Complete Spaces of p -adic Measures

A. K. Katsaras
S. Navarro

Abstract

Let \mathbb{K} be a complete non-Archimedean valued field and let $C(X, E)$ be the space of all continuous functions from a zero-dimensional Hausdorff topological space X to a non-Archimedean Hausdorff locally convex space E. We will denote by $C_{b}(X, E)$ (resp. by $C_{r c}(X, E)$) the space of all $f \in C(X, E)$ for which $f(X)$ is a bounded (resp. relatively compact) subset of E. The dual space of $C_{r c}(X, E)$, under the topology t_{u} of uniform convergence, is a space $M\left(X, E^{\prime}\right)$ of finitely-additive E^{\prime}-valued measures on the algebra $K(X)$ of all clopen, i.e. both closed and open, subsets of X. Some subspaces of $M\left(X, E^{\prime}\right)$ turn out to be the duals of $C(X, E)$ or of $C_{b}(X, E)$ under certain locally convex topologies. In this paper we continue with the investigation of certain subspaces of $M\left(X, E^{\prime}\right)$. Among other results we show that, if E is a polar Fréchet space, then : 1. The space $\mathcal{M}_{\theta_{o}}\left(X, E^{\prime}\right)$, of all $m \in M\left(X, E^{\prime}\right)$ for which the support of the corresponding measure $m^{\beta_{o}}$, on the Banaschewski compactification of X, is contained in the θ_{o}-repletion of X, is complete under the topology of uniform convergence on the family \mathcal{E} of all equicontinuous subsets B of $C(X, E)$ for which $B(x)$ is a compactoid subset of E for all $x \in X$. 2. The space $M_{b s}\left(X, E^{\prime}\right)$, of all the so called strongly-separable members of $M\left(X, E^{\prime}\right)$ is complete under the topology of uniform convergence on the family of all uniformly bounded members of \mathcal{E}. 3. The space $M_{s}\left(X, E^{\prime}\right)$ of all $m \in M\left(X, E^{\prime}\right)$, for which $m s$ is separable for all $s \in E$, is complete under the topology of uniform convergence on the family of all $B \in \mathcal{E}$ for which the set $B(X)$ is compactoid.

2000 Mathematics Subject Classification : 46S10, 46G10.
Key words and phrases : Non-Archimedean fields, zero-dimensional spaces, p-adic measures, locally convex spaces.

1 Introduction

Let \mathbb{K} be a complete non-Archimedean valued field and let $C(X, E)$ be the space of all continuous functions from a zero-dimensional Hausdorff topological space X to a non-Archimedean Hausdorff locally convex space E. We will denote by $C_{b}(X, E)$ (resp. by $\left.C_{r c}(X, E)\right)$ the space of all $f \in C(X, E)$ for which $f(X)$ is a bounded (resp. relatively compact) subset of E. The dual space of $C_{r c}(X, E)$, under the topology t_{u} of uniform convergence, is a space $M\left(X, E^{\prime}\right)$ of finitely-additive E^{\prime}-valued measures on the algebra $K(X)$ of all clopen, i.e. both closed and open, subsets of X. Some subspaces of $M\left(X, E^{\prime}\right.$ turn out to be the duals of $C(X, E)$ or of $C_{b}(X, E)$ under certain locally convex topologies.
In this paper we continue with the investigation of certain subspaces of $M\left(X, E^{\prime}\right)$. Among other results we show that, if E is a polar Fréchet space, then :

1. The space $\mathcal{M}_{\theta_{o}}\left(X, E^{\prime}\right)$, of all $m \in M\left(X, E^{\prime}\right)$ for which the support of the corresponding measure $m^{\beta_{o}}$, on the Banaschewski compactification of X, is contained in the θ_{o}-repletion of X, is complete under the topology of uniform convergence on the family \mathcal{E} of all equicontinuous subsets B of $C(X, E)$ for which $B(x)$ is a compactoid subset of E for all $x \in X$.
2. The space $M_{b s}\left(X, E^{\prime}\right)$, of all the so called strongly-separable members of $M\left(X, E^{\prime}\right)$, is complete under the topology of uniform convergence on the family of all uniformly bounded members of \mathcal{E}.
3. The space $M_{s}\left(X, E^{\prime}\right)$ of all $m \in M\left(X, E^{\prime}\right)$, for which $m s$ is separable for all $s \in E$, is complete under the topology of uniform convergence on the family of all $B \in \mathcal{E}$ for which the set $B(X)$ is compactoid.

2 Preliminaries

Throughout this paper, \mathbb{K} will be a complete non-Archimedean valued field, whose valuation is non-trivial. By a seminorm, on a vector space over \mathbb{K}, we will mean a non-Archimedean seminorm. Similarly, by a locally convex space we will mean a non-Archimedean locally convex space over \mathbb{K} (see [22]). Unless it is stated explicitly otherwise, X will be a Hausdorff zero-dimensional topological space, E a Hausdorff locally convex space and $c s(E)$ the set of all continuous seminorms on E. The space of all \mathbb{K}-valued linear maps on E is denoted by E^{\star}, while E^{\prime} denotes the topological dual of E. A seminorm p, on a vector space G over \mathbb{K}, is called polar if $p=\sup \left\{|f|: f \in G^{\star},|f| \leq p\right\}$. A locally convex space G is called polar if its topology is generated by a family of polar seminorms. A subset A of G is called absolutely convex if $\lambda x+\mu y \in A$ whenever $x, y \in A$ and $\lambda, \mu \in \mathbb{K}$, with $|\lambda|,|\mu| \leq 1$. We will denote by $\beta_{o} X$ the Banaschewski compactification of X (see [5]) and by $v_{o} X$ the \mathbf{N}-repletion of X, where \mathbf{N} is the set of natural numbers. By $\theta_{o} X$ we denote the θ_{o}-completion of X (see [1]). We will let $C(X, E)$ denote the space of all continuous E-valued functions on X and $C_{b}(X, E)$ (resp. $\left.C_{r c}(X, E)\right)$ the space of all $f \in C(X, E)$ for which $f(X)$ is a bounded (resp. relatively compact) subset of E. In case $E=\mathbb{K}$, we will simply write $C(X), C_{b}(X)$ and $C_{r c}(X)$ respectively. For $A \subset X$, we denote by χ_{A} the \mathbb{K}-valued characteristic function of A. Also, for $X \subset Y \subset \beta_{o} X$, we denote by \bar{B}^{Y} the closure of B in Y. If $f \in E^{X}, p$ a seminorm
on E and $A \subset X$, we define

$$
\|f\|_{p}=\sup _{x \in X} p(f(x)), \quad\|f\|_{A, p}=\sup _{x \in A} p(f(x)) .
$$

For a locally convex space F, we denote by F^{c} the c-dual of F, i.e the dual space F^{\prime} equipped with the topology of uniform convergence on the compactoid subsets of F.

Let $\Omega=\Omega(X)$ be the family of all compact subsets of $\beta_{o} X \backslash X$. By Ω_{u} we will denote the family of all $Q \in \Omega$ with the following property: There exists a clopen partition $\left(A_{i}\right)_{i \in I}$ of X such that Q is disjoint from each ${\overline{A_{i}}}^{\beta_{0} X}$. Also Ω_{1} is the family of all zero set members of Ω, i.e all sets in Ω of the form $\left\{x \in \beta_{o} X: h(x)=0\right\}$, for some $h \in C\left(\beta_{o} X\right)$.

For $H \in \Omega$ let C_{H} be the space of all $h \in C_{r c}(X)$ for which the continuous extension $h^{\beta_{o}}$ to all of $\beta_{o} X$ vanishes on H. For $p \in c s(E)$, let $\beta_{H, p}$ be the locally convex topology on $C_{b}(X, E)$ generated by the seminorms $f \mapsto\|h f\|_{p}, \quad h \in C_{H}$. For $H \in \Omega, \beta_{H}$ is the locally convex topology on $C_{b}(X, E)$ generated by the seminorms $f \mapsto\|h f\|_{p}, \quad h \in C_{H}, p \in c s(E)$. The inductive limit of the topologies $\beta_{H}, H \in \Omega$, is the topology β.

For d a continuous ultra-pseudometric on X, we denote by X_{d} the corresponding ultrametric space and by $\pi_{d}: X \rightarrow X_{d}$ the quotient map. Let

$$
T_{d}: C_{b}\left(X_{d}, E\right) \rightarrow C_{b}(X, E)
$$

be the induced linear map. The topology β_{e} is defined to be the finest of all locally convex topologies τ on $C_{b}(X, E)$ for which each

$$
T_{d}:\left(C_{b}\left(X_{d}, E\right), \beta\right) \rightarrow\left(C_{b}(X, E), \tau\right)
$$

is continuous (see [13]).
Let now $K(X)$ be the algebra of all clopen subsets of X. We denote by $M\left(X, E^{\prime}\right)$ the space of all finitely-additive E^{\prime}-valued measures m on $K(X)$ for which the set $m(K(X))$ is an equicontinuous subset of E^{\prime}. For each such m, there exists a $p \in$ $c s(E)$ such that $\|m\|_{p}=m_{p}(X)<\infty$, where, for $A \in K(X)$,

$$
m_{p}(A)=\sup \{|m(B) s| / p(s): p(s) \neq 0, \quad A \supset B \in K(X)\}
$$

The space of all $m \in M\left(X, E^{\prime}\right)$ for which $m_{p}(X)<\infty$ is denoted by $M_{p}\left(X, E^{\prime}\right)$. In case $E=\mathbb{K}$, we denote by $M(X)$ the space of all finitely-additive bounded \mathbb{K} valued measures on $K(X)$. An element m of $M(X)$ is called τ-additive if $m\left(V_{\delta}\right) \rightarrow 0$ for each decreasing net $\left(V_{\delta}\right)$ of clopen subsets of X with $\cap V_{\delta}=\emptyset$. In this case we write $V_{\delta} \downarrow \emptyset$. We denote by $M_{\tau}(X)$ the space of all τ-additive members of $M(X)$. Analogously, we denote by $M_{\sigma}(X)$ the space of all σ-additive m, i.e. those m with $m\left(V_{n}\right) \rightarrow 0$ when $V_{n} \downarrow \emptyset$. For an $m \in M\left(X, E^{\prime}\right)$ and $s \in E$, we denote by $m s$ the element of $M(X)$ defined by $(m s)(V)=m(V) s$.
Next we recall the definition of the integral of an $f \in E^{X}$ with respect to an $m \in M\left(X, E^{\prime}\right)$. For a non-empty clopen subset A of X, let $\mathcal{D}_{\mathcal{A}}$ be the family of all $\alpha=\left\{A_{1}, A_{2}, \ldots, A_{n} ; x_{1}, x_{2}, \ldots, x_{n}\right\}$, where $\left\{A_{1}, \ldots, A_{n}\right\}$ is a clopen partition of A and $x_{k} \in A_{k}$. We make $\mathcal{D}_{\mathcal{A}}$ into a directed set by defining $\alpha_{1} \geq \alpha_{2}$ iff the partition of
A in α_{1} is a refinement of the one in α_{2}. For an $\alpha=\left\{A_{1}, A_{2}, \ldots, A_{n} ; x_{1}, x_{2}, \ldots, x_{n}\right\} \in$ $\mathcal{D}_{\mathcal{A}}$ and $m \in M\left(X, E^{\prime}\right)$, we define

$$
\omega_{\alpha}(f, m)=\sum_{k=1}^{n} m\left(A_{k}\right) f\left(x_{k}\right) .
$$

If the limit $\lim \omega_{\alpha}(f, m)$ exists in \mathbb{K}, we will say that f is m-integrable over A and denote this limit by $\int_{A} f d m$. We define the integral over the empty set to be 0 . For $A=X$, we write simply $\int f d m$. It is easy to see that if f is m-integrable over X, then it is integrable over every clopen subset A of X and $\int_{A} f d m=\int \chi_{A} f d m$. If τ_{u} is the topology of uniform convergence, then every $m \in M\left(X, E^{\prime}\right)$ defines a τ_{u}-continuous linear functional ϕ_{m} on $C_{r c}(X, E), \quad \phi_{m}(f)=\int f d m$. Also every $\phi \in\left(C_{r c}(X, E), \tau_{u}\right)^{\prime}$ is given in this way by some $m \in M\left(X, E^{\prime}\right)$.
For all unexplained terms on locally convex spaces, we refer to [21] and [22].

3 The Space $L\left(X, E^{\prime}\right)$

For $x \in X$ and $x^{\prime} \in E^{\prime}$, we will denote by $\delta_{x, x^{\prime}}$ the linear functional on $C(X, E)$ defined by $\delta_{x, x^{\prime}}(f)=x^{\prime}(f(x))$. Let $L\left(X, E^{\prime}\right)$ be the linear subspace of $C(X, E)^{\star}$ spanned by the set $\left\{\delta_{x, x^{\prime}}: x \in X, x^{\prime} \in E^{\prime}\right\}$. Also $C_{c o}(X, E)$ is the subspace of $C(X, E)$ consisting of all f for which the set $f(X)$ is a compactoid subset of E. We will consider the following families of subsets of $C(X, E)$:

1. $\mathcal{E}=\mathcal{E}(X, E)$ is the family of all equicontinuous subsets B of $C(X, E)$ for which the set $B(x)=\{f(x): f \in B\}$ is compactoid for each $x \in X$.
2. $\mathcal{E}_{b}=\mathcal{E}_{b}(X, E)$ is the family of all uniformly bounded members of \mathcal{E}.
3. $\mathcal{E}_{c o}=\mathcal{E}_{c o}(X, E)$ is the family of all $B \in \mathcal{E}$ for which the set $B(X)$ is compactoid. Let $e, e_{b}, e_{c o}$ be the locally convex topologies on $L\left(X, E^{\prime}\right)$ which are the topologies of uniform convergence on the members of $\mathcal{E}, \mathcal{E}_{b}, \mathcal{E}_{\text {co }}$, respectively. For $B \in \mathcal{E}$, the seminorm p_{B} on $L\left(X, E^{\prime}\right)$, defined by $p_{B}(u)=\sup _{f \in B}|u(f)|$, is polar. Thus each of the topologies $e, e_{b}, e_{c o}$ is polar.
Recall that a locally convex space F is said to be c-complete if every closed compactoid subset of F is complete.

Theorem 3.1. Assume that E is polar and c-complete. Then, the dual spaces of $L\left(X, E^{\prime}\right)$, under the topologies e, e_{b} and $e_{c o}$, coincide with the spaces $C(X, E)$, $C_{b}(X, E)$ and $C_{c o}(X, E)$, respectively.

Proof: 1. For $f \in C(X, E)$, the set $\{f\}$ is in \mathcal{E}. It follows from this that $C(X, E)$ is a subspace of the dual space of $G_{e}=\left(L\left(X, E^{\prime}\right), e\right)$ (considering each element of $C(X, E)$ as a linear functional on $\left.G_{e}\right)$. On the other hand, let $\phi \in G_{e}^{\prime}$. There exists a $B \in \mathcal{E}$ such that

$$
\left\{u \in G_{e}: p_{B}(u) \leq 1\right\} \subset\{u:|\phi(u)| \leq 1\} .
$$

For $x \in X$, we consider the linear form $\phi_{x}\left(x^{\prime}\right)=<\phi, \delta_{x, x^{\prime}}>, x^{\prime} \in E^{\prime}$. If x^{\prime} is in the polar $B(x)^{o}$ of $B(x)$ in E^{\prime}, then $\delta_{x, x^{\prime}} \in B^{o}$ and so $\left|\phi_{x}\left(x^{\prime}\right)\right| \leq 1$. As $B(x)$ is compactoid, it follows that ϕ_{x} is continuous on the c-dual space E^{c} of E. Since E is polar and c-complete, there exists a unique element $f(x) \in E$ such that $\phi_{x}\left(x^{\prime}\right)=$
$x^{\prime}(f(x))$ for all $x^{\prime} \in E^{\prime}$ (by [18], Theorem 4.7). Thus we get a map $f: X \rightarrow E$. This map is continuous. Indeed, let p be a polar continuous seminorm on E. By the equicontinuity of B, given $x \in X$, there exists a neighborhood Z of x such that $p(g(x)-g(y)) \leq 1$ for all $g \in B$ and all $y \in Z$. Let $x^{\prime} \in E^{\prime},\left|x^{\prime}\right| \leq p$. If $g \in B$ and $y \in Z$, then

$$
\left|<g, \delta_{x, x^{\prime}}-\delta_{y, x^{\prime}}>\left|=\left|x^{\prime}(g(x)-g(y))\right| \leq p(g(x)-g(y)) \leq 1\right.\right.
$$

Thus $\delta_{x, x^{\prime}}-\delta_{y, x^{\prime}} \in B^{o}$ and so

$$
\mid x^{\prime}\left(f(x)-f(y)\left|=\left|<\phi, \delta_{x, x^{\prime}}-\delta_{y, x^{\prime}}>\right| \leq 1\right.\right.
$$

Since p is polar, it follows that $p(f(x)-f(y)) \leq 1$ for all $y \in Z$, which proves that f is continuous at x. Now, for $u=\sum_{k=1}^{n} \delta_{x_{k}, x_{k}^{\prime}}$, we have

$$
<f, u>=\sum_{k=1}^{n} x_{k}^{\prime}\left(f\left(x_{k}\right)\right)=<\phi, u>
$$

and so $\phi=f$ (as linear functionals on G_{e}). This completes the proof for e.
2. Let $G_{b}=\left(L\left(X, E^{\prime}\right), e_{b}\right)$. Since e_{b} is coarser than e, it follows that $G_{b}^{\prime} \subset G_{e}^{\prime}=$ $C\left(X, E\right.$. Let $f \in C(X, E)$ be in G_{b}^{\prime} and let $B \in \mathcal{E}_{b}$ be such that $|<f, u>| \leq 1$ if $u \in B^{o}$. We will show that $f(X)$ is bounded in E. Since E is polar, it suffices to prove that $f(X)$ is weakly bounded. So let $x^{\prime} \in E^{\prime}$. As $B(X)$ is a bounded subset of E, there exists a $\lambda \in \mathbb{K}$ such that $\left|x^{\prime}(s)\right| \leq|\lambda|$ for all $s \in B(X)$. Now $\lambda^{-1} \delta_{x, x^{\prime}} \in B^{o}$, for all $x \in X$, and so $\sup _{x \in X} \mid x^{\prime}(f(x) \leq|\lambda|$. Thus $f(X)$ is weakly bounded and hence $f \in C_{b}(X, E)$. Conversely, if $f \in C_{b}(X, E)$, then $\{f\} \in \mathcal{E}_{b}$, from which it follows that $f \in G_{b}^{\prime}$.
3. If $G_{c_{o}}=\left(L\left(X, E^{\prime}\right), e_{c_{o}}\right)$, then the proof of the equality $G_{c_{o}}^{\prime}=C_{c_{o}}(X, E)$ is analogous to the one used for e_{b} using the fact that, if D is a compactoid subset of the polar space E, then the bipolar $B^{o o}$ is also compactoid.

Let $\sigma=\sigma\left(C(X, E), L\left(X, E^{\prime}\right)\right.$. If E is polar, then, on each member B of \mathcal{E}, the weak topology σ coincides with the topology of simple convergence since, for each $x \in X, B(x)$ is compactoid.

Theorem 3.2. Assume that E is polar and consider the dual pair

$$
<C(X, E), L\left(X, E^{\prime}\right)>
$$

Let $B \subset C(X, E)$. If B is a member of one of the families $\mathcal{E}, \mathcal{E}_{b}, \mathcal{E}_{c_{o}}$, then the bipolar $B^{o o}$ is also a member of the same family.

Proof: By [21], Proposition 4.10, we have that $B^{o o}=\left(\overline{c o(B)}^{\sigma}\right)^{e}$, where $D=$ $\overline{c o(B)}{ }^{\sigma}$ is the σ-closure of the absolutely convex hull $c o(B)$ of B and D^{e} is the edged hull of D. Let $x \in X, \epsilon>0$ and $p \in c s(E)$. Since B is equicontinuous, there exists a neighborhood Z of x such that $p(f(y)-f(x)) \leq \epsilon$ for all $f \in B$ and all $y \in Z$. Let now $f \in \overline{\cos (B)}$ and $y \in Z$. There exists a net $\left(f_{\delta}\right)$ in $c o(B)$ which is σ-convergent to f. The set $M=[B(y)]^{o o}$ is also compactoid since E is polar. The map

$$
\omega:(C(X, E), \sigma) \rightarrow\left(E, \sigma\left(E, E^{\prime}\right)\right.
$$

$g \mapsto g(y)$, is continuous. Thus $f_{\delta}(y) \rightarrow f(y)$ weakly in E. As M is weakly closed, we have that $f(y) \in M$. On compactoid subsets of E, the weak topology and the original topology coincide (by [21], Theorem 5.12). Thus $f_{\delta}(y) \rightarrow f(y)$ in E. Now, for $y \in Z$, we have that $f_{\delta}(y)-f_{\delta}(x) \rightarrow f(y)-f(x)$ and hence $p(f(y)-f(x)) \leq \epsilon$. This proves that D is equicontinuous. If $x \in X$, then $D(x) \subset[B(x)]^{o o}$ and so $D(x)$ is compactoid, which proves that $D \in \mathcal{E}$. Finally, if $|\lambda|>1$, then $B^{o o} \subset \lambda D$, from which it follows that $B^{o o} \in \mathcal{E}$. If $B \in \mathcal{E}_{b}$, then $B(X)$ is bounded and hence $[B(X)]^{o o}$ is bounded. Since $B^{o o}(X) \subset[B(X)]^{o o}$, it follows that $B^{o o} \in \mathcal{E}$. The case of a $B \in \mathcal{E}_{\text {co }}$ is analogous taking into account the fact that, if $A \subset E$ is compactoid, then $A^{o o}$ is also compactoid.

Theorem 3.3. Assume that E is polar and let $B \subset C(X, E)$. Then B is equicontinuous with respect to one of the topologies $e, e_{b}, e_{c o}$, iff B is a member of \mathcal{E}, \mathcal{E}_{b}, or $\mathcal{E}_{\text {co }}$, respectively.

Proof: It follows from the preceding Theorem and from the fact that, if B is a member of $\mathcal{E}, \mathcal{E}_{b}$, or $\mathcal{E}_{c o}$, then every subset of B is also a member of the same family.

4 The Space $\mathcal{M}_{\theta_{o}}\left(X, E^{\prime}\right)$ as a Completion

We will denote by $M_{\theta_{o}}(X)$ the space of all $\mu \in M(X)$ for which the support $\operatorname{supp}\left(\mu^{\beta_{o}}\right)$, of the corresponding measure $\mu^{\beta_{o}}$ on $\beta_{o} X$ is contained in $\theta_{o} X$. Also, by $\mathcal{M}_{\theta_{o}}\left(X, E^{\prime}\right)$ we will denote the space of all $m \in M\left(X, E^{\prime}\right)$ for which $\operatorname{supp}\left(m^{\beta_{o}}\right) \subset$ $\theta_{o} X$. By $\Omega_{\theta_{o}}$ we will denote the family of all compact subsets of $\beta_{o} X$ which are disjoint from $\theta_{o} X$.

Theorem 4.1. For an $m \in M\left(X, E^{\prime}\right.$, the following are equivalent :

1. $m \in \mathcal{M}_{\theta_{o}}\left(X, E^{\prime}\right)$.
2. If $\left(V_{\delta}\right)$ is a net of clopen subsets of X with ${\overline{V_{\delta}}}^{\beta_{0} X} \downarrow H \in \Omega_{\theta_{o}}$, then there exists a δ_{o} such that $m\left(V_{\delta}\right)=0$ for each $\delta \geq \delta_{o}$.
3. If ${\overline{V_{\delta}}}^{\beta_{o} X} \downarrow H \in \Omega_{\theta_{o}}$, then there exists a δ such that $m(V)=0$ for each clopen subset V of V_{δ}.
4. If $\left(V_{i}\right)_{i \in I}$ is a clopen partition of X, then there exists a finite subset J of I such that $m(V)=0$ for each clopen subset V of $\bigcup_{i \notin J} V_{i}$.

Proof: $\quad(1) \Rightarrow(2)$. Since

$$
\operatorname{supp}\left(m^{\beta_{o}}\right) \subset \theta_{o} X \subset \beta_{o} X \backslash H=\bigcup_{\delta}{\overline{V_{\delta}^{c}}}^{\beta_{o} X}
$$

there exists a δ_{o} such that $\operatorname{supp}\left(m^{\beta_{o}}\right) \subset{\overline{V_{\delta}}}^{\beta_{o} X}$. If now $\delta \geq \delta_{o}$, then $m\left(V_{\delta}\right)=$ $m^{\beta_{o}}\left({\overline{V_{\delta}}}^{\beta_{o} X}\right)=0$.
$(2) \Rightarrow(3)$. Suppose that, for each δ, there exists a clopen subset V of V_{δ} with $m(V) \neq 0$. Let now δ be given and let A be a clopen subset of V_{δ} such that $m(A) \neq 0$. For each γ in the index set, let $Z_{\gamma}=V_{\gamma} \cap A, W_{\gamma}=V_{\gamma} \backslash Z_{\gamma}$. The net $\left(W_{\gamma}\right)$ is decreasing
and $\cap{\overline{W_{\gamma}}}^{\beta_{0} X} \subset H$. By our hypothesis (2), there exists $\gamma \geq \delta$ such that $m\left(W_{\gamma}\right)=0$. If $B=A \cup W_{\gamma}$, then $V_{\gamma} \subset B \subset V_{\delta}$ and $m(B)=m(A)+m\left(W_{\gamma}\right)=m(A) \neq 0$. Let now \mathcal{F} be the family of all clopen subsets A of X with the following property: there are γ, δ, in the index set, with $V_{\gamma} \subset A \subset V_{\delta}$ and $m(A) \neq 0$. Then \mathcal{F} is downwards directed and $\bigcap_{F \in \mathcal{F}} \bar{F}^{\beta_{o} X}=H \in \Omega_{\theta_{o}}$. Since $m(F) \neq 0$ for each $F \in \mathcal{F}$, we got a contradiction.
$(3) \Rightarrow(4)$. For each finite subset J of I, set $W_{J}=\bigcup_{i \notin J} V_{i}$. Then ${\overline{W_{J}}}^{\beta_{o} X} \downarrow H \in \Omega_{\theta_{o}}$. By our hypothesis (3), there exists a finite subset J of I such that $m(V)=0$ for each clopen set V contained in W_{J}.
$(4) \Rightarrow(1)$. Let $z \notin \theta_{o} X$. There exists a clopen partition $\left(V_{i}\right)_{i \in I}$ of X such that $z \notin \bigcup_{i \in I} \bar{V}_{i}^{\beta_{0} X}$. By (4), there exists a finite subset J of I such that $m(V)=0$ for each clopen set V contained in $\bigcup_{1 \notin J} V_{i}$. Now $\operatorname{supp}\left(m^{\beta_{o}}\right)$ is contained in $\bigcup_{i \in J} \overline{V i}^{\beta_{o} X}$ and so $z \notin \operatorname{supp}\left(m^{\beta_{o}}\right)$. This clearly completes the proof.

Theorem 4.2. If $m \in \mathcal{M}_{\theta_{o}}\left(X, E^{\prime}\right)$, then every $f \in C(X, E)$ is m-integrable.
Proof: Let $f \in C(X, E)$ and $\epsilon>0$. There exists a $p \in c s(E)$ such that $m_{p}(X) \leq 1$. Let $\left(V_{i}\right)_{i \in I}$ be the clopen partition of X corresponding to the equivalence relation $x \sim y$ iff $p(f(x)-f(y)) \leq \epsilon$. In view of the preceding Theorem, there exists a finite subset J of I such that $m(V)=0$ for each clopen set V contained in $D=\bigcup_{i \notin J} V_{i}$. Consider the finite clopen partition $\mathcal{A}=\left\{V_{i}: i \in J\right\} \bigcup\{D\}$. If $A \in \mathcal{A}$, then for all clopen subsets V of A and all $x, y \in A$, we have

$$
|m(V)[f(x)-f(y)]| \leq p(f(x)-f(y)) \cdot m_{p}(A) \leq \epsilon
$$

This proves that f is m-integrable by [14], Theorem 7.1.
Next we will assume that E is polar and c-complete and we will look at the completion \hat{G}_{e} of the space

$$
G_{e}=\left(L\left(X, E^{\prime}\right), e\right)
$$

Since G_{e} is Hausdorff and polar, its completion coincides with the space of all linear functionals ϕ on $G_{e}^{\prime}=C(X, E)$ which are $\sigma\left(C(X, E), G_{e}\right)$-continuous on eequicontinuous subsets of $C(X, E)$, i.e. on the members of \mathcal{E} (by [16]). As we remarked in section 2 , on members of \mathcal{E}, the weak topology coincides with the topology of simple convergence. The topology of \hat{G}_{e} coincides with the topology of uniform convergence on the members of \mathcal{E}.

Theorem 4.3. Let E be polar and c-complete. If $m \in \mathcal{M}_{\theta_{o}}\left(X, E^{\prime}\right)$, then the map

$$
\phi_{m}: C(X, E) \rightarrow \mathbb{K}, \phi_{m}(f)=\int f d m
$$

belongs to \hat{G}_{e}.
Proof: Let $p \in \operatorname{cs}(E)$ be such that $m_{p}(X) \leq 1$ and let $B \in \mathcal{E}$. Define d on $X \times Y$ by

$$
d(x, y)=\sup _{f \in B} p(f(x)-f(y))
$$

Then d is a continuous ultrapseudometric on X. Let $\epsilon>0$ and let $\left(V_{i}\right)_{i \in I}$ be the clopen partition of X corresponding to the equivalence relation $x \sim y$ iff $d(x, y) \leq \epsilon$.

Let $\left(f_{\gamma}\right)$ be a net in B which converges pointwise to some $f \in B$. Since $m \in$ $\mathcal{M}_{\theta_{o}}\left(X, E^{\prime}\right)$, there exists a finite subset J of I such that $m(V)=0$ for each clopen subset of $W=\bigcup_{i \notin J} V_{i}$. Consider the finite clopen partition $\mathcal{A}=\left\{V_{i}: i \in J\right\} \cup\{W\}$ of X. If $g \in B$ and if x, y are in the same $A \in \mathcal{A}$, then

$$
|m(V)[g(x)-g(y)]| \leq p(g(x)-g(y)) \cdot m_{p}(A) \leq \epsilon .
$$

If $x_{i} \in V_{i}, i \in I$, we have that

$$
\mid \int g d m-\sum_{i \in J} m\left(V_{i}\right) g\left(x_{i} \mid \leq \epsilon\right.
$$

Since $f_{\gamma}(x) \rightarrow f(x)$, for all x, there exists a γ_{o} such that $p\left(f_{\gamma}\left(x_{i}\right)-f\left(x_{i}\right)\right) \leq \epsilon$ for all $\gamma \geq \gamma_{o}$ and all $i \in J$. If now $\gamma \geq \gamma_{o}$, then

$$
\left|\int f_{\gamma} d m-\sum_{i \in J} m\left(V_{i}\right) f_{\gamma}\left(x_{i}\right)\right| \leq \epsilon \quad \text { and } \quad\left|f d m-\sum_{i \in J} m\left(V_{i}\right) f\left(x_{i}\right)\right| \leq \epsilon
$$

Since

$$
\left|\sum_{i \in J} m\left(V_{i}\right)\left[f_{\gamma}\left(x_{i}\right)-f\left(x_{i}\right)\right]\right| \leq \max _{i \in J} p\left(f_{\gamma}\left(x_{i}\right)-f\left(x_{i}\right)\right) \cdot m_{p}(X) \leq \epsilon
$$

it follows that $\int f_{\gamma} d m \rightarrow \int f d m$, which shows that $\phi_{m} \in \hat{G}_{e}$.
Theorem 4.4. Let E be polar and c-complete and let $\phi \in \hat{G}_{e}$. Then, for each $s \in E$, there exists a $\mu_{s} \in M_{\theta_{o}}(X)$ such that $\phi(g s)=\int g d \mu_{s}$ for each $g \in C(X)$.

Proof: Let $s \in E$ and consider the linear functional

$$
\phi_{s}: C(X) \rightarrow \mathbb{K}, \phi_{s}(g)=\phi(g s)
$$

Let \mathcal{A} be an equicontinuous pointwise bounded subset of $C(X)$ and let $\left(g_{\gamma}\right)$ be a net in \mathcal{A} which converges pointwise to a $g \in \mathcal{A}$. The set $B=\{g s: g \in \mathcal{A}\}$ is in \mathcal{E}. If $f_{\gamma}=g_{\gamma} s, f=g s$, then $f_{\gamma} \rightarrow f$ pointwise. Since $\phi \in \hat{G}_{e}$, we have that $\phi\left(f_{\gamma}\right) \rightarrow \phi(f)$, i.e. $\phi_{s}\left(g_{\gamma}\right) \rightarrow \phi_{s}(g)$. In view of Theorem 8.9 in [15], there exists a $\mu_{s} \in M_{\theta_{o}}(X)$ such that $\phi(g s)=\int g d \mu_{s}$ for each $g \in C(X)$. Hence the result follows.

Theorem 4.5. Let E be a polar Fréchet space and let $\phi \in \hat{G}_{e}$. Then, there exists a $p \in \operatorname{cs}(E)$ and an $m \in M\left(X, E^{\prime}\right)$ such that:

1. for each $s \in E$, we have that $m s \in M_{\theta_{o}}(X)$ and $\phi(g s)=\int g d(m s)$ for each $g \in C(X)$.
2. $\quad\left\{f \in C(X, E):\|f\|_{p} \leq 1\right\} \subset\{f:|\phi(f)| \leq 1\}$.

Proof: In view of the preceding Theorem, for each $s \in E$, there exists a $\mu_{s} \in M_{\theta_{o}}(X)$ such that $\phi(g s)=\int g d \mu_{s}$ for each $g \in C(X)$. Let $\left(p_{n}\right)$ be an increasing sequence of continuous seminorms on E generating its topology, and let

$$
D=\{f \in C(X, E):|\phi(f)| \leq 1\}
$$

We claim that, there exists an n and $\epsilon>0$ such that

$$
\left\{f \in C(X, E):\|f\|_{p_{n}} \leq \epsilon\right\} \subset D
$$

Assume the contrary and let $0<|\lambda|<1$. For each n, there exists an f_{n} in $C(X, E)$ with $\left\|f_{n}\right\|_{p_{n}} \leq|\lambda|^{n}$ and $\left|\phi\left(f_{n}\right)\right|>1$. Then $f_{n} \rightarrow 0$ uniformly. Indeed, let k be given and let $\epsilon>0$. Choose $n_{o} \geq k$ such that $\left.\lambda\right|^{n}<\epsilon$ for $n \geq n_{o}$. Now, for $n \geq n_{o}$, we have that $\left\|f_{n}\right\|_{p_{k}} \leq\left\|f_{n}\right\|_{p_{n}} \leq|\lambda|^{n}<\epsilon$ and so $f_{n} \rightarrow 0$ uniformly. This, together with the fact that each f_{n} is continuous, implies that the set $B=\left\{f_{1}, f_{2}, \ldots\right\}$ is in \mathcal{E} and $f_{n} \rightarrow f$ pointwise. Since $\phi \in \hat{G}_{e}$, we should have that $\phi\left(f_{n}\right) \rightarrow 0$, a contradiction. This proves (2). Now $\left.\phi\right|_{C_{r c}(X, E)}$ is continuous with respect to the topology of uniform convergence. Hence, there exists an $m \in M\left(X, E^{\prime}\right)$ such that $\phi(f)=\int f d m$ for all $f \in C_{r c}(X, E)$. In particular, taking $f=\chi_{V} s$, where $V \in K(X)$ and $s \in E$, we have that

$$
m(V) s=\phi(f)=\int \chi_{V} d \mu_{s}=\mu_{s}(V)
$$

and thus $m s=\mu_{s} \in M_{\theta_{o}}(X)$. Hence the Theorem follows.
Theorem 4.6. Let E be a polar Fréchet space. Then the map

$$
m \mapsto \phi_{m}, \quad \phi_{m}(f)=\int f d m
$$

from $\mathcal{M}_{\theta_{o}}\left(X, E^{\prime}\right)$ to \hat{G}_{e}, is an algebraic isomorphism. Thus $\hat{G}_{e}=\mathcal{M}_{\theta_{o}}\left(X, E^{\prime}\right)$.
Proof: Let $\phi \in \hat{G}_{e}$. By the preceding Theorem, there exists an $m \in M\left(X, E^{\prime}\right)$ such that $m s \in M_{\theta_{o}}(X)$, for all $s \in E$, and $\phi(g s)=\int g d(m s)$ for each $g \in C(X)$. We will show that $m \in \mathcal{M}_{\theta_{o}}\left(X, E^{\prime}\right)$. To this end, consider a clopen partition $\left(V_{i}\right)_{i \in I}$ of X.
Claim : The set J of all $i \in I$, for which there exists a clopen subset A of V_{i} with $m(A) \neq 0$, is finite. Indeed, let $\left\{i_{1}, i_{2}, \ldots\right\}$ be an infinite sequence of distinct elements of J. For each k, there exists a clopen set $B_{k} \subset V_{i_{k}}$ such that $m\left(B_{k}\right) \neq 0$. Choose $s_{k} \in E$ with $\left|m\left(B_{k}\right) s_{k}\right|>1$. The set $V=\left(\bigcup_{k=1}^{\infty} B_{k}\right)^{c}$ is clopen. The function $g_{n}=\sum_{k=n}^{\infty} \chi_{B_{k}} s_{k}$ is continuous. It is easy to see that $B=\left\{g_{1}, g_{2}, \ldots\right\} \in \mathcal{E}$ and $g_{n} \rightarrow 0$ pointwise. Since $\phi \in \hat{G}_{e}$, we must have that $\phi\left(g_{n}\right) \rightarrow 0$. Let k_{o} be such that $\left|\phi\left(g_{n}\right)\right|<1$ if $n \geq k_{o}$. If $n \geq k_{o}$, then $\chi_{B_{n}} s_{n}=g_{n}-g_{n+1}$ and thus $\left|m\left(B_{n}\right) s_{n}\right|=\left|\phi\left(g_{n}\right)-\phi\left(g_{n+1}\right)\right|<1$, a contradiction. This proves that J is finite, $J=\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}$. Let $V=\bigcup_{i \notin J} V_{i}$ and let A be a clopen subset of V. Then $A=\bigcup_{i \notin J} V_{i} \cap A$. If $s \in E$, then $m s \in M_{\theta_{o}}(X) \subset M_{s}(X)$ and so $(m s)(A)=$ $\sum_{i \notin J} m\left(V_{i} \cap A\right) s=0$, i.e. $m(A) s=0$ for all $s \in E$, which means that $m(A)=0$. By Theorem 3.1, we have that $m \in \mathcal{M}_{\theta_{o}}\left(X, E^{\prime}\right)$. It remains to prove that $\phi(f)=\int f d m$ for all $f \in C(X, E)$. There exists a $p \in c s(E)$ such that

$$
\left\{f \in C(X, E):\|f\|_{p} \leq 1\right\} \subset\{f:|\phi(f)| \leq 1\} .
$$

If $|\lambda|>1$, then $m_{p}(X) \leq|\lambda|$. Let now $f \in C(X, E), \alpha$ a non-zero element of \mathbb{K} and let $\left(V_{i}\right)_{i \in I}$ be the clopen partition of X corresponding to the equivalence relation $x \sim y$ iff $p(f(x)-f(y)) \leq|\alpha|$. There exists a finite subset J of I such that $\bigcup_{i \in J} V_{i}$ is a support set for m. If $1 \in J$ and $x_{i} \in V_{i}$, then for each $x \in V_{i}$ and each clopen subset B of V_{i}, we have $\left|m(B)\left[f(x)-f\left(x_{i}\right)\right]\right| \leq|\lambda \alpha|$. Thus

$$
\left|f d m-\sum_{i \in J} m\left(V_{i}\right) f\left(x_{i}\right)\right| \leq|\lambda \alpha| .
$$

For $S \subset I$ finite, let

$$
g_{S}=\sum_{i \in S} \chi_{V_{i}} f\left(x_{i}\right), \quad g=\sum_{i \in I} \chi_{V_{i}} f\left(x_{i}\right)
$$

It is easy to see that the set

$$
B=\left\{g_{S}: S \subset I, S \text { finite }\right\} \cup\{g\}
$$

is in \mathcal{E} and that $g_{S} \rightarrow g$ pointwise. Thus

$$
\phi(g)=\lim _{S} \phi\left(g_{S}\right)=\lim _{S} \sum_{i \in S} m\left(V_{i}\right) f\left(x_{i}=\sum_{i \in I} m\left(V_{i}\right) f\left(x_{i}\right)=\sum_{i \in J} m\left(V_{i}\right) f\left(x_{i}\right) .\right.
$$

Since $\|g-f\|_{p} \leq|\alpha|$, it follows that $|\phi(g)-\phi(f)| \leq|\alpha|$ and so

$$
\left|\int f d m-\phi(f)\right| \leq \max \left\{\left|\int f d m-\phi(g)\right|,|\phi(g)-\phi(f)|\right\} \leq|\lambda \alpha|
$$

As α was arbitrary, we conclude that $\int f d m=\phi(f)$ and the result follows from this and from Theorem 3.3.

5 The Space $M_{b s}\left(X, E^{\prime}\right)$ as a Completion

Let $m \in M\left(X, E^{\prime}\right)$. For a bounded subset S of E and $V \in K(X)$, we define

$$
|m|_{S}(V)=\sup \{|m(A) s|: s \in S, A \in K(X), A \subset V\}
$$

Definition 5.1. An element m of $M\left(X, E^{\prime}\right)$ is said to be :

1. Strongly σ-additive if, for each sequence $\left(V_{n}\right)$ of clopen subsets of X which decreases to the empty set, we have that $m\left(V_{n}\right) \rightarrow 0$ in the strong dual E_{b}^{\prime} of E.
2. Strongly τ-additive if $m\left(V_{\delta}\right) \rightarrow 0$ in E_{b}^{\prime} when $V_{\delta} \downarrow \emptyset$.
3. Strongly separable if it is strongly σ-additive and, for each continuous ultrapseudometric d on X and each bounded subset S of E, there exists a d-closed, d-separable subset D of X such that $m(V) s=0$ for each $s \in S$ and each d-clopen set V which is disjoint from D

We will denote by $M_{b s}\left(X, E^{\prime}\right)$ the space of all strongly separable members of $M\left(X, E^{\prime}\right)$.

Theorem 5.2. Let $m \in M\left(X, E^{\prime}\right)$. Then :

1. m is strongly τ-additive iff, for each net $V_{\delta} \downarrow \emptyset$ and each bounded subset S of E we have that $|m|_{S}\left(V_{\delta}\right) \rightarrow 0$.
2. m is strongly σ-additive iff $|m|_{S}\left(V_{n}\right) \rightarrow 0$ for each bounded subset S of E and each sequence $V_{n} \downarrow \emptyset$.

Proof: 1). It is clear that the condition is sufficient. Conversely, assume that m is strongly τ-additive and that there exist a bounded subset S of E, an $\epsilon>0$ and a net $V_{\delta} \downarrow \emptyset, \delta \in \Delta$ such that $|m|_{S}\left(V_{\delta}\right)>\epsilon$ for all δ. Let $\delta \in \Delta$. There exist a clopen subset A of V_{δ} and an $s_{o} \in S$ such that $\left|m(A) s_{o}\right|>\epsilon$. For each element $\gamma \in \Delta$, let $Z_{\gamma}=V_{\gamma} \cap A, W_{\gamma}=V_{\gamma} \backslash Z_{\gamma}$. Then $W_{\gamma} \downarrow \emptyset$. By our hypothesis, there exists a $\gamma \geq \delta$ such that $\left|m\left(W_{\gamma}\right) s\right|<\epsilon$ for all $s \in E$. Let $B=A \cup W_{\gamma}$. Then $V_{\gamma} \subset B \subset V_{\delta}$ and $m(B)=m(A)+m\left(W_{\gamma}\right)$, which implies that $\left|m(B) s_{o}\right|=\left|m(A) s_{o}\right|>\epsilon$. Consider now the family \mathcal{F} of all clopen subset A of X with the following property: There are $\gamma \geq \delta$ in Δ, with $V_{\gamma} \subset A \subset V_{\delta}$ and $\sup _{s \in E}|m(A) s|>\epsilon$. Then $\mathcal{F} \downarrow \emptyset$. Since $\sup _{s \in S}|m(A) s|>\epsilon$, for all $A \in \mathcal{F}$, we arrived at a contradiction.
2. Assume that m is strongly σ-additive and that there exist a sequence $V_{n} \downarrow \emptyset$, a bounded subset S of E and an $\epsilon>0$ such that $|m|_{S}\left(V_{n}>\epsilon\right.$ for all n. As in the proof of (1), we get a sequence $n_{1}<n_{2}<\ldots$ of positive integers, a sequence $\left(s_{k}\right)$ in S and a sequence $\left(A_{k}\right)$ of clopen sets such that $V_{n_{k+1}} \subset A_{k} \subset V_{n_{k}}$ and $\left|m\left(A_{k}\right) s_{k}\right|>\epsilon$, for all k, which is a contradiction. This clearly completes the proof.

Theorem 5.3. Let (X, d) be an ultrametric space and let H be a uniformly τ additive subset of the dual space $M_{\tau}(X)$ of $\left(C_{b}(X), \beta\right)$. Then the support of H, i.e. the set

$$
\operatorname{supp}(H)=\bigcup_{m \in H} \operatorname{supp}(m),
$$

is separable.
Proof: For each finite subset Y of X each $\epsilon>0$, let $N(Y, \epsilon)=\{x: d(x, Y) \leq \epsilon\}$. Then $N(Y, \epsilon)$ is clopen and the family

$$
\{X \backslash N(Y, \epsilon): Y \quad \text { finite subset of } X\}
$$

is downwards directed to the empty set. Since H is uniformly τ-additive, given $\epsilon_{1}>0$, there exists a finite subset Y of X such that $\sup _{m \in H}|m|(X \backslash N(Y, \epsilon))<\epsilon_{1}$. For positive integers n, k, choose a finite subset $Y_{n, k}$ of X such that

$$
\sup _{m \in H}|m|\left(X \backslash N\left(Y_{n, k}, 1 / k\right)\right)<1 / n .
$$

Let

$$
D_{n}=\bigcup_{k}\left[X \backslash N\left(Y_{n, k}, 1 / k\right)\right], M=\bigcup_{n} X \backslash D_{n}, \quad F=\bar{M} .
$$

Then $X \backslash F \subset \cap D_{n}$. Let now $x \in X \backslash F$ and $m \in H$. For each n, choose a k such that $x \notin N\left(Y_{n, k}, 1 / k\right)$ and so $N_{m}(x) \leq|m|\left(X \backslash N\left(Y_{n, k}, 1 / k\right)\right)<1 / n$, which proves that $N_{m}(x)=0$. If B is a clopen subset of X disjoint from F, then (by [22]) we have $|m|(B)=\sup _{x \in B} N_{m}(x)=0$ and so $\operatorname{supp}(m) \subset F$. It follows that $\operatorname{supp}(H) \subset F$. Finally, $\operatorname{supp}(H)$ is separable. In fact, let $\epsilon>0$ and $x \in F$. There exists $y \in M$ such that $d(x, y)<\epsilon$. Let n be such that $y \notin D_{n}$. Choose $k>1 / \epsilon$. Since $y \in N\left(Y_{n, k}, 1 / k\right)$, there exists a $z \in Y_{n, k}$, with $d(y, z) \leq 1 / k<\epsilon$, and so $d(x, z)<\epsilon$. The set $Y=\bigcup_{n, k} Y_{n, k}$ is countable and $F \subset \bar{Y}$. Since \bar{Y} is separable, the same is true for the subset $\operatorname{supp}(H)$. This completes the proof.

Theorem 5.4. For an element m of $M\left(X, E^{\prime}\right)$, the following are equivalent :

1. $m s \in M_{s}(X)$, for each $s \in E$, and, for each clopen partition $\left(V_{i}\right)_{i \in I}$ of X, each bounded subset S of E and each $\epsilon>0$, there exists a finite subset J of I such that $|m|_{S}\left(V_{i}\right)<\epsilon$ for all $i \notin J$.
2. If $\left(V_{i}\right)_{i \in I}$ is a clopen partition of X, S a bounded subset of E and $\epsilon>0$, then there exists a finite subset J of I such that $|m|_{S}\left(\bigcup_{i \notin J} V_{i}\right) \leq \epsilon$.
3. If $\left(V_{\delta}\right)$ is a net of clopen subsets of X, with $\bar{V}_{\delta}^{\beta_{o} X} \downarrow Z \in \Omega_{u}$, and if S is a bounded subset of E, then $|m|_{S}\left(V_{\delta}\right) \rightarrow 0$.
4. If ${\overline{V_{\delta}}}^{\beta_{o} X} \downarrow Z \in \Omega_{u}$, then $m\left(V_{\delta}\right) \rightarrow 0$ in the strong dual of E.
5. If $\left(V_{i}\right)_{i \in I}$ is a clopen partition of X, then $m(X)=\sum_{i \in I} m\left(V_{i}\right)$, where the convergence of the sum is in the strong dual of E.
6. $m \in M_{b s}\left(X, E^{\prime}\right)$.

Proof: $(1) \Rightarrow(2)$. Let J be a finite subset of I such that $|m|_{S}\left(V_{i}\right)<\epsilon$ if $i \notin J$. Let A be a clopen subset of $D=\bigcup_{i \notin J} V_{i}$. Then $A=\bigcup_{i \notin J} A \cap V_{i}$. If $s \in S$, then $m s \in M_{s}(X)$ and so

$$
m(A) s=\sum_{i \notin J} m\left(V_{i} \cap A\right) s
$$

(by [12], Theorem 6.9). But, for $i \notin J$, we have $\left|m\left(V_{i} \cap A\right) s\right| \leq|m|_{S}\left(V_{i}\right)<\epsilon$. Thus $|m(A) s| \leq \epsilon$, which proves that $|m|_{S}(D) \leq \epsilon$.
$(2) \Rightarrow(3)$. There exists a clopen partition $\left(V_{i}\right)_{i \in I}$ of X such that

$$
Z \subset \beta_{o} X \backslash \bigcup_{i \in I} \bar{V}_{i}^{\beta_{o} X}
$$

Let S be a bounded subset of E and $\epsilon>0$. There exists a finite subset J of I such that $|m|_{S}\left(\bigcup_{i \notin J} V_{i}\right)<\epsilon$. There is a δ such that $\bigcup_{i \in J} \bar{V}_{i}^{\beta_{o} X} \subset{\overline{V_{\delta}^{c}}}^{\beta_{o} X}$, and so

$$
|m|_{S}\left(V_{\delta}\right) \leq|m|_{S}\left(\bigcup_{i \notin J} V_{i}\right)<\epsilon
$$

$(3) \Rightarrow(4)$. It is trivial.
(4) \Rightarrow (5). Let $\left(V_{i}\right)_{i \in I}$ be a clopen partition of X. For each finite subset J of I, let $W_{J}=\bigcup_{i \in J} V_{i}$ and $D_{J}=X \backslash W_{J}$. Then $m(X)-\sum_{i \in J} m\left(V_{i}\right)=m\left(D_{J}\right)$. Since $D_{J} \downarrow Z \in \Omega_{u}$, our hypothesis (4) implies that $m\left(D_{J}\right) \rightarrow 0$ in the strong dual of E. $(5) \Rightarrow(1)$. Let $\left(V_{i}\right)_{i \in I}$ be a clopen partition of X. Then $m(X)=\sum_{i \in I} m\left(V_{i}\right)$ in E_{b}^{\prime} and hence $(m s)(X)=\sum_{i \in I}(m s)\left(V_{i}\right)$, which proves that $m s \in M(X)$ (by [12], Theorem 6.9). Let now S be a bounded subset of E. For each i, there exists a clopen subset A_{i} of V_{i} and an $s_{i} \in S$ such that $\left|m\left(A_{i}\right) s_{i}\right| \geq|m|_{S}\left(V_{i}\right) / 2$. The set $A=\left(\bigcup_{i \in I} B_{i}\right)^{c}$ is clopen. By our hypothesis (5), we have that

$$
m(X)=m(A)+\sum_{i \in I} m\left(A_{i}\right)
$$

in E_{b}^{\prime}. Given $\epsilon>0$, there exists a finite subset J_{o} of I such that

$$
\sup _{s \in S}\left|m\left(\bigcup_{i \notin J} A_{i}\right) s\right|<\epsilon / 2
$$

for each finite subset J of I containing J_{o}. It follows from this that, for each $i \notin J_{o}$, we have that $\left.\mid m\left(A_{i}\right) s_{i}\right) \mid<\epsilon / 2$ and hence $|m|_{S}\left(V_{i}\right)<\epsilon$.
$(3) \Rightarrow(6)$. Let $V_{n} \downarrow \emptyset$. Then ${\overline{V_{n}}}^{\beta_{o} X} \downarrow Z \in \Omega_{1} \subset \Omega_{u}$, Hence $|m|_{S}\left(V_{n}\right) \rightarrow 0$, which proves that m is strongly σ-additive. Let now d be a continuous ultrapseudometric on X and S a bounded subset of E. If ${\overline{V_{\delta}}}^{\beta_{o} X} \downarrow Z \in \Omega_{u}$, then

$$
\sup _{m s \in S}|m s|\left(V_{\delta}\right)=|m|_{S}\left(V_{\delta}\right) \rightarrow 0
$$

Also, if $\|m\|_{p} \leq 1$, then

$$
\sup _{s \in S}\|m s\| \leq m_{p}(X) \cdot \sup _{s \in S} p(s)<\infty
$$

It follows that the set $F=\{m s: s \in S\}$ is a β_{e}-equicontinuous subset of the dual space $M_{s}(X)$ of $\left(C_{b}(X), \beta_{e}\right)$ (by [12], Theorems 6.13 and 6.14). Hence the set $\Phi=T_{d}^{\star}(F)$ is a β-equicontinuous subset of the dual space $M_{\tau}\left(X_{d}\right)$ of $\left(C_{b}\left(X_{d}, \beta\right)\right.$, which implies that the set $D=\operatorname{supp}(\Phi)$ is separable, by Theorem 4.3. Now the set $A=\pi_{d}^{-1}(D)$ is d-closed and d-separable. If V is a d-clopen subset of $X \backslash A$, then $\pi_{d}(V)$ is a clopen subset of X_{d} which is disjoint from D. If $s \in S$, then $m s \in F$ and so $\mu_{s}=T_{d}^{\star}(m s) \in \Phi$. Thus $m(V) s=\mu_{s}\left(\pi_{d}(V)\right)=0$, which completes the proof of the implication (3) \rightarrow (6).
$(6) \Rightarrow(5)$. Let $\left(V_{i}\right)_{i \in I}$ be a clopen partition of X. Define

$$
d: X \times X \rightarrow \mathbf{R}, \quad d(x, y)=\sup _{i \in I}\left|\chi_{V_{i}}(x)-\chi_{V_{i}}(y)\right| .
$$

Then d is a continuous ultrapseudometric on X. Let S be a bounded subset of E and let A be a d-closed, d-separable subset of X such that $m(V) s=0$ for each $s \in S$ and each d-clopen set V disjoint from A. As A is d-separable, there exists a sequence $\left(i_{n}\right)$ in I such that $A \subset B=\bigcup_{n} V_{i_{n}}$. Now B is d-clopen. Since m is strongly σ-additive, we have that

$$
m(X) s=m\left(B^{c}\right) s+\sum_{k=1}^{\infty} m\left(V_{i_{k}}\right) s=\sum_{k=1}^{\infty} m\left(V_{i_{k}}\right) s=\sum_{i \in I} m\left(V_{i}\right) s
$$

uniformly for $s \in S$. Thus $m(X)=\sum_{i \in I} m\left(V_{i}\right)$ in E_{b}^{\prime} and the result follows.
Theorem 5.5. Let $m \in M_{b s}\left(X, E^{\prime}\right)$. Then:

1. Every $f \in C_{b}(X, E)$ is m-integrable.
2. If E is polar and c-complete, then the map

$$
u_{m}: C_{b}(X, E) \rightarrow \mathbb{K}, \quad u_{m}(f)=\int f d m
$$

is a member of the completion \hat{G}_{b} of the space $G_{b}=\left(L\left(X, E^{\prime}\right), e_{b}\right)$.

Proof: (1). Let $p \in c s(E)$ be such that $m_{p}(X) \leq 1$ and let $\epsilon>0$. Let $\left(V_{i}\right)_{i \in I}$ be the clopen partition of X corresponding to the equivalence relation $x \sim y$ iff $p(f(x)-f(y)) \leq \epsilon$. If $S=f(X)$, then there exists a finite subset J of I such that $|m|_{S}(D) \leq \epsilon$, where $D=\bigcup_{i \notin J} V_{i}$. Consider the finite clopen partition $\mathcal{F}=\left\{V_{i}: i \in J\right\} \cup\{D\}$ of X. If $A \in \mathcal{F}, x, y \in A$ and V a clopen subset of A, then $|m(V)[f(x)-f(y)]| \leq \epsilon$. In view of [14], Theorem 7.1, it follows that f is m-integrable.
(2. Assume that E is polar and c-complete. Then $G_{b}^{\prime}=C_{b}(X, E)$. We need to show that $u_{m} \in \hat{G}_{b}$. Let $B \in \mathcal{E}_{b}$. The set $S=B(X)$ is bounded. Define d on $X \times X$ by

$$
d(x, y)=\sup _{f \in B} p(f(x)-f(y))
$$

and let $\left(V_{i}\right)_{i \in I}$ be the clopen partition of X corresponding to the equivalence relation $x \sim y$ iff $d(x, y) \leq \epsilon$, where ϵ is a given positive number. Let $\left(f_{\gamma}\right)$ be a net in B converging pointwise to some $f \in B$. There exists a finite subset J of I such that $|m|_{S}\left(\bigcup_{1} \neq J, V_{i}\right)<\epsilon$. Let $x_{i} \in V_{i}, i \in J$. As in the proof of Theorem 3.3, it follows that

$$
\left|\int g d m-\sum_{i \in J} m\left(V_{i}\right) g\left(x_{i}\right)\right| \leq \epsilon
$$

for all $g \in B$. Let γ_{o} be such that $p\left(f_{\gamma}\left(x_{i}\right)-f\left(x_{i}\right)\right)<\epsilon$ for all $i \in J$ and all $\gamma \geq \gamma_{o}$. As in the proof of Theorem 3.3, it follows that $\left|\int f_{\gamma} d m-\int f d m\right| \leq \epsilon$ for all $\gamma \geq \gamma_{o}$. This proves that $u_{m} \in \hat{G}_{b}$ and the result follows.

Theorem 5.6. Let E be a polar Fréchet space. Then the map

$$
m \mapsto u_{m}, \quad u_{m}(f)=\int f d m
$$

from $M_{b s}\left(X, E^{\prime}\right)$ to \hat{G}_{b}, is an algebraic isomorphism. Thus the completion of G_{b} is the space $M_{b s}\left(X, E^{\prime}\right)$ equipped with the topology of uniform convergence on the members of \mathcal{E}_{b}.

Proof: It only remains to show that every element of \hat{G}_{b} is of the form u_{m} for some $m \in M_{b s}\left(X, E^{\prime}\right)$. So, let $u \in \hat{G}_{b}$. If \mathcal{A} is a uniformly bounded equicontinuous subset of $C_{b}(X)$ and $s \in E$, then the set $B=\mathcal{A} s=\{g s: g \in \mathcal{A}\}$ is a member of \mathcal{E}_{b}. Let

$$
u_{s}: C_{b}(X) \rightarrow \mathbb{K}, \quad u_{s}(g)=u(g s)
$$

and let $\left(g_{\gamma}\right)$ be a net in \mathcal{A} which converges pointwise to some $g \in \mathcal{A}$. If $f_{\gamma}=g_{\gamma} s, f=$ $g s$, then $f_{\gamma} \rightarrow f$ pointwise and so $u_{s}\left(g_{\gamma}\right)=u\left(f_{\gamma}\right) \rightarrow u(f)=u_{s}(g)$. In view of [15], Theorem 7.6, there exists a $\mu_{s} \in M_{s}(X)$ such that $u_{s}(g)=\int g d \mu_{s}$ for all $g \in C_{b}(X)$. Using an argument analogous to the one used in the proof of Theorem, we get that there exists a $p \in c s(E)$ such that $|u(f)| \leq 1$ if $\|f\|_{p} \leq 1$. Also there exists an $m \in M_{p}\left(X, E^{\prime}\right)$ such that $m s=\mu_{s}$ for all $s \in E$.
Claim I. If $g \in C_{b}(X, E)$ is of he form $g=\sum_{i \in I} \chi_{V_{i}} s_{i}$, where $\left(V_{i}\right)_{i \in I}$ is a clopen partition of X, then $u(g)=\sum_{i \in I} m\left(V_{i}\right) s_{i}$. Indeed, for $J \subset I$ finite, let $h_{J}=$ $\sum_{i \in J} \chi_{V_{i}} s_{i}$. Then $B=\left\{h_{J}: J \quad\right.$ finite $\}$ is in \mathcal{E}_{b} and $h_{J} \rightarrow g$ pointwise, which implies that

$$
u(g)=\lim u\left(h_{J}\right)=\lim _{J} \sum_{i \in J} m\left(V_{i}\right) s_{i}=\sum_{i \in I} m\left(V_{i}\right) s_{i} .
$$

Claim II. $m \in M_{b s}\left(X, E^{\prime}\right)$. In fact, let $\left(A_{i}\right)_{i \in I}$ be a clopen partition of X and let S be a bounded subset of E. For each $i \in I$, there exist a clopen subset B_{i} of A_{i} and an $s_{i} \in S$ such that $\left|m\left(B_{i}\right) s_{i}\right| \geq|m|_{S}\left(A_{i}\right) / 2$. By claim I,

$$
u\left(\sum_{i \in I} \chi_{B_{i}} s_{i}\right)=\sum_{i \in I} m\left(B_{i}\right) s_{i} .
$$

Thus, given $\epsilon>0$, there exists a finite subset J of I such that $\left|m\left(B_{i}\right) s_{i}\right|<\epsilon / 2$ if $1 \notin J$. But then, for $1 \notin J$, we have that $|m|_{S}\left(B_{i}\right)<\epsilon$. This, together with the fact that $m s \in M_{s}(X)$ for all $s \in E$, implies that $m \in M_{b s}\left(X, E^{\prime}\right)$.
Claim III. If g is as in claim I, then $u(g)=\int g d m$. In fact, let $S=g(X)$ and $\epsilon>0$. Since $m \in M_{b s}\left(X, E^{\prime}\right)$ and $u(g)=\sum_{i \in I} m\left(V_{i}\right) s_{i}$, there exists a finite subset J of I such that $|m|_{S}\left(V^{c}\right)<\epsilon$ and $\left|u(g)-\sum_{i \in J} m\left(V_{i}\right) s_{i}\right|<\epsilon$, where $V=\bigcup_{i \in J} V_{i}$. If $x \in V^{c}$ and A a clopen subset of V^{c}, then $|m(A) g(x)|<\epsilon$. This implies that $\left|\int_{V^{c}} g d m\right| \leq \epsilon$. Also, $\int_{V} g d m=\sum_{i \in J} m\left(V_{i}\right) s_{i}$. Thus

$$
\left|u(g)-\int g d m\right| \leq \max \left\{\left|u(g)-\int_{V} g d m\right|, \quad\left|\int_{V^{c}} g d m\right|\right\} \leq \epsilon
$$

and hence $u(g)=\int g d m$ since $\epsilon>0$ was arbitrary.
Claim IV. $u(f)=\int f d m$ for all $f \in C_{b}(X, E)$. Indeed, let $\epsilon>0$ and choose a $\lambda \in \mathbb{K}$ with $|\lambda| \cdot m_{p}(X) \leq \epsilon, 0<|\lambda|<\epsilon$. Let $\left(V_{i}\right)_{i \in I}$ be the clopen partition of X corresponding to the equivalence relation $x \sim y$ iff $p(f(x)-f(y)) \leq|\lambda|$. Let $x_{i} \in V_{i}$, $g=\sum_{i \in I} \chi_{V_{i}} f\left(x_{i}\right.$. Then $\|f-g\|_{p} \leq|\lambda|$ and hence $|u(f-g)| \leq|\lambda|$. Also

$$
\left|u(f)-\int f d m\right| \leq \max \left\{|u(f-g)|, \quad\left|\int(g-f) d m\right|\right\} \leq \epsilon
$$

Thus $u(f)=\int f d m$ since $\epsilon>0$ was arbitrary. This completes the proof.

$6 M_{s}\left(X, E^{\prime}\right)$ as a Completion

We denote by $M_{s}\left(X, E^{\prime}\right)$ the space of all $m \in M\left(X, E^{\prime}\right)$ for which $m s \in M_{s}(X)$ for all $s \in E$.

Theorem 6.1. Assume that E is polar and let $m \in M\left(X, E^{\prime}\right)$ be such that, for each $s \in E$ and each $g \in C_{b}(X)$, the function $g s$ is m-integrable. Then every $f \in C_{c o}(X, E)$ is m-integrable.

Proof: Let p be a polar continuous seminorm on E such that $\|m\|_{p} \leq 1$ and let $f \in C_{c o}(X, E)$.
Claim : For each $\epsilon>0$, there are $g_{1}, g_{2}, \ldots, g_{n}$ in $C_{b}(X)$ and $s_{1}, s_{2}, \ldots, s_{n}$ in E such that $\|f-h\|_{p} \leq \epsilon$, where $h=\sum_{k=1}^{n} g_{k} s_{k}$. In fact, the set $Z=f(X)$ is compactoid in E. Since E is polar, it has the approximation property. Thus, there exists a continuous linear map $\phi: E \rightarrow E$, of finite rank, such that $p(s-\phi(s)) \leq \epsilon$ for all $s \in Z$. Let $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime} \in E^{\prime}$ and $s_{1}, s_{2}, \ldots, s_{n} \in E$ be such that $\phi(s)=$ $\sum_{k=1}^{n} x_{k}^{\prime}(s) s_{k}$, for all $s \in E$. If $g_{k}=x_{k}^{\prime} \circ f$ and $h=\sum_{k=1}^{n} g_{k} s_{k}$, then $\|f-h\|_{p} \leq \epsilon$, which proves our claim.
In view of our hypothesis, h is m-integrable and so (by [14], Theorem 7.1) there exists a clopen partition $\left\{A_{1}, A_{2} \ldots, A_{N}\right\}$ of X such that, if $x, y \in A_{k}$, then $\mid m(B)[h(x)-$
$h(y)] \mid \leq \epsilon$ for all clopen subsets B of A_{k}. For B a clopen subset of A_{k} and $x \in A_{k}$, we have

$$
|m(B)[f(x)-h(x)]| \leq m_{p}(X) \cdot p(f(x)-h(x)) \leq \epsilon
$$

Thus, for $B \subset A_{k}$ and $x, y \in A_{k}$, we have $|m(B)[f(x)-f(y)]| \leq \epsilon$. In view of [14], Theorem 7.1, it follows that f is m-integrable.

Theorem 6.2. Assume that E is polar and c-complete and let $G_{c o}=\left(L\left(X, E^{\prime}\right), e_{c o}\right)$. If $m \in M_{s}\left(X, E^{\prime}\right)$, then the map

$$
v_{m}: C_{c o}(X, E) \rightarrow \mathbb{K}, v_{m}(f)=\int f d m
$$

is a member of the completion $\hat{G_{c o}}$ of $G_{c o}$.
Proof: For each $s \in E$, we have that $m s \in M_{s}(X)$ and thus every $g \in C_{b}(X)$ is $(m s)$-integrable. In view of the preceding Theorem, every $f \in C_{c o}(X, E)$ is m integrable. Let $B \in \mathcal{E}_{c o}$. We may assume that B is absolutely convex. The set $Z=B(X)$ is compactoid. Let $p \in c s(E)$ be polar and such that $\|m\|_{p} \leq 1$ and let $\epsilon>0$. There are $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime} \in E^{\prime}$ and $s_{1}, s_{2}, \ldots, s_{n} \in E$ such that

$$
p\left(s-\sum_{k=1}^{n} x_{k}^{\prime}(s) s_{k}\right)<\epsilon
$$

for all $s \in Z$. Let now $\left(f_{\gamma}\right)$ be a net in B, which converges pointwise to the zero function, and let $h_{\gamma}^{k}=x_{k}^{\prime} \circ f_{\gamma}$. The set $\mathcal{A}_{k}=\left\{x_{k}^{\prime} \circ g: g \in B\right\}$ is uniformly bounded and equicontinuous. Moreover, $h_{\gamma}^{k} \rightarrow 0$ pointwise. Since $m s_{k} \in M_{s}(X)$, it follows that $\int h_{\gamma}^{k} d\left(m s_{k}\right) \rightarrow 0$, by [15], Theorem 7.6. If $g_{\gamma}=\sum_{k=1}^{n} h_{\gamma}^{k} s_{k}$, then $\int g_{\gamma} d m \rightarrow 0$. Also

$$
\left|\int\left(f_{\gamma}-g_{\gamma}\right) d m\right| \leq\left\|f_{\gamma}-h_{\gamma}\right\|_{p} \cdot m_{p}(X) \leq \epsilon
$$

Thus, there exists γ_{o} such that $\left|\int f_{\gamma} d m\right| \leq \epsilon$ for all $\gamma \geq \gamma_{o}$. This proves that $v_{m} \in \hat{G_{c o}}$.

Theorem 6.3. Let E be polar and c-complete and let $v \in \hat{G_{c o}}$. Then :

1. For each $s \in E$, there exists a $\mu_{s} \in M_{s}(X)$ such that $v(g s)=\int g d \mu_{s}$ for all $g \in C_{b}(X)$.
2. v is sequentially continuous with respect to the topology of uniform convergence on $C_{c o}(X, E)$.

Proof: (1). If \mathcal{A} is a uniformly bounded equicontinuous subset of $C_{b}(X)$, then, for each $s \in E$, the set $\mathcal{A} s=\{g s: g \in \mathcal{A}\}$ is in $\mathcal{E}_{c o}$. As in the proof of Theorem 4.4, there exists a $\mu_{s} \in M_{s}(X)$ such that $v(g s)=\int g d \mu_{s}$ for all $g \in C_{b}(X)$.
(2) Let $\left(f_{n}\right)$ be a sequence in $C_{c_{o}}(X, E)$ which is uniformly convergent to the zero function. If $p \in c s(E)$ and $V=\{s \in E: p(s) \leq 1\}$, then there exists a k such that $f_{n}(X) \subset V$ for all $n>k$. Since the set $\bigcup_{n=1}^{k} f_{n}(X)$ is compactoid, it follows that the set $\bigcup_{n=1}^{\infty} f_{n}(X)$ is compactoid. Hence the set $B=\left\{f_{n}: n \in \mathbf{N}\right\}$ is in $\mathcal{E}_{c o}$. Also $f_{n} \rightarrow 0$ pointwise and hence $v\left(f_{n}\right) \rightarrow 0$. Thus the result follows.

Theorem 6.4. Let E be a polar Fréchet space. Then the map $m \mapsto v_{m}$, from $M_{s}\left(X, E^{\prime}\right)$ to $\hat{G}_{c o}$, is an algebraic isomorphism. Therefore the completion of $G_{c o}$ is the space $M_{s}\left(X, E^{\prime}\right)$ equipped with the topology of uniform convergence on the members of $\mathcal{E}_{c o}$.

Proof : Let $v \in \hat{G_{c o}}$. Since E is metrizable, the topology of uniform convergence on $C_{c o}(X, E)$ is metrizable. By the preceding Theorem, there exists a continuous seminorm p on E such that

$$
\left\{f \in C_{c o}(X, E):\|f\|_{p} \leq 1\right\} \subset\{f:|v(f)| \leq 1\}
$$

Now $\left.v\right|_{C_{r c}(X, E)}$ is continuous with respect to the topology of uniform convergence and hence there exists a $m \in M\left(X, E^{\prime}\right)$ such that $\int f d m=v(f)$ for all $f \in C_{r c}(X, E)$. It is easy to see that $m s=\mu_{s}$, for all $s \in E$, and so $m \in M_{s}\left(X, E^{\prime}\right)$. As we have seen in the proof of Theorem 5.1, the space F spanned by the functions $g s, s \in E$ and $g \in C_{b}(X)$, is dense in $C_{c o}(X, E)$, with respect to the topology τ_{u} of uniform convergence. Since both v and v_{m} are τ_{u}-continuous and they coincide on F, it follows that $v=v_{m}$ on $C_{c o}(X, E)$. This clearly completes the proof.

References

[1] J. Aguayo, A. K. Katsaras and S. Navarro, On the dual space for the strict topology β_{1} and the space $\mathrm{M}(\mathrm{X})$ in function spaces, Cont. Math. vol. 384 (2005), 15-37.
[2] J. Aguayo, N. de Grande-de Kimpe and S. Navarro, Strict locally convex topologies on $B C(X, \mathbb{K})$, Lecture Notes in Pure and Applied Mathematics, v. 192, Marcel Dekker, New York (1997), 1-9.
[3] J. Aguayo, N. de Grande-de Kimpe and S. Navarro, Zero-dimensional pseudocompact and ultraparacompact spaces, Lecture Notes in Pure and Applied Mathematics, v. 192, Marcel Dekker, New York (1997),11-37.
[4] J. Aguayo, N. de Grande-de Kimpe and S. Navarro, Strict topologies and duals in spaces of functions, Lecture Notes in Pure and Applied Mathematics, v. 207, Marcel Dekker, New York (1999), 1-10.
[5] G. Bachman, E. Beckenstein, L. Narici and S. Warner, Rings of continuous functions with values in a topological field, Trans. Amer. Math. Soc. 204 (1975), 91-112.
[6] N. de Grande-de Kimpe and S. Navarro, Non-Archimedean nuclearity and spaces of continuous functions, Indag. Math., N.S. 2(2)(1991), 201-206.
[7] W. Govaerts, Locally convex spaces of non-Archimedean valued functions, Pacific J. of Math., vol. 109, no 2 (1983), 399-410.
[8] A. K. Katsaras, Duals of non-Archimedean vector-valued function spaces, Bull. Greek Math. Soc. 22 (1981), 25-43.
[9] A. K. Katsaras, The strict topology in non-Archimedean vector-valued function spaces, Proc. Kon. Ned. Akad. Wet. A 87 (2) (1984), 189-201.
[10] A. K. Katsaras, Strict topologies in non-Archimedean function spaces, Intern. J. Math. and Math. Sci. 7 (1), (1984), 23-33.
[11] A. K. Katsaras, On the strict topology in non-Archimedean spaces of continuous functions, Glasnik Mat. vol 35 (55) (2000), 283-305.
[12] A. K. Katsaras, Separable measures and strict topologies on spaces of nonArchimedean valued functions, in : P-adic Numbers in Number Theory, Analytic Geometry and Functional Analysis, edited by S. Caenepeel, Bull. Belgian Math., (2002), 117-139.
[13] A. K. Katsaras, Strict topologies and vector measures on non-Archimedean spaces, Cont. Math. vol. 319 (2003), 109-129.
[14] A. K. Katsaras, Non-Archimedean integration and strict topologies, Cont. Math. vol. 384 (2005), 111-144.
[15] A. K. Katsaras, P-adic measures and p-adic spaces of continuous functions, Technical Report, Dept. of Math., Univ. of Ioannina, Greece, no 15, December 2005, 51-112.
[16] A. K. Katsaras The non-Archimedean Grothendieck's completeness theorem, Bull. Inst. Math. Acad. Sinica 19 (1991), 351-354.
[17] A. K. Katsaras and A. Beloyiannis, Tensor products in non-Archimedean weighted spaces of continuous functions, Georgian J. Math. Vol. 6, no 1 (1994), 33-44.
[18] A. K. Katsaras and A. Beloyiannis, On the topology of compactoid convergence in non-Archimedean spaces, Ann. Math. Blaise Pascal, Vol. 3(2) (1996), 135153.
[19] C. Perez-Garcia, P-adic Ascoli theorems and compactoid polynomials, Indag. Math. N. S. 3 (2) (1993), 203-210.
[20] J. B. Prolla, Approximation of vector-valued functions, North Holland Publ. Co., Amsterdam, New York, Oxford, 1977.
[21] W. H. Schikhof, Locally convex spaces over non-spherically complete fields I, II, Bull. Soc. Math. Belg., Ser. B, 38 (1986), 187-224.
[22] A. C. M. van Rooij, Non-Archimedean Functional Analysis, New York and Bassel, Marcel Dekker, 1978.

Department of Mathematics, University of Ioannina, 45110 Ioannina, Greece e-mail : akatsar@cc.uoi.gr
Departamento de Matemática, Universidad de Santiago, Santiago, Chile.
e-mail : snavarro@fermat.usach.cl

