = (7)1 (B%)) = an((ma(B))°). It fol-
lows that the topology of o, (E},) agrees with the topology induced from c,11(E}, ;)
onto oy, (EL). Thus the inductive sequence (a,(E))) is strict. Moreover a,(F!) is
closed in ay41(E), ), since 7, (E)) is closed in E], ., (n € N).

Using [6], Theorem 5.12, we infer that the space G’ is isomorphic to the quotient
F/G of F and the linear map ¥ : F/G — G, (¥(Ty))(z) = (Jy)(z) is an isomor-
phism (7" : F — F/G is the quotient map; y € F,x € G). Thus the strong dual
of the projective limit G of the projective system ((E,), (7)) is isomorphic to the
inductive limit F/H of the inductive system ((E!), (x/)). O

By the proof of the last proposition we get the following

Corollary 5. (a) a,(E)) is a proper closed subspace of cu,1(E,, 1),n € N;
(b) F'/H is the inductive limit of the strict inductive sequence (o, (E!));
(c) F/H is isomorphic to the strong dual of G.

Moreover we have the following

Remark 6. Let (Z,) be a strict inductive sequence with the inductive limit Z. As-
sume that Z, is closed in Z,.1 for any n € N. If a subspace Zy of Z contains a
bounded subset B which is linearly dense in Zy, then Zy C Z,, for some m € N.

Proof. By [3], Theorem 1.4.13, the inductive sequence (Z,) is regular and Z,, is
closed in Z for any n € N. Thus B C Z,, for some m € N; hence Z, C Z,,.

Let X and Y be nuclear Fréchet spaces with continuous norms such that there
exists a continuous map ) from X onto Y which kernel ker () is not comple-
mented in X. For example, we can take X = A, (a) and Y = A;(b) provided
a = (a,) and b = (b,) are increasing unbounded sequences of positive numbers with
lim, (a,/b,) = 0 and sup,,(as,/a,) < oo (see [16], Proposition 21 and [1], Propo-
sition 4.3; the assumption that K is spherically complete can be omitted in [1],
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Proposition 4.3). Let () and (px) be non-decreasing bases of continuous norms
on X and Y, respectively. Let B = (b;,) be a nuclear Kéthe matrix. The space
K(B)Y) = {(yn) CY : bpupr(yn) —n 0 for every k € N}with the base of norms
0 ((yn)) = max, b npr(yn), k € N, is a nuclear Fréchet space ([5], Lemma 2.2 and
Theorem 7.1; K(B,Y) = Ao(N,P,Y) for P = {by = (bn)nen : k € N}). The
strong dual of K'(B,Y) is nuclear ([10], Corollary 11.5). Put pa(y') = sup,c4 | (v)]
for A € B(Y) and 3 € Y. Consider the linear space S(B,Y’) = {(y},) C Y’ :
&nlpaly,) —n 0 for all € = (&,) € K(B),A € B(Y)} with the locally convex topol-
ogy generated by all seminorms of the form r¢ 4((y),)) = max, |&,|pa(y,), where
£ = (&) € K(B),A € B(Y). For any ¢ = (y,,) € S(B,Y’) the linear functional
fo : K(B)Y) = K, fo((yn)) = 202, yh(yn) is continuous and the linear map & :
S(B,Y') — (K(B,Y)),¢ — [, is an isomorphism; thus S(B,Y") is isomorphic to
the strong dual space of K(B,Y") ([5], Proposition 4.4 and Corollary 7.2; S(B,Y") =
AN IALY") = Ao(N, [Ag|,Y")). Let n € N. The space E,, = X" x K(B,Y) is a nu-
clear Fréchet space. The norms qg,, : E, — [0,00), qrn((z1, ..., 20), (Y1, Y2, ...)) =
max{rg(x1),...,7(zn), @ ((yn))}, k € N, form a base in P(E,,). Clearly, E! is iso-
morphic to (X')" x S(B,Y’); we will identified these spaces.

From now we will assume that the nuclear Kéthe matrix B = (by,,) is stable that
is

bn bn
VkENEIZEN:sup< botl 76 ><oo.
n bl,n bl,n+1

For example, for an increasing unbounded sequence (a,) C (0,400) the nuclear
Ko6the matrixes A = (axn,) = (k%) and C' = (¢x,) = ((k—_’il)“") are stable, provided
sup,, (ant1/an) < co.

It is not hard to check that for any (y,) C Y we have (y1,v2,...) € K(B,Y)
if and only if (y2,ys,...) € K(B,Y); if k < [ and ¢y = sup, (bgn+1/bin) < 00,

and py 0 Q < r; then ¢ (Qz, 1, Y2, .. .) < (cky+ bi1) max{r;(x), q(y1,y2, ...)} for all
r € X, (y,) € K(B,Y). It follows that for any n € N the map

Ty - EnJrl - Enyﬂ-n((xly cee 7xn+1); (yhyQ; .. )) = ((.Tl, s 71:71)7 (anJrluylayQa e ))

is well defined, linear, surjective and continuous.

Moreover, for any (&,) C K we get (£1,&s,...) € K(B) if and only if (&,&,...) €
K(B). Hence for every (y,,) C Y’ we have (y1,v5,...) € S(B,Y’) if and only
it (vh,v5,...) € S(B,Y'). Put mpy1 = m and 7, = w0 ... 0wy for all
J.k € Nwith 5 > k+ 1. Let j,k € N with j > k. Clearly, we have 7, :
E; — Ep,mip((z1,...,25), (y1,y2,...) = (1, ..., 2), (QThtr, - - ., QT4 Y1, Y2, - - -))

and 7}, : B — Ej. For (2,...,2;) € (X")*,(y,) € S(B,Y"), (z1,...,2;) € X7 and
(yn) € K(B,Y) we have
(ﬂ_;’,k((xlla s 7$;c)7 (yllayéa .- )))((231, s 7x])7 (ylv Yo, - - ))
= (@), 2), (Y, va, - ) (@1, -y @)y (QXpgrs -+, QT4 Y1, Yoy - - 2))
k i—k 0o
=Y wi(@) + Y v (Qagi) + Y U5 i)
i=1 i=1 i=1

- ((x/h s 7x;c7 Q,yi7 s 7Q,y;'7k)7 (yé‘fk:Jrla y;7k+27 . ))((xh s 7'Tj)7 (yla y27 N ))
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Thus
7T;‘,k: : Ek - E;7 7 k((xlla s 7$;c)7 (yllvyé’ e ))
= (2,2, Q'yys - -, Q’y}fk)a (y;ekﬂvy;‘—lwrza )

Hence we get 7}, (E},) = (X')F x (Q'Y') ™% x S(B,Y").

Spaces G, G, F, H and maps V¥, aq, s, ... are defined as in the proof of Propo-
sition 4. By Lemma 3, Corollary 5 and Remark 6, no bounded subset of F'/H is
linearly dense in F'/H and G has no continuous norm; nevertheless «,(E},) contains
a bounded and linearly dense subset for any n € N.

Now we can prove our main result.
Theorem 7. The nuclear Fréchet space G is twisted.

Proof. Suppose, by contradiction, that G is isomorphic to the product I[;>; G
of a sequence (G,,) of non-zero Fréchet spaces with continuous norms. Then G’ is
isomorphic to the direct sum W = @22 ; G!, ([6], Proposition 2.8).

Let I' : W — G’ be an isomorphism. For any n € N the closed subspace W,, =
{(xx) € Wz, =0 for all k > n} of W is complemented; (W,,) is a strict inductive
sequence and W is the inductive limit of (W,,)([3], Proposition 1.4.4). For any n € N,
L, = U 'T(W,) is a closed and complemented subspace of F/G = U~'I'(W), and,
by Lemma 3, L,, contains a bounded and linearly dense subset. Moreover, (L) is
a strict inductive sequence and F/G is the inductive limit of (L,). By Corollary 5
and Remark 6, there exist k,7 € N with 1 < k£ < j such that

ai(By) C Ly C ay(E}) C aj4a(E},,) C F/G.
Clearly, Ly is closed and complemented in a;1(E7,,). Hence
a;il(al(Ei)) - O‘j_+11<Lk) - Oéj_il(aj(Ej/‘)) - E}+1

. -1 . /
and M = ] @j;1(Lg) is a closed and complemented subspace of £, ;.
Since ;1174 = o and a7 ;= a; we have

T (B C M C iy j(E)) C Ejyy,
SO
"X (QY'Y x S(B,Y)C M cC (X' xQY xS(B,Y)cC (X" xS(B,Y").

Let C = {(h,...,2}) € (X'~ 1 ((0,25,... ,x)O( ...)) € M}. Then M =
X'xCxQY' xS(B,Y)and (QY') ' cCcC (X'~

Put S : X' — Ef,, = (X')™ x S(B,Y"), Sz (( ...,0,2),(0,0,...)) and
R: X'xCxQY' xS(B,Y')—QY' R(x,c,y,s) =y. Let P be a continuous linear
projection from EJ, , onto M. Then Ro P o S is a continuous linear projection
from X’ onto Q'Y’. Clearly Q'Y’ = (ker Q)°. By Lemma 2 we infer that ker @) is
complemented in X; a contradiction. []

The seminorms 73, : XN — [0,00),7((7,)) = maxj< < r1(2,), k € N, form a
base of continuous seminorms on the product space X". Consider the linear subspace
Z = {(x,) € XN : (Qu,) € K(B,Y)} of XY with the locally convex topology
generated by the seminorms s;, : Z — [0, 00), sg((x,)) = max{ry((x,)), x((Qxn))}
(k € N). We shall prove the following
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Proposition 8. The locally convex space Z is isomorphic to G. Thus Z is a nuclear
twisted Fréchet space.

Proof. Put @y : Z — Ej, Or((x,)) = (21, .., 2), (QTrs1, QTiya,...)) for k €
N. The linear map ® : Z — 112, By, ®(z) = (Prx) is injective. We shall prove that
®(Z) = G. Clearly ®(Z) C G. Let (t) € G. Then t;, = ((af,...,28), (v¥,v5,...)
for some (..., 2F) € X* (y¥,v5,...) € K(B,Y),k € N, and
(k). (Qabd b 8T = (e, o), (), b € N. Henee
ait = 2k for n, k € N with n < k, and Qa} i} = yf, 5+t =y, for n,k € N. Thus

zk =" for n,k € N with n < k, and y* = y{*" ' = Qa} " for n,k € N. It follows
that t, = ((x1,...,28), (Qz}il, Qs . .), k € Ny so (t;) = ®((a")) € ®(2).

The seminorms ¢ : 1132, F, — [0,00),Gx((tn)) = maxi<p<k Grn(tn), b € N,
form a base of continuous seminorms on II?,F,. Let £ € N. By the stability
of B and the continuity of ) there exist ¢, > 1 and ¢t € N with ¢ > k such that
bij < cibyjq for j € Nwith j > 2; by ; < by jyn for n,j € Nwith 1 <n <k, and
b 10k (Qx) < cxri(zx) for z € X.

For © = (x,) € Z we have

dk((px) = 1?3%% Qk,n((xlv oo an)a (anJrla Q‘rn+27 .- ))

= max max{ry(z1), ..., 76(%n), G((QTn+1, QTnsa,...))}

= max{ max ,(2;), max max by, pr(Qensi)}

= max{ry((zn)), max maxby m—npr(Qrm)}

< max{ry((zn)), cx Max by mpr(QTm)} < crsi((2n)),
si(2) = max{ry(«), max by ipp(Qi)} < e max{ry(x), ri(21), max by 1pe(Q:) }
< ¢ max{7 (), nax max be,ipt(QTisn)} = crGi(P).

Thus the map ® : Z — G is an isomorphism. []
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