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Abstract

Let K be a non-Archimedean, complete, densely valued field. For a
given t ∈ (0, 1) we study a maximality of t−orthogonal sequences in c0 over
K. In particular we prove that for every t ∈ (0, 1) there exists a maximal
t−orthogonal sequence in c0 which is not a base.

1 Introduction

Throughout this paper K denotes a non-Archimedean valued field which is complete
with respect to the metric induced by the non-trivial dense valuation |.| : K → [0,∞)
(recall that a valuation |.| is dense if the set of its values is dense in [0,∞)). Let E be
a normed space over K; we assume that the norm defined on E is non-Archimedean
(i.e. it satisfies ’the strong triangle inequality’: ||x + y|| ≤ max {||x|| , ||y||} for all
x, y ∈ E). By E ′ we mean the topological dual of E which is a normed space with

the norm ||f || = supx∈E,x6=0
|f(x)|
||x|| .

For the basic notions and properties concerning normed spaces over K we refer
the reader to [1]. However we recall the following. We say that for a closed linear
subspace D of E and for x ∈ E\D the distance dist(x, D) := infd∈D ||x− d|| is
not attained if ||x− d|| > dist(x, D) for all d ∈ D. If there exists d0 ∈ D such that
||x− d0|| = dist(x, D) we say that dist(x, D) is attained. Two linear subspaces
D, G ⊂ E are called orthocomplemented if ||x + y|| = max {||x|| , ||y||} for all x ∈ D
and y ∈ G.

Let t ∈ (0, 1] and let M ⊆ N. We say that a sequence (finite or infinite) (xi)i∈M of
nonzero elements of E is called t−orthogonal (orthogonal if t = 1) if for every finite

subset J ⊂ M and all scalars {λj}j∈J we have
∣∣∣∣∣∣∑j∈J λjxj

∣∣∣∣∣∣ ≥ t·maxj∈J {||λjxj||} . If,

additionally
[
(xi)i∈M

]
= E, the sequence (xi)i∈M is called a base of E. By Theorem

3.16 of [1], every infinite-dimensional E contains an infinite t−orthogonal sequence
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if t < 1 and if K is spherically complete (i.e. every centered sequence of closed balls
in K has a non-empty intersection), then such E contains an infinite orthogonal
sequence. Clearly, every infinite t−orthogonal sequence is a basic sequence in E. We
say that a t−orthogonal sequence (xi)i∈M of E is maximal if {z}∪{xi : i ∈ M} is not
t−orthogonal for any nonzero z ∈ E. It is easy to observe that every t−orthogonal
sequence in E can be extended to a maximal one. Obviously, every t−orthogonal
sequence which is a base of E is maximal in E. But, it was noted (see Remark after
Theorem 3.16 of [1]) that c0 contains a maximal orthogonal sequence which is not
a base. Hence, it is natural to formulate the following question.
problem Is for a given t ∈ (0, 1) every maximal t−orthogonal sequence in c0 a base
of c0?

This paper contains the answer to this question. In Theorem 1, for every t ∈ (0, 1)
we construct a maximal t−orthogonal sequence in c0 which is not a base.

2 Results

We start with simple observations.

Lemma 1. Let D ⊂ E be a closed, proper, infinite-dimensional linear subspace of E.
If there exists a0 ∈ E\D such that dist(a0, D) is not attained, then dist(a0, F ) >
dist(a0, D) for every F, a finite-dimensional linear subspace of D.

proof: Assume that there exists F ⊂ D with dist(a0, F ) = dist(a0, D). Then, by
Theorem 5.7 and Theorem 5.13 of [1], F is orthocomplemented in F + [a0] ; hence,
there exists x ∈ F with ||a0 − x|| = dist (a0, F ) = dist (a0, D) , a contradiction.

Recall that a linear subspace D ⊂ E is called a hyperplane of E if dim(E/D) =
1.

Lemma 2. Let D be a closed hyperplane of E. Let x0 ∈ E\D. If dist(x0, D) is
attained (not attained), then dist(x, D) is attained (not attained) for all x ∈ E\D.

Proof. Taking x ∈ E\D, we can write x = λx0 + dx for some λ ∈ K (λ 6= 0) and
some dx ∈ D. Suppose that dist(x0, D) is not attained and assume that there exists
d0 ∈ D such that dist(x, D) = ||x− d0|| . Then

||x− d0|| = |λ| ·
∣∣∣∣∣
∣∣∣∣∣x0 +

dx − d0

λ

∣∣∣∣∣
∣∣∣∣∣ .

By assumption, there exists d ∈ D such that

||x0 + d|| <
∣∣∣∣∣
∣∣∣∣∣x0 +

dx − d0

λ

∣∣∣∣∣
∣∣∣∣∣ .

Thus,

||x + (λd− dx)|| = ||(λx0 + dx) + (λd− dx)|| = |λ| · ||x0 + d||

< |λ| ·
∣∣∣∣∣
∣∣∣∣∣x0 +

dx − d0

λ

∣∣∣∣∣
∣∣∣∣∣ = ||λx0 + dx − d0|| = ||x− d0|| ,
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a contradiction. Assuming that dist(x0, D) is attained, we conclude from the above
that dist(x, D) is attained for all x ∈ E\D. �

Proposition 1. Let t ∈ (0, 1] and (xn)n∈N be a t−orthogonal sequence in E. Let

D = [(xn)n∈N ]. If there exists a ∈ E\D such that dist(a, D) is attained then
(xn)n∈N is not maximal t−orthogonal sequence in E.

Proof. Let a ∈ E\D and assume that there exists x ∈ D such that ||a− x|| =
dist(a, D). Denoting a0 = a − x, we get ||a0 − d|| ≥ ||a0|| for all d ∈ D. Thus, for
every m ∈ N and for all µ1, ..., µm ∈ K we obtain∣∣∣∣∣∣

∣∣∣∣∣∣a0 +
m∑

j=1

µjxj

∣∣∣∣∣∣
∣∣∣∣∣∣ ≥ max


∣∣∣∣∣∣
∣∣∣∣∣∣

m∑
j=1

µjxj

∣∣∣∣∣∣
∣∣∣∣∣∣ , ||a0||

 ≥ t ·max
{

max
j=1,...,m

||µjxj|| , ||a0||
}

,

since, by assumption
∣∣∣∣∣∣∑m

j=1 µjxj

∣∣∣∣∣∣ ≥ t ·maxj=1,...,m ||µjxj|| . Hence, {a0,x1, x2, ...} is
a t−orthogonal sequence in E. �

From now on in this paper we assume that E = c0. By {e1, e2, ...} we will denote
a standard base of E.

Remark 1. Taking xn := en+1 (n ∈ N) , a := e1 we get a simple example of an
orthogonal sequence in E which satisfies conditions of Proposition 1.

Note that linear subspaces of E which do not satisfy assumptions of Proposition
1 exist. Examples can be constructed using the next proposition. Recall that by
Exercise 3.Q of [1], E ′ = l∞ and every f ∈ E ′ is given by the formula

f (x) =
∑
n∈N

unxn,

for some u = (u1, u2, u3, ...) ∈ l∞, where x = (x1, x2, x3, ...) ∈ E.

Proposition 2. Let u = (u1, u2, u3, ...) ∈ l∞ and f ∈ E ′ be defined by f (z) =∑
n∈N unzn, where z = (z1,z2, z3, ...) ∈ E. Denote by D = ker (f) . Then, dist(x, D)

is attained for every x ∈ E\D if and only if maxn∈N |un| exists.

Proof. Let z = (z1,z2, z3, ...) ∈ E. Since

|f (z)|
||z||

=
|∑n∈N unzn|
||∑n∈N znen||

≤ maxn∈N |unzn|
maxn∈N |zn|

≤ sup
n∈N

|un|

and

sup
n∈N

|f(en)|
||en||

= sup
n∈N

|un|
||en||

= sup
n∈N

|un| ,

we note that the norm of f is reached on {e1, e2, ...} ; i.e.

||f || = sup
n∈N

|f(en)|
||en||

= sup
n∈N

|un| .
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Assume that maxn∈N |un| exists, then ||f || = |um| for some m ∈ N and f (em) /∈ D.
More, dist (em, D) = ||em|| . If not, then there exists d ∈ D with ||em − d|| < ||em|| .
But then

|f(em − d)|
||em − d||

=
|f(em)|
||em − d||

>
|f(em)|
||em||

= ||um|| = ||f || ,

a contradiction. It follows from Lemma 2 that dist(x, D) is attained for every
x ∈ E\D.

Suppose now that dist(x, D) is attained for every x ∈ E\D and assume that

maxn∈N |un| does not exist (thus, ||f || > |f(z)|
||z|| for all z ∈ E). Then, we can choose a

strictly increasing sequence (nk)k ⊂ N with ||f || = limk→∞ |unk
| . Taking p > 1, we

see that f
(
enp

)
6= 0, xr = enp −

unp

unr
enr ∈ D for all r > p and limr→∞

∣∣∣∣∣∣enp − xr

∣∣∣∣∣∣ =

limr→∞

∣∣∣unp

unr

∣∣∣ ; thus, dist(enp , D) ≤ limr→∞

∣∣∣unp

unr

∣∣∣ and by assumption we can choose

d ∈ D such that
∣∣∣∣∣∣enp − d

∣∣∣∣∣∣ ≤ limr→∞

∣∣∣unp

unr

∣∣∣ . But then, we get

∣∣∣f(enp − d)
∣∣∣∣∣∣∣∣∣enp − d

∣∣∣∣∣∣ =

∣∣∣f(enp)
∣∣∣∣∣∣∣∣∣enp − d
∣∣∣∣∣∣ ≥ lim

r→∞
|unr | ,

a contradiction. �

Now, we prove the main theorem.

Theorem 1. For every t ∈ (0, 1) there exists a maximal t−orthogonal sequence in
E which is not a base.

Proof. Let 0 < t < 1. Choose a sequence (an)n∈N ⊂ K (recall that by assumption
K is densely valued) such that

1 = |a1| < ... < |an| < |an+1| < ... <
1

t
.

Now, define elements of E as follows

b3n−2 = e3n−2 + aknekn −
a3n−2

a3(n+1)−2

e3(n+1)−2

b3n−1 = ekn +
aln

akn

eln

b3n = e3n (n ∈ N) ,

selecting kn, ln ∈ N such that kn = 3in, ln = 3jn for some in, jn ∈ N, kn ≥ 3n,
ln > kn,

|a3n−2| < t ·
∣∣∣a3(n+1)−2

∣∣∣ · |aln| (1)

and ln < kn+1 for all n ∈ N. Let Nk = {kn : n ∈ N} , Nl = {ln : n ∈ N} (observe
that Nk ∩Nl = ∅) and let N0 = N\Nk.

Now, we prove that X0 = {bk : k ∈ N0} is a t−orthogonal sequence in E. To
this end take a finite subset J ⊂ N0, {λi}i∈J ⊂ K and assume that maxi∈J ||λibi|| =
||λi0bi0|| > 0 for some i0 ∈ J.
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First, we note that applying properties of the sequence (an)n∈N we have

∣∣∣∣∣
∣∣∣∣∣bln −

akn

aln

b3n−1 +
1

aln

b3n−2

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣eln − (

akn

aln

ekn + eln) + (
1

aln

e3n−2 +
akn

aln

ekn −
a3n−2

alna3(n+1)−2

e3(n+1)−2)

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣ 1

aln

e3n−2 −
a3n−2

alna3(n+1)−2

e3(n+1)−2

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣ 1

aln

∣∣∣∣∣ (2)

for every n ∈ N and

||bln −
akn

aln

b3n−1 +
1

aln

b3n−2

+
1

aln

a3n−2

a3(n−1)−2

b3(n−1)−2 −
akn−1

aln

a3n−2

a3(n−1)−2

b3(n−1)−1 +
aln−1

aln

a3n−2

a3(n−1)−2

b
ln−1

||

= ||eln − (
akn

aln

ekn + eln) + (
1

aln

e3n−2 +
akn

aln

ekn −
a3n−2

alna3(n+1)−2

e3(n+1)−2)

+ (
1

aln

a3n−2

a3(n−1)−2

e3(n−1)−2 +
akn−1

aln

a3n−2

a3(n−1)−2

ekn−1 −
1

aln

e3n−2)

− (
akn−1

aln

a3n−2

a3(n−1)−2

ekn−1 +
aln−1

aln

a3n−2

a3(n−1)−2

eln−1) +
aln−1

aln

a3n−2

a3(n−1)−2

eln−1||

= || − a3n−2

alna3(n+1)−2

e3(n+1)−2 +
1

aln

a3n−2

a3(n−1)−2

e3(n−1)−2||

=

∣∣∣∣∣ 1

aln

a3n−2

a3(n−1)−2

∣∣∣∣∣ >

∣∣∣∣∣ 1

aln

∣∣∣∣∣ (3)

for n = 2, 3, ... .

Now, consider the following cases:

• i0 = 3n for some n ∈ N. If i0 /∈ Nl then ||∑i∈J λibi|| = maxi∈J ||λibi|| =
||λi0bi0|| . Suppose that i0 ∈ Nl, then i0 = ln for some n ∈ N. We get ||λlnbln|| =
||λlneln|| = |λln| and applying (2) and (3) we obtain

∣∣∣∣∣
∣∣∣∣∣∑
i∈J

λibi

∣∣∣∣∣
∣∣∣∣∣ ≥

∣∣∣∣∣
∣∣∣∣∣λlnbln − λln

akn

aln

b3n−1 + λln

1

aln

b3n−2

∣∣∣∣∣
∣∣∣∣∣

= |λln| ·
∣∣∣∣∣
∣∣∣∣∣bln −

akn

aln

b3n−1 +
1

aln

b3n−2

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣λln

aln

∣∣∣∣∣ > t · |λln| = t ·max
i∈J

||λibi||

(note that ||λlnbln + λjbj|| < ||λlnbln|| only if j = 3n − 1 and ||λlnbln + λjbj +
λlbl|| < ||λlnbln + λjbj|| only if l = 3n− 2).

• If i0 = 3n− 1 for some n ∈ N, then we obtain

||λ3n−1b3n−1|| =
∣∣∣∣∣
∣∣∣∣∣λ3n−1ekn + λ3n−1

aln

akn

eln

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣λ3n−1
aln

akn

∣∣∣∣∣
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and using (2) and (3) we get∣∣∣∣∣
∣∣∣∣∣∑
i∈J

λibi

∣∣∣∣∣
∣∣∣∣∣ ≥

∣∣∣∣∣
∣∣∣∣∣λ3n−1b3n−1 − λ3n−1

aln

akn

bln − λ3n−1
1

akn

b3n−2

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣λ3n−1
aln

akn

∣∣∣∣∣ ·
∣∣∣∣∣
∣∣∣∣∣akn

aln

b3n−1 − bln −
1

aln

b3n−2

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣λ3n−1
1

akn

∣∣∣∣∣ > t ·
∣∣∣∣∣λ3n−1

aln

akn

∣∣∣∣∣ = t ·max
i∈J

||λibi|| ,

since ||λ3n−1b3n−1 + λjbj|| < ||λ3n−1b3n−1|| only if j = ln and ||λ3n−1b3n−1 +
λlnbln + λlbl|| < ||λ3n−1b3n−1 + λlnbln|| only if l = 3n− 2.

• Assuming that i0 = 3n− 2 for some n ∈ N, we have

||λ3n−2b3n−2|| = |λ3n−2akn| ,

observing that ||λ3n−2b3n−2 + λjbj + λlbl|| < ||λ3n−2b3n−2|| only if j = ln and
l = 3n− 1 and applying (2) and (3) again, we calculate∣∣∣∣∣

∣∣∣∣∣∑
i∈J

λibi

∣∣∣∣∣
∣∣∣∣∣ ≥ ||λ3n−2b3n−2 − λ3n−2aknb3n−1 + λ3n−2alnbln||

= |λ3n−2aln| ·
∣∣∣∣∣
∣∣∣∣∣ 1

aln

b3n−2 −
akn

aln

b3n−1 + bln

∣∣∣∣∣
∣∣∣∣∣

= |λ3n−2| > t · |λ3n−2akn| = t ·max
i∈J

||λibi|| .

In this way we prove that X0 is t−orthogonal.

Note that, doing simple calculations, we have∣∣∣∣∣
∣∣∣∣∣e1 −

m∑
n=1

a1

a3n−2

(b3n−2 − aknb3n−1 + alnbln)

∣∣∣∣∣
∣∣∣∣∣

= ||e1 − (e1 + ak1ek1 −
a1

a4

e4 − ak1ek1 − al1el1 + al1el1)

− a1

a4

(e4 + ak2ek2 −
a4

a7

e7 − ak2ek2 − al2el2 + al2el2)− ...

...− a1

a3m−2

(e3m−2 + akmekm − a3m−2

a3(m+1)−2

e3(m+1)−2 − akmekm − almelm + almelm)||

=

∣∣∣∣∣ a1

a3(m+1)−2

∣∣∣∣∣ < 1 (4)

and easily observe that

dist (e1, [X0]) = lim
m→∞

∣∣∣∣∣
∣∣∣∣∣e1 −

m∑
n=1

a1

a3n−2

(b3n−2 − aknb3n−1 + alnbln)

∣∣∣∣∣
∣∣∣∣∣

= lim
m→∞

∣∣∣∣∣ a1

a3(m+1)−2

∣∣∣∣∣ = t · |a1| = t. (5)
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Clearly, dist (e1, [X0]) is not attained.

Now, we prove that X0 is a maximal t−orthogonal sequence in [{e1} ∪X0].
Taking w ∈ [X0] , (we can write w =

∑m0
i=1 λibi for some m0 ∈ N and λ1, ..., λm0 ∈ K)

we show that {e1 + w} ∪ X0 is not t−orthogonal sequence in [{e1} ∪X0]. Since
dist (e1, [X0]) is not attained, using (4) and (5) , we can select m > m0 +3 such that∣∣∣∣∣

∣∣∣∣∣e1 −
m∑

n=1

a1

a3n−2

(b3n−2 − aknb3n−1 + alnbln)

∣∣∣∣∣
∣∣∣∣∣ < ||e1 + w|| .

Let

z = w +
m∑

n=1

a1

a3n−2

(b3n−2 − aknb3n−1 + alnbln) .

Since z ∈ [X0] , we can write, choosing proper scalars β1, ..., βlm ∈ K, z =
∑lm

i=1 βibi.
In particular we have

βlm =
a1

a3m−2

alm , β3m−1 =
a1

a3m−2

akm , β3m−2 =
a1

a3m−2

,

thus, we get

max
i=1,...,lm

{||βibi||} ≥
∣∣∣∣∣ a1

a3m−2

alm

∣∣∣∣∣ .
On the other hand, using (4) and (1) we obtain

||e1 + w − z|| =
∣∣∣∣∣
∣∣∣∣∣e1 −

m∑
n=1

a1

a3n−2

(b3n−2 − aknb3n−1 + alnbln)

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣ a1

a3(m+1)−2

∣∣∣∣∣ < t ·
∣∣∣∣∣ a1

a3m−2

alm

∣∣∣∣∣ ≤ t · max
i=1,...,lm

{||βibi||}

and conclude that X0 is maximal in [{e1} ∪X0].

It is easy to check that E = [{e1} ∪X0 ∪ {e3n−1 : n ∈ N}] and that [{e1} ∪X0] is
orthocomplemented to [{e3n−1 : n ∈ N}]. Hence, taking Xm = X0 ∪{e3n−1 : n ∈ N}
we get a maximal t−orthogonal sequence in E which is not a base of E and complete
the proof. �

Remark 2. Note, that the closed hyperplane D = [Xm] of E, where Xm is the
t−orthogonal sequence constructed in the proof of Theorem 1, can be obtained as
a ker (f) , for f ∈ E ′, induced by (a1, 0, 0, a4, 0, 0, a7, ...) ∈ l∞ (where a1, a4, a7, ...
are defined in the proof of Theorem 1). Observe that f (e3n−2) = a3n−2, f (e3n−1) =
f (e3n) = 0 (n ∈ N) and f (bk) = 0 for all k ∈ N0. Since supn∈N |a3n−2| is not
attained, it follows from Lemma 2 and Proposition 2 that dist (x, D) is not attained
for every x ∈ E\D.
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