On maximal t-orthogonal sequences in c_{0}

Albert Kubzdela

Abstract

Let K be a non-Archimedean, complete, densely valued field. For a given $t \in(0,1)$ we study a maximality of t-orthogonal sequences in c_{0} over K. In particular we prove that for every $t \in(0,1)$ there exists a maximal t-orthogonal sequence in c_{0} which is not a base.

1 Introduction

Throughout this paper K denotes a non-Archimedean valued field which is complete with respect to the metric induced by the non-trivial dense valuation $||:. K \rightarrow[0, \infty)$ (recall that a valuation |.| is dense if the set of its values is dense in $[0, \infty)$). Let E be a normed space over K; we assume that the norm defined on E is non-Archimedean (i.e. it satisfies 'the strong triangle inequality': $\|x+y\| \leq \max \{\|x\|,\|y\|\}$ for all $x, y \in E)$. By E^{\prime} we mean the topological dual of E which is a normed space with the norm $\|f\|=\sup _{x \in E, x \neq 0} \frac{|f(x)|}{\|x\|}$.

For the basic notions and properties concerning normed spaces over K we refer the reader to [1]. However we recall the following. We say that for a closed linear subspace D of E and for $x \in E \backslash D$ the distance $\operatorname{dist}(x, D):=\inf _{d \in D}\|x-d\|$ is not attained if $\|x-d\|>\operatorname{dist}(x, D)$ for all $d \in D$. If there exists $d_{0} \in D$ such that $\left\|x-d_{0}\right\|=\operatorname{dist}(x, D)$ we say that $\operatorname{dist}(x, D)$ is attained. Two linear subspaces $D, G \subset E$ are called orthocomplemented if $\|x+y\|=\max \{\|x\|,\|y\|\}$ for all $x \in D$ and $y \in G$.

Let $t \in(0,1]$ and let $M \subseteq N$. We say that a sequence (finite or infinite) $\left(x_{i}\right)_{i \in M}$ of nonzero elements of E is called t-orthogonal (orthogonal if $t=1$) if for every finite subset $J \subset M$ and all scalars $\left\{\lambda_{j}\right\}_{j \in J}$ we have $\left\|\sum_{j \in J} \lambda_{j} x_{j}\right\| \geq t \cdot \max _{j \in J}\left\{\left\|\lambda_{j} x_{j}\right\|\right\}$. If, additionally $\overline{\left[\left(x_{i}\right)_{i \in M}\right]}=E$, the sequence $\left(x_{i}\right)_{i \in M}$ is called a base of E. By Theorem 3.16 of [1], every infinite-dimensional E contains an infinite t-orthogonal sequence
if $t<1$ and if K is spherically complete (i.e. every centered sequence of closed balls in K has a non-empty intersection), then such E contains an infinite orthogonal sequence. Clearly, every infinite t-orthogonal sequence is a basic sequence in E. We say that a t-orthogonal sequence $\left(x_{i}\right)_{i \in M}$ of E is maximal if $\{z\} \cup\left\{x_{i}: i \in M\right\}$ is not t-orthogonal for any nonzero $z \in E$. It is easy to observe that every t-orthogonal sequence in E can be extended to a maximal one. Obviously, every t-orthogonal sequence which is a base of E is maximal in E. But, it was noted (see Remark after Theorem 3.16 of [1]) that c_{0} contains a maximal orthogonal sequence which is not a base. Hence, it is natural to formulate the following question.
problem Is for a given $t \in(0,1)$ every maximal t-orthogonal sequence in c_{0} a base of c_{0} ?

This paper contains the answer to this question. In Theorem 1, for every $t \in(0,1)$ we construct a maximal t-orthogonal sequence in c_{0} which is not a base.

2 Results

We start with simple observations.
Lemma 1. Let $D \subset E$ be a closed, proper, infinite-dimensional linear subspace of E. If there exists $a_{0} \in E \backslash D$ such that $\operatorname{dist}\left(a_{0}, D\right)$ is not attained, then $\operatorname{dist}\left(a_{0}, F\right)>$ $\operatorname{dist}\left(a_{0}, D\right)$ for every F, a finite-dimensional linear subspace of D.
proof: Assume that there exists $F \subset D$ with $\operatorname{dist}\left(a_{0}, F\right)=\operatorname{dist}\left(a_{0}, D\right)$. Then, by Theorem 5.7 and Theorem 5.13 of [1], F is orthocomplemented in $F+\left[a_{0}\right]$; hence, there exists $x \in F$ with $\left\|a_{0}-x\right\|=\operatorname{dist}\left(a_{0}, F\right)=\operatorname{dist}\left(a_{0}, D\right)$, a contradiction.

Recall that a linear subspace $D \subset E$ is called a hyperplane of E if $\operatorname{dim}(E / D)=$ 1.

Lemma 2. Let D be a closed hyperplane of E. Let $x_{0} \in E \backslash D$. If $\operatorname{dist}\left(x_{0}, D\right)$ is attained (not attained), then $\operatorname{dist}(x, D)$ is attained (not attained) for all $x \in E \backslash D$.
Proof. Taking $x \in E \backslash D$, we can write $x=\lambda x_{0}+d_{x}$ for some $\lambda \in K(\lambda \neq 0)$ and some $d_{x} \in D$. Suppose that $\operatorname{dist}\left(x_{0}, D\right)$ is not attained and assume that there exists $d_{0} \in D$ such that $\operatorname{dist}(x, D)=\left\|x-d_{0}\right\|$. Then

$$
\left\|x-d_{0}\right\|=|\lambda| \cdot\left\|x_{0}+\frac{d_{x}-d_{0}}{\lambda}\right\| .
$$

By assumption, there exists $d \in D$ such that

$$
\left\|x_{0}+d\right\|<\left\|x_{0}+\frac{d_{x}-d_{0}}{\lambda}\right\| .
$$

Thus,

$$
\begin{aligned}
& \left\|x+\left(\lambda d-d_{x}\right)\right\|=\left\|\left(\lambda x_{0}+d_{x}\right)+\left(\lambda d-d_{x}\right)\right\|=|\lambda| \cdot\left\|x_{0}+d\right\| \\
& <|\lambda| \cdot\left\|x_{0}+\frac{d_{x}-d_{0}}{\lambda}\right\|=\left\|\lambda x_{0}+d_{x}-d_{0}\right\|=\left\|x-d_{0}\right\|,
\end{aligned}
$$

a contradiction. Assuming that $\operatorname{dist}\left(x_{0}, D\right)$ is attained, we conclude from the above that $\operatorname{dist}(x, D)$ is attained for all $x \in E \backslash D$.

Proposition 1. Let $t \in(0,1]$ and $\left(x_{n}\right)_{n \in N}$ be a t-orthogonal sequence in E. Let $D=\overline{\left[\left(x_{n}\right)_{n \in N}\right]}$. If there exists $a \in E \backslash D$ such that $\operatorname{dist}(a, D)$ is attained then $\left(x_{n}\right)_{n \in N}$ is not maximal t-orthogonal sequence in E.

Proof. Let $a \in E \backslash D$ and assume that there exists $x \in D$ such that $\|a-x\|=$ $\operatorname{dist}(a, D)$. Denoting $a_{0}=a-x$, we get $\left\|a_{0}-d\right\| \geq\left\|a_{0}\right\|$ for all $d \in D$. Thus, for every $m \in N$ and for all $\mu_{1}, \ldots, \mu_{m} \in K$ we obtain

$$
\left\|a_{0}+\sum_{j=1}^{m} \mu_{j} x_{j}\right\| \geq \max \left\{\left\|\sum_{j=1}^{m} \mu_{j} x_{j}\right\|,\left\|a_{0}\right\|\right\} \geq t \cdot \max \left\{\max _{j=1, \ldots, m}\left\|\mu_{j} x_{j}\right\|,\left\|a_{0}\right\|\right\}
$$

since, by assumption $\left\|\sum_{j=1}^{m} \mu_{j} x_{j}\right\| \geq t \cdot \max _{j=1, \ldots, m}\left\|\mu_{j} x_{j}\right\|$. Hence, $\left\{a_{0}, x_{1}, x_{2}, \ldots\right\}$ is a t-orthogonal sequence in E.

From now on in this paper we assume that $E=c_{0}$. By $\left\{e_{1}, e_{2}, \ldots\right\}$ we will denote a standard base of E.

Remark 1. Taking $x_{n}:=e_{n+1}(n \in N), a:=e_{1}$ we get a simple example of an orthogonal sequence in E which satisfies conditions of Proposition 1.

Note that linear subspaces of E which do not satisfy assumptions of Proposition 1 exist. Examples can be constructed using the next proposition. Recall that by Exercise 3.Q of [1], $E^{\prime}=l^{\infty}$ and every $f \in E^{\prime}$ is given by the formula

$$
f(x)=\sum_{n \in N} u_{n} x_{n}
$$

for some $u=\left(u_{1}, u_{2}, u_{3}, \ldots\right) \in l^{\infty}$, where $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in E$.

Proposition 2. Let $u=\left(u_{1}, u_{2}, u_{3}, \ldots\right) \in l^{\infty}$ and $f \in E^{\prime}$ be defined by $f(z)=$ $\sum_{n \in N} u_{n} z_{n}$, where $z=\left(z_{1}, z_{2}, z_{3}, \ldots\right) \in E$. Denote by $D=\operatorname{ker}(f)$. Then, $\operatorname{dist}(x, D)$ is attained for every $x \in E \backslash D$ if and only if $\max _{n \in N}\left|u_{n}\right|$ exists.

Proof. Let $z=\left(z_{1}, z_{2}, z_{3}, \ldots\right) \in E$. Since

$$
\frac{|f(z)|}{\|z\|}=\frac{\left|\sum_{n \in N} u_{n} z_{n}\right|}{\left\|\sum_{n \in N} z_{n} e_{n}\right\|} \leq \frac{\max _{n \in N}\left|u_{n} z_{n}\right|}{\max _{n \in N}\left|z_{n}\right|} \leq \sup _{n \in N}\left|u_{n}\right|
$$

and

$$
\sup _{n \in N} \frac{\left|f\left(e_{n}\right)\right|}{\left\|e_{n}\right\|}=\sup _{n \in N} \frac{\left|u_{n}\right|}{\left\|e_{n}\right\|}=\sup _{n \in N}\left|u_{n}\right|
$$

we note that the norm of f is reached on $\left\{e_{1}, e_{2}, \ldots\right\} ;$ i.e.

$$
\|f\|=\sup _{n \in N} \frac{\left|f\left(e_{n}\right)\right|}{\left\|e_{n}\right\|}=\sup _{n \in N}\left|u_{n}\right| .
$$

Assume that $\max _{n \in N}\left|u_{n}\right|$ exists, then $\|f\|=\left|u_{m}\right|$ for some $m \in N$ and $f\left(e_{m}\right) \notin D$. More, $\operatorname{dist}\left(e_{m}, D\right)=\left\|e_{m}\right\|$. If not, then there exists $d \in D$ with $\left\|e_{m}-d\right\|<\left\|e_{m}\right\|$. But then

$$
\frac{\left|f\left(e_{m}-d\right)\right|}{\left\|e_{m}-d\right\|}=\frac{\left|f\left(e_{m}\right)\right|}{\left\|e_{m}-d\right\|}>\frac{\left|f\left(e_{m}\right)\right|}{\left\|e_{m}\right\|}=\left\|u_{m}\right\|=\|f\|,
$$

a contradiction. It follows from Lemma 2 that $\operatorname{dist}(x, D)$ is attained for every $x \in E \backslash D$.

Suppose now that $\operatorname{dist}(x, D)$ is attained for every $x \in E \backslash D$ and assume that $\max _{n \in N}\left|u_{n}\right|$ does not exist (thus, $\|f\|>\frac{|f(z)|}{\|z\|}$ for all $z \in E$). Then, we can choose a strictly increasing sequence $\left(n_{k}\right)_{k} \subset N$ with $\|f\|=\lim _{k \rightarrow \infty}\left|u_{n_{k}}\right|$. Taking $p>1$, we see that $f\left(e_{n_{p}}\right) \neq 0, x_{r}=e_{n_{p}}-\frac{u_{n_{p}}}{u_{n_{r}}} e_{n_{r}} \in D$ for all $r>p$ and $\lim _{r \rightarrow \infty}\left\|e_{n_{p}}-x_{r}\right\|=$ $\lim _{r \rightarrow \infty}\left|\frac{u_{n_{p}}}{u_{n_{r}}}\right| ;$ thus, $\operatorname{dist}\left(e_{n_{p}}, D\right) \leq \lim _{r \rightarrow \infty}\left|\frac{u_{n_{p}}}{u_{n_{r}}}\right|$ and by assumption we can choose $d \in D$ such that $\left\|e_{n_{p}}-d\right\| \leq \lim _{r \rightarrow \infty}\left|\frac{u_{n_{p}}}{u_{n_{r}}}\right|$. But then, we get

$$
\frac{\left|f\left(e_{n_{p}}-d\right)\right|}{\left\|e_{n_{p}}-d\right\|}=\frac{\left|f\left(e_{n_{p}}\right)\right|}{\left\|\mid e_{n_{p}}-d\right\|} \geq \lim _{r \rightarrow \infty}\left|u_{n_{r}}\right|,
$$

a contradiction.

Now, we prove the main theorem.
Theorem 1. For every $t \in(0,1)$ there exists a maximal t-orthogonal sequence in E which is not a base.

Proof. Let $0<t<1$. Choose a sequence $\left(a_{n}\right)_{n \in N} \subset K$ (recall that by assumption K is densely valued) such that

$$
1=\left|a_{1}\right|<\ldots<\left|a_{n}\right|<\left|a_{n+1}\right|<\ldots<\frac{1}{t} .
$$

Now, define elements of E as follows

$$
\begin{array}{r}
b_{3 n-2}=e_{3 n-2}+a_{k_{n}} e_{k_{n}}-\frac{a_{3 n-2}}{a_{3(n+1)-2}} e_{3(n+1)-2} \\
b_{3 n-1}=e_{k_{n}}+\frac{a_{l_{n}}}{a_{k_{n}}} e_{l_{n}} \\
b_{3 n}=e_{3 n} \quad(n \in N)
\end{array}
$$

selecting $k_{n}, l_{n} \in N$ such that $k_{n}=3 i_{n}, l_{n}=3 j_{n}$ for some $i_{n}, j_{n} \in N, k_{n} \geq 3 n$, $l_{n}>k_{n}$,

$$
\begin{equation*}
\left|a_{3 n-2}\right|<t \cdot\left|a_{3(n+1)-2}\right| \cdot\left|a_{l_{n}}\right| \tag{1}
\end{equation*}
$$

and $l_{n}<k_{n+1}$ for all $n \in N$. Let $N_{k}=\left\{k_{n}: n \in N\right\}, N_{l}=\left\{l_{n}: n \in N\right\}$ (observe that $\left.N_{k} \cap N_{l}=\emptyset\right)$ and let $N_{0}=N \backslash N_{k}$.

Now, we prove that $X_{0}=\left\{b_{k}: k \in N_{0}\right\}$ is a t-orthogonal sequence in E. To this end take a finite subset $J \subset N_{0},\left\{\lambda_{i}\right\}_{i \in J} \subset K$ and assume that $\max _{i \in J}\left\|\lambda_{i} b_{i}\right\|=$ $\left\|\lambda_{i_{0}} b_{i_{0}}\right\|>0$ for some $i_{0} \in J$.

First, we note that applying properties of the sequence $\left(a_{n}\right)_{n \in N}$ we have

$$
\begin{align*}
\| b_{l_{n}}- & \frac{a_{k_{n}}}{a_{l_{n}}} b_{3 n-1}+\frac{1}{a_{l_{n}}} b_{3 n-2} \| \\
=\| e_{l_{n}}-\left(\frac{a_{k_{n}}}{a_{l_{n}}} e_{k_{n}}+e_{l_{n}}\right)+ & \left(\frac{1}{a_{l_{n}}} e_{3 n-2}+\frac{a_{k_{n}}}{a_{l_{n}}} e_{k_{n}}-\frac{a_{3 n-2}}{a_{l_{n}} a_{3(n+1)-2}} e_{3(n+1)-2}\right) \| \\
= & \left\|\frac{1}{a_{l_{n}}} e_{3 n-2}-\frac{a_{3 n-2}}{a_{l_{n}} a_{3(n+1)-2}} e_{3(n+1)-2}\right\|=\left|\frac{1}{a_{l_{n}}}\right| \tag{2}
\end{align*}
$$

for every $n \in N$ and

$$
\begin{align*}
& \| b_{l_{n}}-\frac{a_{k_{n}}}{a_{l_{n}}} b_{3 n-1}+\frac{1}{a_{l_{n}}} b_{3 n-2} \\
& +
\end{aligned} \begin{aligned}
& \frac{1}{a_{l_{n}}} \frac{a_{3 n-2}}{a_{3(n-1)-2}} b_{3(n-1)-2}-\frac{a_{k_{n-1}}}{a_{l_{n}}} \frac{a_{3 n-2}}{a_{3(n-1)-2}} b_{3(n-1)-1}+\frac{a_{l_{n-1}}}{a_{l_{n}}} \frac{a_{3 n-2}}{a_{3(n-1)-2}} b_{l_{n-1}} \| \\
&=\| e_{l_{n}}-\left(\frac{a_{k_{n}}}{a_{l_{n}}} e_{k_{n}}+e_{l_{n}}\right)+\left(\frac{1}{a_{l_{n}}} e_{3 n-2}+\frac{a_{k_{n}}}{a_{l_{n}}} e_{k_{n}}-\frac{a_{3 n-2}}{a_{l_{n}} a_{3(n+1)-2}} e_{3(n+1)-2}\right) \\
& \quad+\left(\frac{1}{a_{l_{n}}} \frac{a_{3 n-2}}{a_{3(n-1)-2}} e_{3(n-1)-2}+\frac{a_{k_{n-1}}}{a_{l_{n}}} \frac{a_{3 n-2}}{a_{3(n-1)-2}} e_{k_{n-1}}-\frac{1}{a_{l_{n}}} e_{3 n-2}\right) \\
& \quad-\left(\frac{a_{k_{n-1}}}{a_{l_{n}}} \frac{a_{3 n-2}}{a_{3(n-1)-2}} e_{k_{n-1}}+\frac{a_{l_{n-1}}}{a_{l_{n}}} \frac{a_{3 n-2}}{a_{3(n-1)-2}} e_{l_{n-1}}\right)+\frac{a_{l_{n-1}}}{a_{l_{n}}} \frac{a_{3 n-2}}{a_{3(n-1)-2}} e_{l_{n-1}} \| \\
& \quad=\left\|-\frac{a_{3 n-2}}{a_{l_{n}} a_{3(n+1)-2}} e_{3(n+1)-2}+\frac{1}{a_{l_{n}}} \frac{a_{3 n-2}}{a_{3(n-1)-2}} e_{3(n-1)-2}\right\| \\
& \quad=\left|\frac{1}{a_{l_{n}}} \frac{a_{3 n-2}}{a_{3(n-1)-2}}\right|>\left|\frac{1}{a_{l_{n}}}\right| \tag{3}
\end{align*}
$$

for $n=2,3, \ldots$.
Now, consider the following cases:

- $i_{0}=3 n$ for some $n \in N$. If $i_{0} \notin N_{l}$ then $\left\|\sum_{i \in J} \lambda_{i} b_{i}\right\|=\max _{i \in J}\left\|\lambda_{i} b_{i}\right\|=$ $\left\|\lambda_{i_{0}} b_{i_{0}}\right\|$. Suppose that $i_{0} \in N_{l}$, then $i_{0}=l_{n}$ for some $n \in N$. We get $\left\|\lambda_{l_{n}} b_{l_{n}}\right\|=$ $\left|\left|\lambda_{l_{n}} e_{l_{n}}\right|\right|=\left|\lambda_{l_{n}}\right|$ and applying (2) and (3) we obtain

$$
\begin{aligned}
& \left\|\sum_{i \in J} \lambda_{i} b_{i}\right\| \geq\left\|\lambda_{l_{n}} b_{l_{n}}-\lambda_{l_{n}} \frac{a_{k_{n}}}{a_{l_{n}}} b_{3 n-1}+\lambda_{l_{n}} \frac{1}{a_{l_{n}}} b_{3 n-2}\right\| \\
& \quad=\left|\lambda_{l_{n}}\right| \cdot\left\|b_{l_{n}}-\frac{a_{k_{n}}}{a_{l_{n}}} b_{3 n-1}+\frac{1}{a_{l_{n}}} b_{3 n-2}\left|\left\|=\left|\frac{\lambda_{l_{n}}}{a_{l_{n}}}\right|>t \cdot\left|\lambda_{l_{n}}\right|=t \cdot \max _{i \in J}\right\| \lambda_{i} b_{i} \|\right.\right.
\end{aligned}
$$

(note that $\left\|\lambda_{l_{n}} b_{l_{n}}+\lambda_{j} b_{j}\right\|<\left\|\lambda_{l_{n}} b_{l_{n}}\right\|$ only if $j=3 n-1$ and $\| \lambda_{l_{n}} b_{l_{n}}+\lambda_{j} b_{j}+$ $\lambda_{l} b_{l}\|<\| \lambda_{l_{n}} b_{l_{n}}+\lambda_{j} b_{j} \|$ only if $\left.l=3 n-2\right)$.

- If $i_{0}=3 n-1$ for some $n \in N$, then we obtain

$$
\left\|\lambda_{3 n-1} b_{3 n-1}\right\|=\left\|\lambda_{3 n-1} e_{k_{n}}+\lambda_{3 n-1} \frac{a_{l_{n}}}{a_{k_{n}}} e_{l_{n}}\right\|=\left|\lambda_{3 n-1} \frac{a_{l_{n}}}{a_{k_{n}}}\right|
$$

and using (2) and (3) we get

$$
\begin{array}{r}
\left\|\sum_{i \in J} \lambda_{i} b_{i}\right\| \geq\left\|\lambda_{3 n-1} b_{3 n-1}-\lambda_{3 n-1} \frac{a_{l_{n}}}{a_{k_{n}}} b_{l_{n}}-\lambda_{3 n-1} \frac{1}{a_{k_{n}}} b_{3 n-2}\right\| \\
=\left|\lambda_{3 n-1} \frac{a_{l_{n}}}{a_{k_{n}}}\right| \cdot| | \frac{a_{k_{n}}}{a_{l_{n}}} b_{3 n-1}-b_{l_{n}}-\frac{1}{a_{l_{n}}} b_{3 n-2} \| \\
=\left|\lambda_{3 n-1} \frac{1}{a_{k_{n}}}\right|>t \cdot\left|\lambda_{3 n-1} \frac{a_{l_{n}}}{a_{k_{n}}}\right|=t \cdot \max _{i \in J}\left\|\lambda_{i} b_{i}\right\|,
\end{array}
$$

since $\left\|\lambda_{3 n-1} b_{3 n-1}+\lambda_{j} b_{j}\right\|<\left\|\lambda_{3 n-1} b_{3 n-1}\right\|$ only if $j=l_{n}$ and $\| \lambda_{3 n-1} b_{3 n-1}+$ $\lambda_{l_{n}} b_{l_{n}}+\lambda_{l} b_{l}\|<\| \lambda_{3 n-1} b_{3 n-1}+\lambda_{l_{n}} b_{l_{n}} \|$ only if $l=3 n-2$.

- Assuming that $i_{0}=3 n-2$ for some $n \in N$, we have

$$
\| \lambda_{3 n-2} b_{3 n-2}| |=\left|\lambda_{3 n-2} a_{k_{n}}\right|,
$$

observing that $\left\|\lambda_{3 n-2} b_{3 n-2}+\lambda_{j} b_{j}+\lambda_{l} b_{l}\right\|<\left\|\lambda_{3 n-2} b_{3 n-2}\right\|$ only if $j=l_{n}$ and $l=3 n-1$ and applying (2) and (3) again, we calculate

$$
\begin{aligned}
&\left\|\sum_{i \in J} \lambda_{i} b_{i}\right\| \geq\left\|\lambda_{3 n-2} b_{3 n-2}-\lambda_{3 n-2} a_{k_{n}} b_{3 n-1}+\lambda_{3 n-2} a_{l_{n}} b_{l_{n}}\right\| \\
&=\left|\lambda_{3 n-2} a_{l_{n}}\right| \cdot\left\|\frac{1}{a_{l_{n}}} b_{3 n-2}-\frac{a_{k_{n}}}{a_{l_{n}}} b_{3 n-1}+b_{l_{n}}\right\| \\
&=\left|\lambda_{3 n-2}\right|>t \cdot\left|\lambda_{3 n-2} a_{k_{n}}\right|=t \cdot \max _{i \in J}\left\|\lambda_{i} b_{i}\right\| .
\end{aligned}
$$

In this way we prove that X_{0} is t-orthogonal.
Note that, doing simple calculations, we have

$$
\begin{align*}
& \left\|e_{1}-\sum_{n=1}^{m} \frac{a_{1}}{a_{3 n-2}}\left(b_{3 n-2}-a_{k_{n}} b_{3 n-1}+a_{l_{n}} b_{l_{n}}\right)\right\| \\
& =\| e_{1}-\left(e_{1}+a_{k_{1}} e_{k_{1}}-\frac{a_{1}}{a_{4}} e_{4}-a_{k_{1}} e_{k_{1}}-a_{l_{1}} e_{l_{1}}+a_{l_{1}} e_{l_{1}}\right) \\
& \quad-\frac{a_{1}}{a_{4}}\left(e_{4}+a_{k_{2}} e_{k_{2}}-\frac{a_{4}}{a_{7}} e_{7}-a_{k_{2}} e_{k_{2}}-a_{l_{2}} e_{l_{2}}+a_{l_{2}} e_{l_{2}}\right)-\ldots \\
& \\
& \quad=\left|\frac{a_{1}}{a_{3(m+1)-2}}\right|<1 \tag{4}
\end{align*}
$$

and easily observe that

$$
\begin{align*}
\operatorname{dist}\left(e_{1},\left[X_{0}\right]\right)=\lim _{m \rightarrow \infty} \| e_{1}-\sum_{n=1}^{m} \frac{a_{1}}{a_{3 n-2}}\left(b_{3 n-2}\right. & \left.-a_{k_{n}} b_{3 n-1}+a_{l_{n}} b_{l_{n}}\right) \| \\
& =\lim _{m \rightarrow \infty}\left|\frac{a_{1}}{a_{3(m+1)-2}}\right|=t \cdot\left|a_{1}\right|=t \tag{5}
\end{align*}
$$

Clearly, $\operatorname{dist}\left(e_{1},\left[X_{0}\right]\right)$ is not attained.

Now, we prove that X_{0} is a maximal t-orthogonal sequence in $\overline{\left[\left\{e_{1}\right\} \cup X_{0}\right]}$. Taking $w \in\left[X_{0}\right]$, (we can write $w=\sum_{i=1}^{m_{0}} \lambda_{i} b_{i}$ for some $m_{0} \in N$ and $\lambda_{1}, \ldots, \lambda_{m_{0}} \in K$) we show that $\left\{e_{1}+w\right\} \cup X_{0}$ is not t-orthogonal sequence in $\overline{\left[\left\{e_{1}\right\} \cup X_{0}\right]}$. Since $\operatorname{dist}\left(e_{1},\left[X_{0}\right]\right)$ is not attained, using (4) and (5), we can select $m>m_{0}+3$ such that

$$
\left\|e_{1}-\sum_{n=1}^{m} \frac{a_{1}}{a_{3 n-2}}\left(b_{3 n-2}-a_{k_{n}} b_{3 n-1}+a_{l_{n}} b_{l_{n}}\right)\right\|<\left\|e_{1}+w\right\| .
$$

Let

$$
z=w+\sum_{n=1}^{m} \frac{a_{1}}{a_{3 n-2}}\left(b_{3 n-2}-a_{k_{n}} b_{3 n-1}+a_{l_{n}} b_{l_{n}}\right) .
$$

Since $z \in\left[X_{0}\right]$, we can write, choosing proper scalars $\beta_{1}, \ldots, \beta_{l_{m}} \in K, z=\sum_{i=1}^{l_{m}} \beta_{i} b_{i}$. In particular we have

$$
\beta_{l_{m}}=\frac{a_{1}}{a_{3 m-2}} a_{l_{m}}, \beta_{3 m-1}=\frac{a_{1}}{a_{3 m-2}} a_{k_{m}}, \beta_{3 m-2}=\frac{a_{1}}{a_{3 m-2}},
$$

thus, we get

$$
\max _{i=1, \ldots, l_{m}}\left\{\left\|\beta_{i} b_{i}\right\|\right\} \geq\left|\frac{a_{1}}{a_{3 m-2}} a_{l_{m}}\right|
$$

On the other hand, using (4) and (1) we obtain

$$
\begin{array}{r}
\left\|e_{1}+w-z\right\|=\left\|e_{1}-\sum_{n=1}^{m} \frac{a_{1}}{a_{3 n-2}}\left(b_{3 n-2}-a_{k_{n}} b_{3 n-1}+a_{l_{n}} b_{l_{n}}\right)\right\| \\
=\left|\frac{a_{1}}{a_{3(m+1)-2}}\right|<t \cdot\left|\frac{a_{1}}{a_{3 m-2}} a_{l_{m}}\right| \leq t \cdot \max _{i=1, \ldots, l_{m}}\left\{\left\|\beta_{i} b_{i}\right\|\right\}
\end{array}
$$

and conclude that X_{0} is maximal in $\overline{\left[\left\{e_{1}\right\} \cup X_{0}\right]}$.
It is easy to check that $E=\overline{\left[\left\{e_{1}\right\} \cup X_{0} \cup\left\{e_{3 n-1}: n \in N\right\}\right]}$ and that $\overline{\left[\left\{e_{1}\right\} \cup X_{0}\right]}$ is orthocomplemented to $\overline{\left[\left\{e_{3 n-1}: n \in N\right\}\right]}$. Hence, taking $X_{m}=X_{0} \cup\left\{e_{3 n-1}: n \in N\right\}$ we get a maximal t-orthogonal sequence in E which is not a base of E and complete the proof.

Remark 2. Note, that the closed hyperplane $D=\left[X_{m}\right]$ of E, where X_{m} is the t-orthogonal sequence constructed in the proof of Theorem 1, can be obtained as $a \operatorname{ker}(f)$, for $f \in E^{\prime}$, induced by $\left(a_{1}, 0,0, a_{4}, 0,0, a_{7}, \ldots\right) \in l^{\infty}$ (where $a_{1}, a_{4}, a_{7}, \ldots$ are defined in the proof of Theorem 1). Observe that $f\left(e_{3 n-2}\right)=a_{3 n-2}, f\left(e_{3 n-1}\right)=$ $f\left(e_{3 n}\right)=0 \quad(n \in N)$ and $f\left(b_{k}\right)=0$ for all $k \in N_{0}$. Since $\sup _{n \in N}\left|a_{3 n-2}\right|$ is not attained, it follows from Lemma 2 and Proposition 2 that dist (x, D) is not attained for every $x \in E \backslash D$.

References

[1] Rooij, A.C.M. van - Non-Archimedean Functional Analysis. Marcel Dekker, New York (1978).

