Ultrametric C^{n}-Spaces of Countable Type

W.H. Schikhof

Abstract

Let K be a non-trivially non-archimedean valued field that is complete with respect to the valuation $\|: K \longrightarrow[0, \infty)$, let X be a non-empty subset of K without isolated points. For $n \in\{0,1, \ldots\}$ the K-Banach space $B C^{n}(X)$, consisting of all C^{n}-functions $X \longrightarrow K$ whose difference quotients up to order n are bounded, is defined in a natural way. It is proved that $B C^{n}(X)$ is of countable type if and only if X is compact. In addition we will show that $B C^{\infty}(X):=\bigcap_{n} B C^{n}(X)$, which is a Fréchet space with its usual projective topology, is of countable type if and only if X is precompact.

1 Preliminaries

For a non-empty subset V of \mathbb{R} its supremum is denoted by $\sup V$, where by convention $\sup V=\infty$ if V is not bounded above. The closure of a subset Y of a topological space is denoted by \bar{Y}.

Throughout this paper $K=(K,| |)$ is a non-archimedean valued field as in the Abstract. For basic notions and facts on normed and locally convex spaces over K we refer to [2] and [5] respectively.

For a finite subset S of K containing at least two elements we denote its diameter $\max \{|x-y|: x, y \in S\}$ by d_{S}. Then $0<d_{S}<\infty$.

For a non-empty topological space Z we denote by $C(Z)$ the collection of all continuous functions $Z \longrightarrow K$. It is a K-vector space under pointwise operations. For $f \in C(Z)$ we put $\|f\|:=\sup \{|f(z)|: z \in Z\}$. We set $B C(Z):=\{f \in C(Z):$

[^0]$\|f\|<\infty\}$. It is easily seen that $(B C(Z),\| \|)$ is a Banach space over K. If Z is compact then $B C(Z)=C(Z)$.

Recall ([2], p. 66) that a normed space over K is said to be of countable type if it contains a countable set whose linear hull is dense. The natural extension to locally convex spaces reads as follows. A locally convex space E over K is called of countable type if for every continuous seminorm p, (1) below holds.

The space $E_{p}:=E / \operatorname{Ker} p$, equipped with the norm \bar{p} defined by the formula $\bar{p}(x+\operatorname{Ker} p)=p(x)$, is of countable type.
It is easily seen that E is of countable type as soon as (1) holds for each $p \in \mathcal{P}$, where \mathcal{P} is a collection of seminorms on E generating the topology.

Proposition 1.1 ([4] 4.12) Subspaces, continuous linear images, and products of locally convex spaces of countable type are of countable type.

The Banach space $B C(I)$, where I carries the discrete topology is usually called $\ell^{\infty}(I)$, and $\ell^{\infty}:=B C(\mathbb{N})$. The following fact is well-known, but it seems hard to find a direct reference, so we provide a proof.

Proposition 1.2 If I is infinite then $\ell^{\infty}(I)$ is not of countable type.
Proof. If $\ell^{\infty}(I)(=B C(I), I$ with the discrete topology) were of countable type then, by 1.1, the subspace $R C(I)$ of all functions $I \longrightarrow K$ with precompact image would be also of countable type, which implies that I is compact ([1], Theorem 14), a contradiction.

2 An inequality for an arbitrary function $X \longrightarrow K$

Throughout this section we fix an infinite subset X of K, an $n \in\{0,1, \ldots\}$ and a function $f: X \longrightarrow K$. In the spirit of [3] 29.1 we put

$$
\nabla^{n+1} X:=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in X^{n+1}: \text { if } i \neq j \text { then } x_{i} \neq x_{j}\right\}
$$

(notice that $\nabla^{1} X=X$) and define the nth order difference quotient $\Phi_{n} f: \nabla^{n+1} X \longrightarrow K$ inductively by $\Phi_{0} f:=f$ and, for $n \geq 1$,

$$
\Phi_{n} f\left(x_{1}, \ldots, x_{n+1}\right):=\frac{\Phi_{n-1} f\left(x_{1}, x_{3}, \ldots, x_{n+1}\right)-\Phi_{n-1} f\left(x_{2}, x_{3}, \ldots, x_{n+1}\right)}{x_{1}-x_{2}}
$$

We set

$$
\begin{aligned}
\left\|\Phi_{n} f\right\| & :=\sup \left\{\left|\Phi_{n} f(v)\right|: v \in \nabla^{n+1} X\right\} \text { and } \\
\|f\|_{n} & :=\max \left\{\left\|\Phi_{i} f\right\|: 0 \leq i \leq n\right\}
\end{aligned}
$$

(allowing $\|f\|_{n}$ to be ∞ if $\left\|\Phi_{i} f\right\|=\infty$ for some i).
Now let X_{n} be the collection of all subsets of X containing precisely $n+1$ elements. Since $\Phi_{n} f$ is a symmetric function of its $n+1$ variables ([3] 29.2) it induces naturally a function $\tilde{\Phi}_{n} f: X_{n} \longrightarrow K$ via the formula

$$
\tilde{\Phi}_{n} f(S)=\Phi_{n} f\left(x_{1}, \ldots, x_{n+1}\right) \quad\left(S:=\left\{x_{1}, \ldots, x_{n+1}\right\} \in X_{n}\right)
$$

Setting $\left\|\tilde{\Phi}_{n} f\right\|:=\sup \left\{\left|\Phi_{n} f(S)\right|: S \in X_{n}\right\}$ we have obviously $\left\|\Phi_{n} f\right\|=\left\|\tilde{\Phi}_{n} f\right\|$.

Lemma 2.1 Let $n \geq 2, S_{n} \in X_{n}$. Then there exists an $S_{n-1} \in X_{n-1}$ such that $S_{n-1} \subset S_{n}$ and

$$
\left|\tilde{\Phi}_{n} f\left(S_{n}\right)\right| \leq d_{S_{n}}^{-1}\left|\tilde{\Phi}_{n-1} f\left(S_{n-1}\right)\right|
$$

Proof. Let $x, y \in S_{n}$ be such that $|x-y|=d_{S_{n}}$. Then writing $S_{n}=\left\{x, y, x_{1}, \ldots\right.$, $\left.x_{n-1}\right\}$ we obtain

$$
\begin{aligned}
\left|\tilde{\Phi}_{n} f\left(S_{n}\right)\right| & =\left|\Phi_{n} f\left(x, y, x_{1}, \ldots, x_{n-1}\right)\right| \\
& =|x-y|^{-1}\left|\Phi_{n-1} f\left(x, x_{1}, \ldots, x_{n-1}\right)-\Phi_{n-1} f\left(y, x_{1}, \ldots, x_{n-1}\right)\right| \\
& \leq d_{S_{n}}^{-1} \max \left(\left|\Phi_{n-1} f\left(x, x_{1}, \ldots, x_{n-1}\right)\right|,\left|\Phi_{n-1} f\left(y, x_{1}, \ldots, x_{n-1}\right)\right|\right) \\
& =d_{S_{n}}^{-1}\left|\tilde{\Phi}_{n-1} f\left(S_{n-1}\right)\right|
\end{aligned}
$$

where $S_{n-1} \in X_{n-1}$ is either $\left\{x, x_{1}, \ldots, x_{n-1}\right\}$ (if $\left|\Phi_{n-1} f\left(x, x_{1}, \ldots, x_{n-1}\right)\right| \geq$ $\left.\left|\Phi_{n-1} f\left(y, x_{1}, \ldots, x_{n-1}\right)\right|\right)$ or $\left\{y, x_{1}, \ldots, x_{n-1}\right\}$ (otherwise).

For convenience we introduce yet another quantity. We put

$$
{ }_{n}\|f\|:=\sup \left\{\frac{|f(x)-f(y)|}{|x-y|^{n}}: x, y \in X, x \neq y\right\} .
$$

Notice that ${ }_{0}\|f\| \leq\|f\|$ and ${ }_{1}\|f\|=\left\|\Phi_{1} f\right\|$.
Proposition 2.2 Let $n \geq 1$. Then $\left\|\Phi_{n} f\right\| \leq_{n}\|f\|$.
Proof. For $n=1$ the formula (even with an equality sign) holds trivially, so let $n \geq 2$ and $S_{n} \in X_{n}$. By using 2.1 repeatedly we arrive at sets $S_{n} \supset S_{n-1} \supset \ldots \supset S_{1}$, where $S_{i} \in X_{i}$ for $i \in\{1, \ldots, n\}$, for which

$$
\begin{equation*}
\left|\tilde{\Phi}_{n} f\left(S_{n}\right)\right| \leq d_{S_{n}}^{-1} \ldots d_{S_{2}}^{-1}\left|\tilde{\Phi}_{1} f\left(S_{1}\right)\right| \tag{2}
\end{equation*}
$$

Now let $S_{1}:=\{x, y\}$. From $|x-y|=d_{S_{1}} \leq d_{S_{2}} \leq \ldots \leq d_{S_{n}}$ we obtain $d_{S_{i}}^{-1} \leq$ $|x-y|^{-1}$ for $i \in\{2, \ldots, n\}$ so that (2) yields the further estimate

$$
\left|\tilde{\Phi}_{n} f\left(S_{n}\right)\right| \leq|x-y|^{1-n}\left|\Phi_{1} f(x, y)\right|=|x-y|^{-n}|f(x)-f(y)| \leq_{n}\|f\|
$$

and $\left\|\Phi_{n} f\right\|=\left\|\tilde{\Phi}_{n} f\right\| \leq_{n}\|f\|$.
Remark 2.3 The inequality does not hold for $n=0$ as is easily seen by taking for f a non-zero constant function.

Proposition 2.4 For all $n \geq 0$

$$
\|f\|_{n} \leq \max \left(\|f\|,{ }_{n}\|f\|\right)
$$

Proof. We have to prove that $\left\|\Phi_{i} f\right\| \leq \max \left(\|f\|,{ }_{n}\|f\|\right)$ for all $i \in\{0,1, \ldots, n\}$. To this end we may assume that $i \geq 1$. Let $x, y \in X, x \neq y$. If $|x-y| \geq 1$ then $|x-y|^{-i}|f(x)-f(y)| \leq|f(x)-f(y)| \leq\|f\|$, whereas, if $|x-y|<1$, we have $|x-y|^{-i}|f(x)-f(y)| \leq|x-y|^{-n}|f(x)-f(y)| \leq_{n}\|f\|$. We see that ${ }_{i}\|f\| \leq$ $\max \left(\|f\|,{ }_{n}\|f\|\right)$, and by 2.2 we find $\left\|\Phi_{i} f\right\| \leq \max \left(\|f\|,{ }_{n}\|f\|\right)$.

3 The opposite inequality for a locally constant function $X \longrightarrow K$

From now on let X be a non-empty subset of K without isolated points. (Then X is infinite).

Definition 3.1 ([3] 29.1) Let $n \in\{0,1, \ldots\}, f: X \longrightarrow K$. We say that $f \in C^{n}(X)$ if $\Phi_{n} f$ can (uniquely) be extended to a continuous function $\bar{\Phi}_{n} f: X^{n+1} \longrightarrow K$. For $x \in X$ we set $D_{n} f(x):=\bar{\Phi}_{n} f(x, x, \ldots, x)$. Also, $C^{\infty}(X):=\bigcap\left\{C^{n}(X): n \geq 0\right\}$.

We recall some facts from basic theory of C^{n}-functions. Notice that $C^{0}(X)=$ $C(X)$.

Proposition 3.2

(i) $([3] 29.3) C^{0}(X) \supset C^{1}(X) \supset \ldots \supset C^{\infty}(X)$.
(ii) ([3] 29.3) $C^{n}(X)(n \in\{0,1, \ldots\})$ and $C^{\infty}(X)$ are K-vector spaces under pointwise operations.
(iii) ([3] 29.4, Taylor Formula) Let $f \in C^{n}(X)(n \geq 1)$. Then for all $x, y \in X$

$$
f(x)=\sum_{j=0}^{n-1}(x-y)^{j} D_{j} f(y)+(x-y)^{n} \bar{\Phi}_{n} f(x, y, y, \ldots, y)
$$

(iv) ([3] 29.5) Let $f \in C^{n}(X)(n \geq 1)$. Then f is n times differentiable and $j!D_{j} f=f^{(j)}$ for $1 \leq j \leq n$.
(v) ([3] 29.10) A locally constant function $f: X \longrightarrow K$ is in $C^{\infty}(X)$ and $D_{j} f=0$ for all $j \in\{1,2, \ldots\}$.

For $f \in C^{n}(X)(n \in\{0,1, \ldots\})$ we define $\left\|\bar{\Phi}_{n} f\right\|:=\sup \left\{\left|\bar{\Phi}_{n} f(v)\right|: v \in X^{n+1}\right\}$. Then by continuity and density of $\nabla^{n+1} X$ in X^{n+1} we have $\left\|\bar{\Phi}_{n} f\right\|=\left\|\Phi_{n} f\right\|$.

We now arrive at our goal of this Section.
Theorem 3.3 Let $f: X \longrightarrow K$ be locally constant. Then for $n \in\{0,1, \ldots\}$

$$
\|f\|_{n}=\max \left(\|f\|,{ }_{n}\|f\|\right)
$$

Proof. By 2.4 and $\|f\| \leq\|f\|_{n}$ we only have to prove ${ }_{n}\|f\| \leq\|f\|_{n}$. We may assume $n \geq 1$. By the Taylor Formula 3.2 (iii) and the fact that $D_{j} f=0$ for all $j \geq 1$ (3.2(v)) we get

$$
f(x)=f(y)+(x-y)^{n} \bar{\Phi}_{n} f(x, y, \ldots, y) \quad(x, y \in X)
$$

so that for $x \neq y$ and by continuity of $\bar{\Phi}_{n} f$,

$$
\left|\frac{f(x)-f(y)}{(x-y)^{n}}\right|=\left|\bar{\Phi}_{n} f(x, y, \ldots, y)\right| \leq\left\|\Phi_{n} f\right\| \leq\|f\|_{n}
$$

and the theorem is proved.

4 The Main Theorem

Definition 4.1 Let $n \in\{0,1, \ldots\}$. We set

$$
B C^{n}(X):=\left\{f \in C^{n}(X):\|f\|_{n}<\infty\right\} .
$$

It is straightforward to check that $B C^{n}(X)$ is a subspace of $C^{n}(X)$ and that $\left\|\|_{n}\right.$ is a norm on $B C^{n}(X)$ making it into a Banach space. Also notice that $B C^{0}(X)=$ $B C(X)$. If X is compact then $B C^{n}(X)=C^{n}(X)$.

Lemma 4.2 If X is compact then $B C^{n}(X)$ is of countable type.
Proof. The map

$$
f \longmapsto\left(f, \bar{\Phi}_{1} f, \ldots, \bar{\Phi}_{n} f\right)
$$

is a linear isometry of $B C^{n}(X)$ into $\prod_{k=1}^{n+1} C\left(X^{k}\right)$. Now each X^{k} is ultrametrizable so, by [2] 3.T, $C\left(X^{k}\right)$ is of countable type, hence so are $\prod_{k=1}^{n+1} C\left(X^{k}\right)$ and its subspace $B C^{n}(X)$ (by 1.1).

Lemma 4.3 Let $B C^{n}(X)$ be of countable type for some $n \in\{0,1, \ldots\}$. Then X is precompact.

Proof. Suppose X is not precompact. Then, for some $r>0$, the balls in X of radius r form an infinite covering of X, say $\left(B_{i}\right)_{i \in I}$. Choose $a_{i} \in B_{i}$ for each $i \in I$. Let D be the space of all bounded functions $X \longrightarrow K$ that are constant on each B_{i}. We claim that $D \subset B C^{n}(X)$ and that D, equipped with the induced topology, is linearly homeomorphic to $\ell^{\infty}(I)$. (Then we have a contradiction since by $1.2 \ell^{\infty}(I)$ is not of countable type, proving the lemma.)

Clearly $D \subset C^{n}(X)$ (in fact, $D \subset C^{\infty}(X)$ by $3.2(\mathrm{v})$). Further, if $f \in D$, $x, y \in X, x \neq y$ we have $\frac{f(x)-f(y)}{(x-y)^{n}}=0$ if $x, y \in B_{i}$ for some $i \in I$. Whereas if $x \in B_{i}$, $y \in B_{j}$ for $i \neq j$ then $|x-y| \geq r$ and $|f(x)-f(y)| \leq\|f\|=\sup \left\{\left|f\left(a_{i}\right)\right|: i \in I\right\}$. So we find

$$
{ }_{n}\|f\|=\sup _{x \neq y} \frac{|f(x)-f(y)|}{|x-y|^{n}} \leq r^{-n}\|f\|,
$$

implying by 3.3 that $f \in B C^{n}(X)$ and that $\|\|$ is equivalent to $\| \|_{n}$ on D. Then it is clear that $f \mapsto\left(f\left(a_{i}\right)\right)_{i \in I}$ is a surjective linear homeomorphism $D \longrightarrow \ell^{\infty}(I)$, which finishes the proof.

Lemma 4.4 Let $B C^{n}(X)$ be of countable type for some $n \in\{0,1, \ldots\}$. Then X is compact.

Proof. Suppose X is not compact; we derive a contradiction. By $4.3 X$ is precompact, so X is not closed in K, let $a \in \bar{X} \backslash X$. From compactness of \bar{X} and the ultrametric property one easily derives that the set $\{|x-a|: x \in X\}$ is discrete with 0 as an accumulation point, say $\left\{r_{1}, r_{2}, \ldots\right\}$, where $r_{1}>r_{2}>\ldots$ and $\lim _{m} r_{m}=0$.

For $m \in \mathbb{N}$, let $R_{m}:=\left\{x \in X:|x-a|=r_{m}\right\}$. Then R_{1}, R_{2}, \ldots is an infinite clopen covering of X. Choose $a_{m} \in R_{m}$ for each m. Let D be the space of all $f \in B C^{n}(X)$ that are constant on each R_{m} and for which $\lim _{m} f\left(a_{m}\right)=0$. Let
$\lambda_{1}, \lambda_{2}, \ldots \in K$ be such that $\left|\lambda_{m}\right|=r_{m}^{-n}$ for each m. As ℓ^{∞} is not of countable type (1.2), we are done once we can prove that

$$
f \stackrel{T}{\longmapsto}\left(\lambda_{1} f\left(a_{1}\right), \lambda_{2} f\left(a_{2}\right), \ldots\right)
$$

is a linear homeomorphism of D onto ℓ^{∞}.
First we are going to see that for $f \in D$,

$$
\sup _{m} \frac{\left|f\left(a_{m}\right)\right|}{r_{m}^{n}} \leq\|f\|_{n} \leq \max \left(r_{1}^{n}, 1\right) \sup _{m} \frac{\left|f\left(a_{m}\right)\right|}{r_{m}^{n}}
$$

(which shows that T maps D homeomorphically into ℓ^{∞}). To prove the first inequality, let $m \in \mathbb{N}$; we show that $\frac{\left|f\left(a_{m}\right)\right|}{r_{m}^{m}} \leq\|f\|_{n}$. We may suppose $f\left(a_{m}\right) \neq 0$ so, since $\lim _{j} f\left(a_{j}\right)=0$, there is a $j>m$ for which $\left|f\left(a_{j}\right)\right|<\left|f\left(a_{m}\right)\right|$, so that $\left|f\left(a_{m}\right)\right|=$ $\left|f\left(a_{m}\right)-f\left(a_{j}\right)\right|$. Also, $\left|a_{m}-a_{j}\right|=\max \left(\left|a_{m}-a\right|,\left|a_{j}-a\right|\right)=\left|a_{m}-a\right|=r_{m}$. Thus, we obtain $\frac{\left|f\left(a_{m}\right)\right|}{r_{m}^{m}}=\frac{\left|f\left(a_{m}\right)-f\left(a_{j}\right)\right|}{\left|a_{m}-a_{j}\right|^{n}}$ which, by 3.3 , is $\leq\|f\|_{n}$. For the second inequality observe that, for $f \in D$,

$$
\begin{aligned}
\|\|f\| & =\sup _{m>k} \frac{\left|f\left(a_{m}\right)-f\left(a_{k}\right)\right|}{r_{k}^{n}} \leq \\
& \leq \sup _{m>k} \max \left(\frac{\left|f\left(a_{m}\right)\right|}{r_{m}^{n}} \frac{r_{m}^{n}}{r_{k}^{n}}, \frac{\left|f\left(a_{k}\right)\right|}{r_{k}^{n}}\right) .
\end{aligned}
$$

Now $\frac{r_{m}^{n}}{r_{k}^{n}} \leq 1$ so that the previous expression is $\leq \sup _{m>k} \max \left(\frac{\left|f\left(a_{m}\right)\right|}{r_{m}^{m}}, \frac{\left|f\left(a_{k}\right)\right|}{r_{k}^{n}}\right) \leq$ $\sup _{m} \frac{\left|f\left(a_{m}\right)\right|}{r_{m}^{m}}$. Further,

$$
\|f\|=\sup _{m} \frac{\left|f\left(a_{m}\right)\right|}{r_{m}^{n}} r_{m}^{n} \leq \sup _{m} \frac{\left|f\left(a_{m}\right)\right|}{r_{m}^{n}} r_{1}^{n} .
$$

Hence, by using 3.3,

$$
\|f\|_{n} \leq \max \left(r_{1}^{n}, 1\right) \sup _{m} \frac{\left|f\left(a_{m}\right)\right|}{r_{m}^{n}}
$$

and we obtain the desired second inequality.
To finish the proof it has only to be shown that T is surjective i.e. we have to show that if $\left(\mu_{1}, \mu_{2}, \ldots\right)$ is a bounded sequence in K then the function f that has the value $\frac{\mu_{m}}{\lambda_{m}}$ on each R_{m}, lies in D.

Clearly $f \in C^{\infty}(X)$, hence it is in $C^{n}(X)$. Also, $\lim _{m} f\left(a_{m}\right)=\lim _{m} \frac{\mu_{m}}{\lambda_{m}}=0$ as $\left(\mu_{1}, \mu_{2}, \ldots\right)$ is bounded and $\left|\lambda_{m}^{-1}\right|=r_{m}^{n} \rightarrow 0$. It remains to see that $f \in B C^{n}(X)$ i.e. that $\|f\|_{n}<\infty$. Now f is clearly bounded, so by 3.3 it suffices to prove that ${ }_{n}\|f\|<\infty$. Let $x, y \in X, x \neq y$. We may suppose $x \in R_{m}, y \in R_{k}$ with $m>k$. Then $|x-y|^{n}=r_{k}^{n}$ and $|f(x)-f(y)| \leq \max \left(\left|f\left(a_{k}\right)\right|,\left|f\left(a_{m}\right)\right|\right)$. So we get

$$
\begin{aligned}
\frac{|f(x)-f(y)|}{|x-y|^{n}} & \leq \max \left(\frac{\left|f\left(a_{k}\right)\right|}{r_{k}^{n}}, \frac{\left|f\left(a_{m}\right)\right|}{r_{m}^{n}} \frac{r_{m}^{n}}{r_{k}^{n}}\right) \leq \\
& \leq \sup _{m} \frac{\left|f\left(a_{m}\right)\right|}{r_{m}^{n}}=\sup _{m}\left|\frac{\mu_{m}}{\lambda_{m}} \lambda_{m}\right|=\sup _{m}\left|\mu_{m}\right|
\end{aligned}
$$

so that $n\|f\| \leq \sup _{m}\left|\mu_{m}\right|<\infty$.
Combining 4.2 and 4.4 we obtain the following conclusion.

Theorem 4.5 Let $n \in\{0,1, \ldots\}$. Then $B C^{n}(X)$ is of countable type if and only if X is compact.

5 When $B C^{\infty}(X)$ is of countable type?

The space $B C^{\infty}(X):=\bigcap\left\{B C^{n}(X): n \in\{0,1, \ldots\}\right\}$, equipped with the locally convex topology induced by the norms $\left\|\|_{n}(n \in\{0,1, \ldots\})\right.$, is easily seen to be a Fréchet space. We will see that, contrary to the previous case, precompactness of X is enough to ensure that $B C^{\infty}(X)$ is of countable type. The reason is the following.

Lemma 5.1 Each $f \in B C^{\infty}(X)$ extends uniquely to an $\bar{f} \in B C^{\infty}(\bar{X})$, where \bar{X} is the closure of X in K. The map $f \mapsto \bar{f}$ is a linear homeomorphism of $B C^{\infty}(X)$ onto $B C^{\infty}(\bar{X})$.

Proof. For $\left(x_{1}, \ldots, x_{n+1}, a_{1}, \ldots, a_{n+1}\right) \in \nabla^{2 n+2} X$ we have for all $f: X \longrightarrow K$ (see [3] 29.2)
$\Phi_{n} f\left(x_{1}, \ldots, x_{n+1}\right)-\Phi_{n} f\left(a_{1}, \ldots, a_{n+1}\right)=\sum_{j=1}^{n+1}\left(x_{j}-a_{j}\right) \Phi_{n+1} f\left(a_{1}, \ldots, a_{j}, x_{j}, \ldots, x_{n+1}\right)$.
As $f \in C^{\infty}(X)$ we can, for each $n \in\{0,1, \ldots\}$, extend this by continuity:
$\bar{\Phi}_{n} f\left(x_{1}, \ldots, x_{n+1}\right)-\bar{\Phi}_{n} f\left(a_{1}, \ldots, a_{n+1}\right)=\sum_{j=1}^{n+1}\left(x_{j}-a_{j}\right) \bar{\Phi}_{n+1} f\left(a_{1}, \ldots, a_{j}, x_{j}, \ldots, x_{n+1}\right)$
for all $\left(x_{1}, \ldots, x_{n+1}\right),\left(a_{1}, \ldots, a_{n+1}\right) \in X^{n+1}$.
Denoting the canonical norm on K^{n+1} by $\left\|\|_{\infty}\right.$ we obtain from (3) the following inequality.

$$
\left|\bar{\Phi}_{n} f(u)-\bar{\Phi}_{n} f(v)\right| \leq\|u-v\|_{\infty}\left\|\bar{\Phi}_{n+1} f\right\| \quad\left(u, v \in X^{n+1}\right)
$$

Thus, $\bar{\Phi}_{n} f$ is Lipschitz, hence uniformly continuous on X^{n+1} and therefore can uniquely be extended to a (bounded) continuous function h_{n} on \bar{X}^{n+1}. By continuity $h_{n}=\bar{\Phi}_{n} h_{0}$ for all $n \in\{0,1, \ldots\}$. Hence, $h_{0} \in B C^{\infty}(\bar{X})$ and we can take $\bar{f}:=h_{0}$, which proves the first statement. The second one is now immediate.

Theorem 5.2 $B C^{\infty}(X)$ is of countable type if and only if X is precompact.
Proof. Let X be precompact. Then \bar{X} is compact and by $4.5 B C^{n}(\bar{X})$ is of countable type for each $n \in\{0,1, \ldots\}$ and, by 1.1, so are $\left(B C^{\infty}(\bar{X}),\| \|_{n}\right)(n \in$ $\{0,1, \ldots\})$. So $B C^{\infty}(\bar{X})$ is of countable type, hence so is $B C^{\infty}(X)$ by 5.1.

Conversely, suppose X is not precompact. With the same reasoning as in 4.3, we find an infinite set I, a subspace D of $B C^{\infty}(X)$ and a linear map $D \longrightarrow \ell^{\infty}(I)$ that is a surjective homeomorphism when we endow D with any of the norms $\left\|\|_{n}\right.$. Then D, with the topology induced by $B C^{\infty}(X)$, is linearly homeomorphic to $\ell^{\infty}(I)$. As $\ell^{\infty}(I)$ is not of countable type (1.2), neither is $B C^{\infty}(X)$ by 1.1.

References

[1] J. Aguayo, N. De Grande-De Kimpe, S. Navarro Strict Locally Convex Topologies on $B C(X, \mathbb{K})$, Lecture Notes in Pure and Appl. Math., 192, Marcel Dekker, New York, 1997, 1-10.
[2] A.C.M. van Rooij, Non-Archimedean Functional Analysis, Marcel Dekker, New York, 1978.
[3] W.H. Schikhof, Ultrametric Calculus, University Press, Cambridge, 1984.
[4] W.H. Schikhof, Locally convex spaces over nonspherically complete valued fields I-II, Bull. Soc. Math. Belg. Sér. B 38 (1986), 187-224.
[5] P. Schneider, Nonarchimedean Functional Analysis, Springer, Berlin, 2002.

Department of Mathematics,
University of Nijmegen, Toernooiveld, 6525 ED Nijmegen,
The Netherlands
E-mail address: w_schikhof@hetnet.nl

[^0]: 2000 Mathematics Subject Classification : Primary 46S10, Secondary 26E30.
 Key words and phrases : non-archimedean Banach spaces, differentiable functions, spaces of countable type.

