
Comparison of some notions of Ck-maps in

multi-variable non-archimedian analysis

Helge Glöckner∗

Abstract

Various definitions of Ck-maps on open subsets of finite-dimensional vector
spaces over a complete valued field have been proposed in the literature. We
show that the Ck-maps considered by Schikhof and De Smedt coincide with
those of Bertram, Glöckner and Neeb. By contrast, Ludkovsky’s Ck-maps
need not be Ck in the former sense, at least in positive characteristic. We
also compare various types of Hölder differentiable maps on finite-dimensional
and metrizable spaces.

1 Introduction

Various concepts of Ck-maps on subsets of finite-dimensional vector spaces have
been used in the literature on non-archimedian analysis. Schikhof’s textbook [18]
gave a comprehensive discussion of the single-variable calculus of Ck-maps over a
complete ultrametric field K, and suggested a definition of multi-variable Ck-maps
(in §84), which was then elaborated by De Smedt [4]. Ludkovsky introduced a
notion of Ck-map between open subsets of locally convex spaces over a finite exten-
sion K of Qp (see [13, Definition 2.3] and [14, Part I, Definition 2.3] for the case of
Banach spaces, [14, Part II, Remark 4.4] for the general case). Recently, Bertram,
Glöckner and Neeb [2] introduced a notion of Ck-map between open subsets of arbi-
trary (Hausdorff) topological vector spaces over a (non-discrete) topological field K.
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While the definition of Ck-maps by Schikhof and De Smedt is based on the exis-
tence of continuous extensions to certain partial difference quotients, the definition
of Bertram et al. and Ludkovsky’s definition are based on continuous extendibility
of certain iterated directional difference quotients. The primary goal of this paper is
to compare these notions of Ck-maps, and some related concepts. To describe our
main results, let E and F be topological vector spaces over a topological field K,
k ∈ N0, and f : U → F be a map on an open set U ⊆ E. We start with a special
case of Theorem 3.1, which generalizes a result for functions of a single variable
obtained in [2, Proposition 6.9].

Theorem A. If E = Kd for some d ∈ N, then f is Ck in the sense of Bertram et
al. if and only if f is Ck in the sense of Schikhof and De Smedt.

If K is a valued field, then variants of the two approaches just discussed can be
used to define k times Hölder differentiable maps with Hölder exponent σ ∈ ]0, 1]
(Ck,σ-maps, for short). As a special case of Theorem 3.1, we have:

Theorem B. If E = Kd for some d ∈ N, then f is Ck,σ in the sense of Bertram et
al. if and only if f is Ck,σ in the sense of Schikhof and De Smedt.

By contrast, the mappings introduced by S. V. Ludkovsky differ from the preceding
ones, if his definition is used for fields of positive characteristic. We show by example
(see Theorem 4.7):

Theorem C. For each local field K of positive characteristic, there exists a map
f : O → K on O := {z ∈ K : |z| ≤ 1} which is C∞ in Ludkovsky’s sense, but not C2

in Schikhof ’s sense.

We also provide alternative characterizations of Ck,σ-maps (in the sense of Bertram
et al.) on open subsets of metrizable spaces, for σ ∈ ]0, 1]. Theorem 5.1 establishes
the following characterization. It is our technically most difficult result, and its
proof relies heavily on a tool of convenient differential calculus [12], which has been
adapted to non-archimedian analysis in [8].

Theorem D. If K is R or an ultrametric field and E is metrizable, then f is Ck,σ

if and only if f ◦ γ : Kk+1 → F is Ck,σ, for each smooth map γ : Kk+1 → U .

Note that neither E nor F need to be locally convex here. An analogous char-
acterization of Ck-maps was given earlier in [2, Theorem 12.4]. As a consequence
of Theorem D, the simplified description of Ck,σ-maps on finite-dimensional spaces
via partial difference quotients can also be used to deal with Hölder differentiable
maps on metrizable spaces. This may be useful on the way towards ultrametric (and
non-locally convex) analogues of Boman’s Theorem (cf. [3, Theorem 2] and [12, The-
orem 12.8]), which characterizes Ck,σ-maps on open subsets of finite-dimensional (or
metrizable) real locally convex spaces as those maps which are Ck,σ along smooth
curves. While the preceding result provided a reduction to finite-dimensional do-
mains, our next result (Theorem 6.6) reduces to the case of a one-dimensional range.

Theorem E. If K 6= C is locally compact, E is metrizable and F is locally convex
and Mackey complete, then f is Ck,σ if and only if f is weakly Ck,σ, i.e., λ◦f : U → K
is Ck,σ, for each continuous linear functional λ : F → K.
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We remark that yet another approach to Ck-maps of several variables has been pro-
posed by De Smedt in [5]. The C1-maps in the sense of [5] coincide with the strictly
differentiable maps defined in [9]. It is known that strictly differentiable maps on
open subsets of Kn coincide with C1-maps in the sense of Bertram et al., for each
complete valued field K (see [9, Proposition C.1]).

The present studies are part of a larger project, the goal of which is to transfer
the main ideas of infinite-dimensional real differential calculus and non-linear func-
tional analysis into non-archimedian analysis (and analysis over arbitrary topological
fields). A survey of the results obtained so far, with applications to Lie groups and
dynamical systems, can be found in [7].

2 Main concepts, terminology and notation

In this section, we compile terminology and notation concerning differential calculus
over topological fields, together with basic facts. Most of these facts are easy to take
on faith, and we recommend to skip the proofs on a first reading. If desired, the
proofs can be looked up in Appendix A.

All topological fields occurring in this article are assumed Hausdorff and non-discrete;
all topological vector spaces are assumed Hausdorff. Given a field K, as usual we
write K× := K \ {0} for its group of invertible elements. A valued field is a field K,
equipped with an absolute value |.| : K → [0,∞[ which defines a non-discrete topol-
ogy on K. If |.| satisfies the ultrametric inequality, we call (K, |.|) an ultrametric
field. Totally disconnected, locally compact topological fields will be referred to as
local fields. It is well known that each locally compact field admits an absolute
value defining its topology. We fix such an absolute value, and thus consider K as
a valued field. On R and C, we shall always use the usual absolute value. We write
N = {1, 2, . . .} and N0 := N ∪ {0}.

Ck-maps in the sense of Bertram, Gl öckner and Neeb

We recall the approach to Ck-maps between open subsets of topological vector spaces
over a topological field developed in [2] (and its extension to maps on non-open
domains from [9]). More information concerning this approach can be found in the
survey [7]. Cf. [1] for applications of the corresponding differential calculus over
topological rings in differential geometry. We are mostly interested in mappings on
open domains, but some results will hold more generally.

Let E and F be topological vector spaces over a topological field K and f : U → F
be a map, defined on a subset U ⊆ E with dense interior. Then the directional
difference quotient

f ]1[(x, y, t) :=
f(x + ty)− f(x)

t

makes sense for all (x, y, t) in the subset

U ]1[ := {(x, y, t) ∈ U × E ×K× : x + ty ∈ U}
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of E × E × K. To define directional derivatives, we need to allow also the value
t = 0. Hence, we consider

U [1] := {(x, y, t) ∈ U × E ×K : x + ty ∈ U} .

Then U [1] = U ]1[ ∪ (U × E × {0}), as a disjoint union. If U is open, then U [1] is
an open subset of the topological K-vector space E[1] = E × E ×K. In the general
case, U [1] ⊆ E[1] has dense interior. Recursively, we define U [k] := (U [1])[k−1] and
U ]k[ := (U ]1[)]k−1[ for 2 ≤ k ∈ N. Then U ]k[ is dense in U [k] (see [9, Remark 1.6]).

Definition 2.1. The map f : U → F is called C1
BGN if f is continuous (i.e., C0, or

C0
BGN), and there exists a continuous map f [1] : U [1] → F extending f ]1[ : U ]1[ → F .

Given k ∈ N with k ≥ 2, we say that f is Ck
BGN if f is C1

BGN and f [1] : U [1] → F
is Ck−1

BGN . We define f [k] := (f [1])[k−1] : U [k] → F in this case. The map f is C∞
BGN if

it is Ck
BGN for all k ∈ N0.

Since U ]1[ is dense in U [1], f [1] is unique if it exists (and likewise each f [k]).

2.2. For example, every continuous linear map λ : E → F is C∞
BGN with λ[1](x, y, t) =

λ(y) for all (x, y, t) ∈ E × E ×K (whence also λ[1] is continuous linear). Also each
continuous multilinear map is C∞

BGN (see [2]).

2.3. (Chain Rule). If E, F and H are topological K-vector spaces, U ⊆ E and
V ⊆ F are subsets with dense interior, and f : U → V ⊆ F , g : V → H are Ck

BGN -
maps, then also the composition g ◦ f : U → H, x 7→ g(f(x)) is Ck

BGN . If k ≥ 1, we
have (T̂ f)(x, y, t) := (f(x), f [1](x, y, t), t) ∈ V [1] for all (x, y, t) ∈ U [1], and

(g ◦ f)[1](x, y, t) = g[1](f(x), f [1](x, y, t), t) . (1)

Thus (g ◦ f)[1] = g[1] ◦ T̂ f with T̂ f : U [1] → V [1] (see [2, Proposition 3.1 and Propo-
sition 4.5], also [9, § 1]).

We recall from [2, Lemma 4.9] and [9, § 1] that being Ck is a local property.

Lemma 2.4. Let E and F be topological K-vector spaces, and f : U → F be a map,
defined on a subset U ⊆ E with dense interior. Let k ∈ N0 ∪ {∞}. If there is an
open cover (Ui)i∈I of U such that f |Ui

: Ui → F is Ck
BGN for each i ∈ I, then f

is Ck
BGN . �

Ck-maps in the sense of Schikhof and De Smedt

In this section, we give a definition of Ck-maps of several variables based on continu-
ous extensions to certain partial difference quotient maps, which generalizes special
cases considered by Schikhof [18, § 84] and De Smedt [4]. Our notation differs from
the one used in [4] and [18], because we find it more convenient to use multi-indices
in higher dimensions.

2.5. Until Remark 2.16, let K be a topological field, d ∈ N, U ⊆ Kd be an open
subset (where Kd is equipped with the product topology), and F be a topological
K-vector space. As usual, for i ∈ {1, . . . , d} we set ei := (0, . . . , 0, 1, 0, . . . , 0) ∈ Kd,
with i-th entry 1.
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2.6. As usual, given a “multi-index” α = (α1, . . . , αd) ∈ Nd
0, we write |α| := ∑d

i=1 αi.
The definition of a Ck-map f : U → F in the sense of Schikhof and De Smedt will
involve a certain continuous extension f<α> of a partial difference quotient map
f>α<, for each multi-index α ∈ Nd

0 such that |α| ≤ k. It is convenient to define the
domains U<α> and U>α< of these mappings first. They will be subsets of Kd+|α|.
It is useful to write elements x ∈ Kd+|α| in the form x = (x(1), x(2), . . . , x(d)), where

x(i) ∈ K1+αi for i ∈ {1, . . . , d}. We write x(i) = (x
(i)
0 , x

(i)
1 , . . . , x(i)

αi
) with x

(i)
j ∈ K for

j ∈ {0, . . . , αi}.

2.7. Given α ∈ Nd
0, we now define U<α> as the set of all x ∈ Kd+|α| such that, for all

i1 ∈ {0, 1, . . . , α1}, . . . , id ∈ {0, 1, . . . , αd}, we have

(x
(1)
i1 , . . . , x

(d)
id

) ∈ U .

We let U>α< be the set of all x ∈ U<α> such that, for all i ∈ {1, . . . , d} and

0 ≤ j < k ≤ αi, we have x
(i)
j 6= x

(i)
k . It is easy to see that U<α> and U>α< are open

in Kd+|α| and U>α< is dense in U<α>.

Example 2.8. If U = U1 × · · · × Ud with open sets Ui ⊆ K, then simply

U<α> = U1+α1
1 × U1+α2

2 × · · · × U1+αd
d . (2)

Only this case (in fact only special cases thereof) was considered in [4] and [18].

Remark 2.9. A simple induction on |α| shows that the sets U<α> can be defined
alternatively by recursion on |α|, as follows: Set U<0> := U . Given α ∈ Nd

0 such
that |α| ≥ 1, pick β ∈ Nd

0 such that α = β + ei for some i ∈ {1, . . . , d}. Then U<α>

is the set of all elements x ∈ Kd+|α| such that

(x(1), . . . , x(i−1), x
(i)
0 , x

(i)
1 , . . . , x

(i)
αi−1, x

(i+1), . . . , x(d)) ∈ U<β>

holds as well as

(x(1), . . . , x(i−1), x(i)
αi

, x
(i)
1 , . . . , x

(i)
αi−1, x

(i+1), . . . , x(d)) ∈ U<β> .

We now define certain mappings f>α< : U>α< → F and show afterwards that
they can be interpreted as partial difference quotient maps.

Definition 2.10. We set f>0< := f . Given a multi-index α ∈ Nd
0 such that |α| ≥ 1,

we define f>α<(x) for x ∈ U>α< as the sum

α1∑
j1=0

· · ·
αd∑

jd=0

 ∏
k1 6=j1

1

x
(1)
j1 − x

(1)
k1

· . . . ·
∏

kd 6=jd

1

x
(d)
jd
− x

(d)
kd

 f(x
(1)
j1 , . . . , x

(d)
jd

), (3)

using the notational conventions from 2.6. The products are taken over all k` ∈
{0, . . . , α`} such that k` 6= j`, for ` ∈ {1, . . . , d}.

The map f>α< has important symmetry properties.
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Lemma 2.11. Assume that α ∈ Nd
0, i ∈ {1, . . . , d} and π is a permutation of

{0, 1, . . . , αi}. Then (x(1), . . . , x(i−1), x
(i)
π(0), . . . , x

(i)
π(αi)

, x(i+1), . . . , x(d)) ∈ U>α< for
each x ∈ U>α<, and

f>α<(x(1), . . . , x(i−1), x
(i)
π(0), . . . , x

(i)
π(αi)

, x(i+1), . . . , x(d)) = f>α<(x) . (4)

The next lemma shows that f>α< can indeed be interpreted as a partial difference
quotient map.

Lemma 2.12. For all i ∈ {1, . . . , d} and x ∈ U>ei<, the element f>ei<(x) is given by

f(x(1), . . . , x(i−1), x
(i)
0 , x(i+1), . . . , x(d))− f(x(1), . . . , x(i−1), x

(i)
1 , x(i+1), . . . , x(d))

x
(i)
0 − x

(i)
1

.

If α ∈ Nd
0 such that |α| ≥ 2, let β ∈ Nd

0 be a multi-index such that α = β + ei for
some i ∈ {1, . . . , d}. Then f>α<(x) is given by

1

x
(i)
0 − x

(i)
αi

·
(
f>β<(x(1), . . . , x(i−1), x

(i)
0 , x

(i)
1 , . . . , x

(i)
αi−1, x

(i+1), . . . , x(d))

−f>β<(x(1), . . . , x(i−1), x(i)
αi

, x
(i)
1 , . . . , x

(i)
αi−1, x

(i+1), . . . , x(d))
)

(5)

for all x ∈ U>α<.

Definition 2.13. We say that f is C0
SDS if it is continuous, and define f<0> := f

in this case. Recursively, given an integer k ≥ 1 we say that f is Ck
SDS if f is Ck−1

SDS

and, for each multi-index α ∈ Nd
0 such that |α| = k, there exists a continuous map

f<α> : U<α> → F such that f<α>|U>α< = f>α<. As usual, f is called C∞
SDS if f is

Ck
SDS for each k ∈ N0.

Since U>α< is dense in U<α>, the continuous extension f<α> of f>α< is unique
whenever it exists. We readily deduce from Lemma 2.11:

Lemma 2.14. Let f be a Ck-mapping for some k ∈ N, α ∈ Nd
0 with |α| = k,

i ∈ {1, . . . , d}, and π be a permutation of {0, 1, . . . , αi}. Then

(x(1), . . . , x(i−1), x
(i)
π(0), . . . , x

(i)
π(αi)

, x(i+1), . . . , x(d)) ∈ U<α> (6)

for each x ∈ U<α>, and

f<α>(x(1), . . . , x(i−1), x
(i)
π(0), . . . , x

(i)
π(αi)

, x(i+1), . . . , x(d)) = f<α>(x) . (7)

The following variant of Lemma 2.12 is available for f<α>.

Lemma 2.15. Let f be a Ck
SDS-map for an integer k ≥ 2, α ∈ Nd

0 such that |α| = k,
and β ∈ Nd

0 such that α = β + ei for some i ∈ {1, . . . , d}. Then f<α>(x) is given by

1

x
(i)
0 − x

(i)
αi

·
(
f<β>(x(1), . . . , x(i−1), x

(i)
0 , x

(i)
1 , . . . , x

(i)
αi−1, x

(i+1), . . . , x(d))

−f<β>(x(1), . . . , x(i−1), x(i)
αi

, x
(i)
1 , . . . , x

(i)
αi−1, x

(i+1), . . . , x(d))
)

(8)

for all x ∈ U<α> such that x
(i)
0 6= x(i)

αi
.
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Remark 2.16. If U ⊆ Kd is a subset (possibly with empty interior) of the form
U = U1 × · · · × Ud, where Ui ⊆ K is a non-empty subset without isolated points for
i ∈ {1, . . . , d}, then Definition 2.13 can be used just as well to define Ck

SDS-maps
f : U → F .

If d = 1, we also write f<j> in place of f<je1>, as in [2, § 6].

Seminorms and gauges

Gauges on topological vector spaces over valued fields were introduced in [9] as a
substitute for continuous seminorms when dealing with a general topological vector
space, the topology of which need not come from a family of continuous seminorms
(cf. [10, § 6.3] for the real case). We only recall some essentials here; see [9] for
further information.

Definition 2.17. Let E be a topological vector space over a valued field (K, |.|). A
gauge on E is a map q : E → [0,∞[ (also written ‖.‖q := q) such that q(tx) = |t|q(x)
for all t ∈ K and x ∈ E, and which is continuous at 0. Thus Bq

r(0) is a zero-
neighbourhood for each r > 0, where Bq

r(x) := {y ∈ E : ‖y − x‖q < r} for all x ∈ E
and r > 0. We also define B

q
r(x) := {y ∈ E : ‖y − x‖q ≤ r}. If (E, ‖.‖) is a normed

space, we relax notation and write BE
r (x) := B‖.‖

r (x).

In [9], only upper semicontinuous gauges q were considered, i.e., it was required
that Bq

r(0) is an open 0-neighbourhood, for each r > 0.

Remark 2.18. Typical examples of gauges are Minkowski functionals µU of bal-
anced, open 0-neighbourhoods U in a topological vector space E over a valued
field K; these are upper semicontinuous (see [9, Remark 1.21]). Here U ⊆ E is called
balanced if tU ⊆ U for all t ∈ K such that |t| ≤ 1. The Minkowski functional is
µU : E → [0,∞[, x 7→ inf{|t| : t ∈ K× with x ∈ tU}.

Remark 2.19. Note that gauges need not satisfy the triangle inequality. But we
still have a certain substitute: Given a gauge q : E → [0,∞[, there always exists a
gauge p : E → [0,∞[ such that

‖x + y‖q ≤ ‖x‖p + ‖y‖p for all x, y ∈ E (9)

(cf. [9, Lemma 1.29]). We shall refer to (9) as the fake triangle inequality.

As in the case of continuous seminorms, it frequently suffices to consider a suffi-
ciently large set of gauges:

Definition 2.20. A set Γ of gauges on a topological K-vector space E is called a
fundamental system of gauges if each 0-neighbourhood in E contains some finite
intersection of balls of the form Bq

r(0), with q ∈ Γ and r > 0.

Cf. [9, Lemma 1.24] for the next lemma, which is useful to determine fundamental
systems of gauges.
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Lemma 2.21. Let p, q : E → [0,∞[ be gauges on a topological vector space E over
a valued field K. If there exist r, s > 0 such that Bq

s(0) ⊆ Bp
r (0), then

p ≤ rs−1|a|−1q ,

for each a ∈ K× such that |a| < 1. In particular, p ≤ Cq for some C > 0. �

Remark 2.22. Combining Remark 2.18 and Lemma 2.21, it is easy to see that
upper semicontinuous gauges form a fundamental system of gauges, for each topo-
logical vector space over a valued field (cf. also [9, Remark 1.21]). In the real case,
continuous gauges form a fundamental system (cf. [10, § 6.4]).

Examples 2.23. Given r ∈ ]0, 1], a gauge q : E → [0,∞[ is called an r-seminorm
if q(x + y)r ≤ q(x)r + q(y)r for all x, y ∈ E. If, furthermore, q(x) = 0 if and only
if x = 0, then q is called an r-norm (cf. [10, § 6.3] for the real case). For examples
of r-normed spaces over R and more general non-locally convex real topological
vector spaces, the reader is referred to [10, § 6.10] and [11]. For K a valued field,
the simplest examples are the spaces `p(K) of all x = (xn)n∈N ∈ KN such that

‖x‖p := p

√∑∞
n=1 |xn|p < ∞, for p ∈ ]0, 1[. Then ‖.‖p is a p-norm on `p(K) defining a

Hausdorff vector topology on this space (and thus {‖.‖p} is a fundamental system
of gauges).

Bounded sets and bounded maps

Let E be a topological vector space over a topological field K. Recall that a subset
B ⊆ E is called bounded if, for each 0-neighbourhood U ⊆ E, there exists a 0-
neighbourhood V ⊆ K such that V B ⊆ U . If K is a valued field, we can test
boundedness using gauges.

Lemma 2.24. Let E be a topological vector space over a valued field K. Then a set
B ⊆ E is bounded if and only if q(B) ⊆ R is bounded, for each gauge q on E.

It suffices to show sup ‖B‖q < ∞ for q in a fundamental system of gauges. In
Section 5, Ck-maps with bounded difference quotients will play a vital role.

Definition 2.25. Let E be a topological vector space over a topological field K.

(a) If X is a topological space, then BC(X, E) denotes the set of all continuous
maps γ : X → E whose image γ(X) is bounded in E. Then BC(X, E) is a
vector subspace of EX .

(b) If k ∈ N0 ∪ {∞} and U ⊆ K is a subset without isolated points, we let
BCk(U,E) be the space of all Ck

SDS-mappings γ : U → E such that
γ<j> ∈ BC(U j+1, E) for all j ∈ N0 such that j ≤ k.

We mention that BCk(U,E) can be made a topological vector space [8, Defini-
tion 1.2], but we shall not use this topology. If K is a valued field, j ∈ N0 with j ≤ k
and q a gauge on E, we define

‖γ<j>‖q,∞ := sup{‖γ<j>(x)‖q : x ∈ U j+1} for γ ∈ BCk(U,E). (10)
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Hölder continuity

Using gauges, we now define a version of Hölder continuous maps and record their
basic properties.

Definition 2.26. Let E and F be topological vector spaces over a valued field K,
and U ⊆ E be a subset. A map f : U → F is called Hölder continuous of exponent
σ ∈ ]0,∞[ (or C0,σ) if, for every x0 ∈ U and gauge q on F , there exists a gauge p
on E and a neighbourhood V ⊆ U of x0 such that

‖f(y)− f(x)‖q ≤
(
‖y − x‖p

)σ
for all x, y ∈ V . (11)

C0,1-maps are also called Lipschitz continuous.

We remind the reader that Hölder exponents σ > 1 are meaningful in non-
archimedian analysis (see [18, Exercise 26.B] for an instructive example). We are
mostly interested in Hölder exponents σ ∈ ]0, 1], but some of the results are valid
also for σ > 1.

Lemma 2.27. Let E, F and H be topological vector spaces over a valued field K,
U ⊆ E and V ⊆ F be subsets, f : U → V ⊆ F and g : V → H be maps, and σ, τ > 0.
Then the following holds:

(a) If f is C0,σ, then f is continuous.

(b) If f is C0,σ and σ ≥ τ , then f is also C0,τ .

(c) If f is C0,σ and g is C0,τ , then g ◦ f is C0,σ·τ .

(d) If U has dense interior and f is C1
BGN , then f is Lipschitz continuous.

In connection with Part (d) of the preceding lemma, note that id : K → K, x 7→ x
is C∞

BGN but not C0,σ for any σ > 1.

If f is not Hölder continuous, then pairs of points with pathological behaviour can
always be chosen in a given dense set. This will become essential later.

Lemma 2.28. Let E and F be topological vector spaces over a valued field K,
f : U → F be a continuous mapping on a subset U ⊆ E, D ⊆ U be a dense subset,
and σ > 0. If f is not C0,σ, then there exists x0 ∈ U and a gauge q on F such that,
for each neighbourhood V ⊆ U of x0 and gauge p on E, there exist x, y ∈ V ∩ D
such that ‖f(x)− f(y)‖q > (‖x− y‖p)

σ.

Two approaches to H ölder differentiable maps

We define k times Hölder differentiable maps and record some properties.

Definition 2.29. Let K be a valued field, E and F be topological K-vector spaces,
U ⊆ E be a subset with dense interior, and f : U → F be a mapping. Let k ∈
N0 ∪ {∞} and σ > 0. We say that f is C k,σ

BGN if f is Ck
BGN and f [j] : U [j] → F is

C0,σ for all j ∈ N0 such that j ≤ k (where f [0] := f).
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Remark 2.30. Note that, if σ ∈ ]0, 1], then f [j] is C1
BGN for j < k and hence

automatically C0,σ, by Lemma 2.27 (b) and (d). In particular, if σ ∈ ]0, 1], then f is
C∞,σ

BGN if and only if f is C∞
BGN . And if k is finite, then only f [k] requires attention.

Remark 2.31. k times Lipschitz differentiable mappings (Ck,1-maps) form a par-
ticularly nice class of maps (see [9]). Notably, [9, Theorem 5.2] provides an implicit
function theorem for Ck,1-maps from arbitrary topological vector spaces to Banach
spaces, for each valued field and k ∈ N ∪ {∞}.

We need some basic information on mappings into direct products.

Lemma 2.32. Let E be a topological K-vector space over a valued field K, (Fi)i∈I be
a family of topological K-vector spaces and f : U → F be a map into F :=

∏
i∈I Fi,

defined on a non-empty subset U ⊆ E with dense interior. Let k ∈ N0 and σ > 0;
for i ∈ I, let pri : F → Fi be the projection. Then f is Ck,σ

BGN if and only if each of
its components fi := pri ◦f : U → Fi is Ck,σ

BGN .

The Chain Rule is available in the following form.

Lemma 2.33. Let K be a valued field, E, F and H be topological K-vector spaces,
U ⊆ E and V ⊆ F be subsets with dense interior, σ ∈ ]0, 1], τ > 0, f : U → V be
C k,σ

BGN , and g : V → H be C k,τ
BGN . Then g ◦ f : U → H is C k,σ·τ

BGN .

The following variant even holds if σ > 1:

Lemma 2.34. Let K be a valued field, E, F and H be topological K-vector spaces,
λ : F → H be continuous linear, U ⊆ E be a subset with dense interior, σ > 0 and
f : U → F be a C k,σ

BGN -map, where k ∈ N0. Then λ ◦ f : U → H is C k,σ
BGN , and

(λ ◦ f)[k] = λ ◦ f [k].

Lemma 2.35. Let E and F be topological vector spaces over a valued field K,
and f : U → F be a mapping, defined on a subset U ⊆ E with dense interior.
Let k ∈ N0∪{∞} and σ ∈ ]0, 1]. If there exists an open cover (Ui)i∈I of U such that
f |Ui

: Ui → F is Ck,σ
BGN for each i ∈ I, then f is Ck,σ

BGN .

Hölder differentiable maps can also be defined using the approach of Schikhof
and De Smedt.

Definition 2.36. Let K be a valued field, d ∈ N0, F be a topological K-vector
space and f : U → F be a mapping, where U ⊆ Kd is open or U = U1× · · · ×Ud for
certain sets U1, . . . , Ud ⊆ K without isolated points. Let k ∈ N0 ∪ {∞} and σ > 0.
We say that f is C k,σ

SDS if f is Ck
SDS and f<α> : U<α> → F is C0,σ for all α ∈ Nd

0

such that |α| ≤ k (where f<0> := f).

We mention that for maps from open sets into real or complex locally convex
spaces, a simpler description of Ck,σ

BGN -maps is available.

Theorem 2.37. Let K ∈ {R, C}, F be a locally convex topological K-vector space,
k ∈ N0 ∪ {∞}, σ ∈ ]0, 1] and f : U → F be a map, defined on an open subset U of a
topological K-vector space E. Then f is Ck,σ

BGN if and only if f is C0,σ, the iterated
(real, resp., complex) directional derivatives

djf(x, v1, . . . , vj) := (Dv1 · · ·Dvj
f)(x)

exist for all j ∈ N such that j ≤ k, x ∈ U and v1, . . . , vj ∈ E, and furthermore all
of the maps djf : U × Ej → F so obtained are C0,σ. �
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The proof of Theorem 2.37 can be found in Appendix C of the preprint version
of this article.

3 Ck
BGN -maps and Ck

SDS-maps coincide

In this section, we show that the approach of Bertram, Glöckner and Neeb and the
approach of Schikhof and De Smedt give rise to the same classes of Ck-maps and
Ck,σ-maps on open domains (and more generally). Throughout the section, K is a
topological field, d ∈ N and f : U → F a map to a topological K-vector space F ,
where U ⊆ Kd is open or of the form U = U1×· · ·×Ud for certain sets U1, . . . , Ud ⊆ K
with dense interior.

Theorem 3.1. The following holds for each k ∈ N0 ∪ {∞}:

(a) f is Ck
SDS if and only if f is Ck

BGN .

(b) If K is a valued field and σ ∈ ]0, 1], then f is C k,σ
SDS if and only if f is C k,σ

BGN .

Various lemmas are useful for the proof of Theorem 3.1.

Lemma 3.2. Let k ∈ N0.

(a) If f : Kd ⊇ U → F is C1
SDS and f<ei> is Ck

SDS for each i ∈ {1, . . . , d}, then f
is Ck+1

SDS.

(b) Let K be a valued field and σ > 0. If f : Kd ⊇ U → F is C 1,σ
SDS and f<ei> is

C k,σ
SDS for each i ∈ {1, . . . , d}, then f is C k+1,σ

SDS .

Proof. Given α ∈ Nd
0 such that 1 ≤ |α| ≤ k + 1, there is i ∈ {1, . . . , d} such that

αi > 0. Then β := α − ei ∈ Nd
0 and |β| = |α| − 1 ≤ k. Write β = (β1, . . . , βd) and

set β′ := (β1, . . . , βi, 0, βi+1, . . . , βd) ∈ Nd+1
0 . For x ∈ U>α<, using the notational

conventions from 2.6, we have

f>α<(x) = (f>ei<)>β′<(x(1); . . . ; x(i−1); x
(i)
0 , x

(i)
2 , . . . , x(i)

αi
; x

(i)
1 ; x(i+1); . . . ; x(d)),

as is clear from the definitions. Thus

f<α>(x) := (f<ei>)<β′>(x(1); . . . ; x(i−1); x
(i)
0 , x

(i)
2 , . . . , x(i)

αi
; x

(i)
1 ; x(i+1); . . . ; x(d))

for x ∈ U<α> defines a continuous (resp., C 0,σ-) extension f<α> : U<α> → F of
f>α<, whenever |α| ≤ k + 1. Therefore, f is Ck+1

SDS (resp., C k+1,σ
SDS ). �

The next lemma establishes one implication in Theorem 3.1 (a) and (b). Note
that σ need not be ≤ 1 here.

Lemma 3.3. If f is Ck
BGN for some k ∈ N0 (resp., C k,σ

BGN if K is a valued field and
σ > 0), then f is Ck

SDS (resp., C k,σ
SDS).
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Proof. The proof is by induction on k ∈ N0. The case k = 0 is trivial. If k ≥ 1, let
i ∈ {1, . . . , n}. For each x ∈ U>ei<, we then have

f>ei<(x) = f [1](x(1), . . . , x(i−1), x
(i)
1 , x(i+1), . . . , x(d); ei; x

(i)
0 − x

(i)
1 ) .

Thus

f<ei>(x) := f [1](x(1), . . . , x(i−1), x
(i)
1 , x(i+1), . . . , x(d); ei; x

(i)
0 − x

(i)
1 ) (12)

for x ∈ U<ei> defines a continuous extension of f>ei< and hence f is C1
SDS, with

f<ei> as just described. Note that the right hand side of (12) expresses f<ei> as
a composition of the Ck−1

BGN -map (resp., C k−1,σ
BGN -map) f [1] and the restriction of a

map Kd+1 → Kd × Kd × K which is continuous affine-linear and hence C∞
BGN . By

the Chain Rule (resp., Lemma 2.33), f<ei> is Ck−1
BGN (resp., C k−1,σ

BGN ) and hence Ck−1
SDS

(resp., C k−1,σ
SDS ), by induction. Hence f is Ck+1

SDS (resp., C k+1,σ
SDS ), by Lemma 3.2. �

Lemma 3.4. If f is Ck
SDS for some k ∈ N0 (resp., if K is a valued field and f is

C k,σ
SDS for some σ > 0), then f<α> is C

k−|α|
SDS (resp., C

k−|α|,σ
SDS ) for each α ∈ Nd

0 such
that |α| ≤ k.

Remark 3.5. The proof of Lemma 3.4 will give the following formula for (f<α>)<β>,

if α ∈ Nd
0 such that |α| ≤ k and β ∈ Nd+|α|

0 such that |β| ≤ k − |α|:

(f<α>)<β> = f<α+β̄> , (13)

where β̄ ∈ Nd
0 is defined by β̄j :=

∑sj+1−1
i=sj

βi for j ∈ {1, . . . , d}, with sj := j+
∑j−1

i=1 αi

and sd+1 := d + |α|+ 1.

Proof of Lemma 3.4. Given α ∈ Nd
0, we first show by induction on

` ∈ {0, . . . , k − |α|} that

(f>α<)>β< = f>α+β̄< , (14)

for each β ∈ Nd+|α|
0 such that |β| = `, where β̄ (and s1, . . . , sd+1) are as in Remark 3.5.

The case ` = 0 being trivial, let us assume now that (14) holds for some β with
|β| < k − |α|. For each i ∈ {1, . . . , d + |α|}, we have to show that (14) holds
with β replaced by γ := β + ei and β̄ replaced by the corresponding γ̄. There is
a unique j ∈ {1, . . . , d} such that sj ≤ i < sj+1. Then γ̄ = β̄ + ej. Given x ∈
(U>α<)>γ< = (U>α<)>β+ei< ⊆ (Kd+|α|)>β+ei<, we abbreviate y := (x(1), . . . , x(sj−1))

and z := (x(sj+1), . . . , x(d+|α|)). Define t := x
(i)
0 − x

(i)
βi+1. Then t · (f>α<)>γ<(x) is
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given by

(f>α<)>β<(x(1); . . . ; x(i−1); x
(i)
0 , x

(i)
1 , . . . , x

(i)
βi

; x(i+1); . . . ; x(d+|α|))

− (f>α<)>β<(x(1); . . . ; x(i−1); x
(i)
βi+1, x

(i)
1 , . . . , x

(i)
βi

; x(i+1); . . . ; x(d+|α|))

= f>α+β̄<(x(1); . . . ; x(i−1); x
(i)
0 , x

(i)
1 , . . . , x

(i)
βi

; x(i+1); . . . ; x(d+|α|))

− f>α+β̄<(x(1); . . . ; x(i−1); x
(i)
βi+1, x

(i)
1 , . . . , x

(i)
βi

; x(i+1); . . . ; x(d+|α|))

= f>α+β̄<(y; x(sj); . . . ; x(i−1); x
(i)
0 , x

(i)
1 , . . . , x

(i)
βi

; x(i+1), . . . , x(sj+1−1); z)

− f>α+β̄<(y; x(sj); . . . ; x(i−1); x
(i)
βi+1, x

(i)
1 , . . . , x

(i)
βi

; x(i+1); . . . ; x(sj+1−1); z)

= f>α+β̄<(y; x
(i)
0 , x

(i)
1 , . . . , x

(i)
βi

; x(sj); . . . ; x(i−1); x(i+1); . . . ; x(sj+1−1); z)

− f>α+β̄<(y; x
(i)
βi+1, x

(i)
1 , . . . , x

(i)
βi

; x(sj); . . . ; x(i−1); x(i+1); . . . ; x(sj+1−1); z)

= tf>α+γ̄<(y; x
(i)
0 , x

(i)
1 , . . . , x

(i)
βi

; x(sj); . . . ; x(i−1); x(i+1); . . . ; x(sj+1−1); x
(i)
βi+1; z)

= tf>α+γ̄<(y; x(sj); . . . ; x(sj+1−1); z) = tf>α+γ̄<(x) ,

using (14) for the first equality and the symmetry properties of f>α+β̄< and f>α+γ̄<

(as in Lemma 2.11) for the third and penultimate equality. This completes the
inductive proof of (14).

As a consequence of (14), the continuous (resp., C0,σ-) map f<α+β̄> extends the map

(f>α<)>β<. It hence also extends (f<α>)>β<, for each β ∈ Nd+|α|
0 with |β| ≤ k−|α|.

Hence f<α> is C
k−|α|
SDS (resp., C

k−|α|,σ
SDS ) and (13) holds. �

Proof of Theorem 3.1, completed. It remains to show that if f is Ck
SDS

(resp., Ck,σ
SDS with σ ∈ ]0, 1]), then f is Ck

BGN (resp., Ck,σ
BGN). We assume first that

U = U1 × · · · ×Ud for certain subsets Ui ⊆ K. The proof is by induction on k ∈ N0.
The case k = 0 being trivial, assume now that f is Ck

SDS (resp., C k,σ
SDS) for some

k ≥ 1. For each (x, y, t) ∈ U ]1[, we have

f ]1[(x, y, t) =
f(x + ty)− f(x)

t
=

d∑
j=1

f(x + t
∑j

i=1 yiei)− f(x + t
∑j−1

i=1 yiei)

t

=
d∑

j=1

yjf
<ej>(x1+ty1; . . . ; xj−1+tyj−1; xj, xj+tyj; xj+1, . . . , xd), (15)

because aj :=
f(x+t

∑j

i=1
yiei)−f(x+t

∑j−1

i=1
yiei)

t
= yj

f(x+t
∑j

i=1
yiei)−f(x+t

∑j−1

i=1
yiei)

yjt
coin-

cides with bj :=yjf
<ej>(x1 + ty1; . . . ; xj−1 + tyj−1; xj, xj + tyj; xj+1, . . . , xd) if yj 6= 0,

while both aj and bj vanish if yj = 0. Since the right hand side of (15) defines a
continuous (resp., C0,σ-) map on all of U [1], we see that f is C1

BGN (resp., C 1,σ
BGN)

with

f [1](x, y, t) =
d∑

j=1

yjf
<ej>(x1 + ty1; . . . ; xj−1 + tyj−1; xj, xj + tyj; xj+1, . . . , xd) (16)

for all (x, y, t) ∈ U [1]. Here f<ej> is a Ck−1
SDS-map (resp., a C k−1,σ

SDS -map) on

U<ej> = U1 × · · · × Uj−1 × Uj × Uj × Uj+1 × · · · × Ud
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by Lemma 3.4 and hence a Ck−1
BGN -map (resp., a C k−1,σ

BGN -map), by induction. Formula
(16) now shows that f [1] is built up from f<ej> and various smooth maps, whence f [1]

is Ck−1
BGN (resp., C k−1,σ

BGN ), by the Chain Rule (resp., Lemma 2.33). Hence f is Ck
BGN

(resp., C k,σ
BGN). This finishes the proof if U = U1 × · · · × Ud.

If U is open but not necessarily of the form U1 × · · · × Ud, then every point x ∈ U
has an open neighbourhood V of the form V = V1×· · ·×Vd for certain open subsets
V1, . . . , Vd ⊆ K. It is clear that f |V is Ck

SDS (resp., C k,σ
SDS) if so is f . Thus f |V is

Ck
BGN (resp., C k,σ

BGN) by the case already settled, and thus f is Ck
BGN (resp., C k,σ

BGN)
as these properties can be checked locally (see Lemma 2.4, resp., Lemma 2.35). �

In the following, we shall often refer to Ck
BGN -maps as Ck-maps, and to Ck,σ

BGN -maps
as Ck,σ-maps.

We mention that both the definition of Ck
BGN -maps and the definition of Ck

SDS-
maps suggest a natural definition of a vector topology on the space Ck(U, F ) of all
Ck-maps U → F : We write Ck(U, F )BGN for Ck(U, F ), equipped with the initial
topology with respect to the maps Ck(U, F ) → C(U [j], F ), f 7→ f [j], for j ∈ N0 such
that j ≤ k, where C(U [j], F ) is equipped with the compact-open topology. We write
Ck(U, F )SDS for Ck(U, F ), equipped with the initial topology with respect to the
maps Ck(U, F ) → C(U<α>, F ), f 7→ f<α>, for α ∈ Nd

0 such that |α| ≤ k. Then the
following holds:

Theorem 3.6. Ck(U, F )BGN = Ck(U, F )SDS as a topological K-vector space.

The proof of Theorem 3.6 can be found in Appendix B of the preprint version
of this article. It exploits that f<α> can be expressed in terms of f [j] with j := |α|,
while f [j] can be expressed in terms of the maps f<β> with β ∈ Nd

0 such that |β| ≤ j.

4 Comparison with Ludkovsky’s concepts

In this section, we give a definition of Ck-maps following an idea of Ludkovsky, and
show that such maps need not be Ck

BGN (nor Ck
SDS) in the case of ground fields of

positive characteristic.

4.1. To define Ck-maps in Ludkovsky’s sense, we find it useful to introduce the
following notations for U an open subset of a topological vector space E over a
topological field K: We define Φ1(U) := U ]1[ and Φ1(U) := U [1]. Given an integer
k ≥ 2, we let Φk(U) be the set of all (x, ξ1, . . . , ξk, t1, . . . , tk) ∈ U × Ek × Kk such
that (x, ξ1, . . . , ξk−1, t1, . . . , tk−1) ∈ Φk−1(U) holds as well as

(x + tkξk, ξ1, . . . , ξk−1, t1, . . . , tk−1) ∈ Φk−1(U).

Finally, we let Φk(U) be the set of all (x, ξ1, . . . , ξk, t1, . . . , tk) ∈ Φk(U) such that
tk 6= 0.

Definition 4.2. Let E and F be topological vector spaces over a topological field
K, and f : U → F be a map on an open subset U ⊆ E. We say that f is C1

Lud

if f is C1
BGN , i.e., if the directional difference quotient map Φ1(f) := f ]1[ admits

a continuous extension Φ1(f) := f [1] to Φ1(U) = U [1]. Recursively, having said
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when f is a Ck−1
Lud -map and having defined a map Φk−1(f) : Φk−1(U) → F in this

case, we say that f is Ck
Lud if f is Ck−1

Lud and if the map Φk(f) : Φk(U) → F taking
(x, ξ1, . . . , ξk, t1, . . . , tk) to

Φk−1(x + tkξk, ξ1, . . . , ξk−1, t1, . . . , tk−1)− Φk−1(x, ξ1, . . . , ξk−1, t1, . . . , tk−1)

tk

admits a continuous extension Φk(f) : Φk(U) → F . We say that f is C∞
Lud if f is

Ck
Lud for each k ∈ N.

Remark 4.3. Initially, Ludkovsky defined Ck-maps only for certain ultrametric
fields of characteristic 0 and E, F locally convex, but of course the preceding def-
inition is meaningful in the stated generality.1 Furthermore, he only required the
existence of Φ1(f) locally on a neighbourhood of (x, 0, 0) for each given point x ∈ U
(and similarly for Φk(f)). We find it more convenient to define Φk(f) globally on
Φk(U) (which is equivalent to the local existence). This is also the approach in [15].

Remark 4.4. If f is Ck
Lud, we define

djf(x, ξ1, . . . , ξj) := Φj(f)(x, ξ1, . . . , ξj, 0, . . . , 0)

for x ∈ U , j ∈ N with j ≤ k, and ξ1, . . . , ξj ∈ E. We also write df(x, ξ) :=
d1f(x, ξ). Then djf : U × Ej → F is continuous, being a partial map of Φj(f)
(i.e., a map obtained from Φj(f) by fixing some of its arguments). Furthermore,
f (j)(x) := djf(x, •) : Ej → F is a symmetric j-linear map, by a reasoning similar to
that used to prove [2, Lemma 4.8].2 We remark that Ludkovsky initially made the
j-linearity of the maps f (j)(x) part of his definition of a Ck-map; by the preceding,
this requirement is redundant and can be omitted.

Remark 4.5. We mention that Definition 4.2 captures the basic idea of Ludkovsky’s
approach, but differs slightly from his original definition which imposes additional
boundedness conditions. In the example discussed in Theorem 4.7 below, the do-
main O will be an open and compact set, whence these additional conditions will
be satisfied automatically. In his most recent preprints (like [15]), Ludkovsky also
omits the boundedness conditions.

Remark 4.6. It is clear that each Ck
BGN -map is also Ck

Lud; a suitable partial map
of f [j] serves as the continuous extension Φj(f) of Φj(f), for each j ∈ N such that
j ≤ k. To make this more precise, let us write E[j] = E×Hj ×K, where Hj collects
all factors in the middle. Explicitly, we have H1 := E, Hj := Hj−1 × K × E[j−1] if
j ≥ 2. Let 0Hj

be the zero element in Hj. Then a simple induction on k ∈ N shows
that, if f is Ck

BGN , then f is Ck
Lud, with

Φk(x, ξ1, . . . , ξk, t1, . . . , tk) := f [k](x, ξ1, t1; ξ2, 0H1 , t2; . . . ; ξk, 0Hk−1
, tk)

for (x, ξ1, . . . , ξk, t1, . . . , tk) ∈ Φk(U) giving the continuous extension of Φk(f) to a
map on Φk(U).

1In the meantime, Ludkovsky uses his approach also in positive characteristic [15].
2In the example discussed in Theorem 4.7 below, the j-linearity will be obvious.
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Let K be a local field of positive characteristic now. Thus, up to isomorphism,
K = Fq((X)) is a field of formal Laurent series over a finite field Fq with q = p`

elements for some ` ∈ N and prime p. We let O := Fq[[X]] be the ring of formal
power series, which is an open, compact subring of K. Its elements are of the form
x =

∑∞
k=0 akX

k, where ak ∈ Fq. Recall that if x 6= 0, then its absolute value is given
by |x| = q−k, where k ∈ N0 is chosen minimal such that ak 6= 0. We define a map

f : O → K ,
∞∑

k=0

akX
k 7→

∞∑
k=0

akX
[ 3
2
k] , (17)

where [r] denotes the Gauß bracket (integer part) of a real number r ≥ 0.

Theorem 4.7. The map f : O → K defined in (17) is C∞
Lud, but not C2

BGN .

Proof. It is useful to note first that f is a homomorphism of additive groups, i.e.,
f(x + y) = f(x) + f(y) for all x, y ∈ O. For x, y ∈ O, we have

|x− y|
3
2 ≤ |f(x− y)| ≤ q|x− y|

3
2 ,

where |f(x − y)| = |f(x) − f(y)|. As a consequence, f is C1
BGN with derivative

f ′(x) = 0 for all x ∈ O (see [6, Lemma 2.1]; cf. [18, Theorem 29.12]). Furthermore,
f is not C2

BGN because it does not admit a second order Taylor expansion (see [6,
Lemma 2.2]). We now show that f is C∞

Lud. First, we note that f is C1
Lud because it

is C1
BGN , with

Φ1(f)(x, ξ, 0) = df(x, ξ) = f ′(x)ξ = 0 for all x ∈ O and ξ ∈ K. (18)

Using that f is a homomorphism, for all x ∈ O, ξ ∈ K and t ∈ K× such that
x + tξ ∈ O, we obtain

Φ1(f)(x, ξ, t) =
f(x + tξ)− f(x)

t
=

f(x) + f(tξ)− f(x)

t
=

f(tξ)

t
. (19)

Since the right hand side of (19) is independent of x, we obtain for all x ∈ O,
ξ1, ξ2 ∈ K and t1, t2 ∈ K× such that (x, ξ1, ξ2, t1, t2) ∈ Φ2(O):

Φ2(f)(x, ξ1, ξ2, t1, t2) =
Φ1(f)(x + t2ξ2, ξ1, t1)− Φ1(f)(x, ξ1, t1)

t2
= 0 . (20)

By (18), we also have Φ2(f)(x, ξ1, ξ2, t1, t2) = 0 for all x ∈ O, ξ1, ξ2 ∈ K, t1 = 0 and
t2 ∈ K× such that (x, ξ1, ξ2, 0, t2) ∈ Φ2(O). Thus

Φ2(f) : Φ2(O) → F , (x, ξ1, ξ2, t1, t2) 7→ 0

is a continuous map which extends Φ2(f), and thus f is C2
Lud with Φ2(f) = 0. It

now readily follows by induction that f is Ck
Lud for each k ≥ 2, with Φk(f) = 0. �

Remark 4.8. It would be interesting to clarify whether Ck
Lud-maps between locally

convex spaces over an ultrametric field K of characteristic 0 (as originally considered
by Ludkovsky) coincide with Ck

BGN -maps (for k ≥ 2), notably for K = Qp. It is also
unknown whether Ck

Lud-maps into real non-locally convex spaces are Ck
BGN . The

author conjectures that neither is the case, but has not found counterexamples so
far. [15, Corollary 20] claims that Ck

BGN = Ck
Lud in the case of ultrametric fields of

zero characteristic, but the author was not convinced by the reasoning.



Comparison of some notions of Ck-maps 893

5 Hölder differentiable maps on metrizable spaces

This section is devoted to the proof of the following characterization of C`,σ
BGN -maps

on open subsets of metrizable spaces.

Theorem 5.1. Let (K, |.|) be R or an ultrametric field. Let E and F be topological
K-vector spaces and f : U → F be a map, defined on an open subset U ⊆ E. Let
` ∈ N0 and σ ∈ ]0, 1]. If E is metrizable, then f is C `,σ if and only if f◦γ : K`+1 → F
is C `,σ, for each C∞-map γ : K`+1 → U .

The proof of Theorem 5.1 heavily relies on tools developed in [8], which are
variants of standard methods of differential calculus in real locally convex spaces
(cf. [12]). To describe these tools, we need the auxiliary notion of a “calibration”
on a topological vector space E over a valued field K.

Definition 5.2. A sequence (qn)n∈N0 of gauges on E is called a calibration if

(∀n ∈ N0)(∀x, y ∈ E) qn(x + y) ≤ qn+1(x) + qn+1(y) . (21)

If q is a gauge on E, then there always exists a calibration (qn)n∈N0 such that q0 = q
(cf. Remark 2.19); we then say that q extends to (qn)n∈N0 .

Remark 5.3. If (qn)n∈N0 is a calibration, then qn ≤ qn+1 for each n ∈ N0 because
qn(x) = qn(x + 0) ≤ qn+1(x) + qn+1(0) = qn+1(x) for each x ∈ E. Also note that if
q : E → [0,∞[ is a continuous seminorm, then (q)n∈N0 is a calibration. If (qn)n∈N0 is
any calibration extending the seminorm q, then qn ≥ q for each n, by the preceding
remark. Thus (q)n∈N0 is the smallest calibration extending q.

The following two lemmas are the main results of [8]. They are variants of [12,

Lemma 12.2]. In the first lemma, O := B
K
1 (0).

Lemma 5.4 (Ultrametric General Curve Lemma). Let E be a topological vector
space over an ultrametric field K, ρ ∈ K× with |ρ| < 1 and (γn)n∈N be a family of
smooth maps γn ∈ BC∞(ρnO, E) which become small sufficiently fast in the sense
that, for each gauge q on E, there exists a calibration (qn)n∈N0 extending q such that

(∀a > 0) (∀k,m ∈ N0) lim
n→∞

an‖γ<k>
n ‖qn+m,∞ = 0 . (22)

Then there exists a smooth map γ : K → E with im(γ) = {0} ∪ ⋃n∈N im(γn), such
that γ(ρn−1 + t) = γn(t) for all n ∈ N and t ∈ ρnO. �

Remark 5.5. Let E in Lemma 5.4 be metrizable and suppose that there exists a
calibration (pn)n∈N0 such that {pn : n ∈ N0} is a fundamental system of gauges, and
C > 0 such that

(∀k ∈ N0) (∀n ≥ k) ‖γ<k>
n ‖p2n,∞ ≤ Cn−n . (23)

Then the hypothesis (22) of Lemma 5.4 is satisfied: Any q extends to a suitable
calibration via qn := rpn+n0 for n ∈ N, with r > 0 and n0 ∈ N0 sufficiently large.
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Lemma 5.6 (Real Case of General Curve Lemma). Let E be a real topological vector
space and (sn)n∈N as well as (rn)n∈N be sequences of positive reals with

∑∞
n=1 sn < ∞

and rn ≥ sn + 2
n2 for each n ∈ N. Furthermore, let (γn)n∈N be a sequence of smooth

maps γn : [−rn, rn] → E which become small sufficiently fast in the sense that, for
each gauge q on E, there exists a calibration (qn)n∈N0 extending q such that

(∀k, `, m ∈ N0) lim
n→∞

n`‖γ<k>
n ‖qn+m,∞ = 0 . (24)

Then there exists a curve γ ∈ BC∞(R, E) with im(γ) ⊆ [0, 1] · ⋃n∈N im(γn) and a
convergent sequence (tn)n∈N of real numbers such that γ(tn + t) = γn(t) for all n ∈ N
and t ∈ [−sn, sn]. �

Again, (23) enables to manufacture calibrations satisfying (24).

In our applications, the maps γn are restrictions of affine-linear maps to balls. The
following simple lemma will help us to verify the hypotheses of the General Curve
Lemmas in this case.

Lemma 5.7. Consider the map γ : B
K
r (0) → E, x 7→ xa+b, where E is a topological

vector space over a valued field K, a, b ∈ E and r > 0. Let q1 and q2 be gauges on E
with q1(x + y) ≤ q2(x) + q2(y) for all x, y ∈ E. Then ‖γ‖q1,∞ ≤ r‖a‖q2 + ‖b‖q2,
‖γ<1>‖q1,∞ = ‖a‖q1 and ‖γ<k>‖q1,∞ = 0 for k ≥ 2.

Proof. Since ‖γ(x)‖q1 = ‖xa + b‖q1 ≤ |x| · ‖a‖q2 + ‖b‖q2 ≤ r · ‖a‖q2 + ‖b‖q2 for each

x ∈ B
K
r (0), the first inequality holds. The remaining assertions follow from the

observations that γ<1>(x, y) = a for all x, y ∈ B
K
r (0) and γ<k> = 0 for all k ≥ 2. �

Another simple observation will be used.

Lemma 5.8. Let (K, |.|) be either R or an ultrametric field. Let E and F be topo-
logical K-vector spaces and f : U → F be a map, defined on an open subset U ⊆ E.
Let `, d ∈ N0 and σ ∈ ]0, 1]. If f ◦γ : Kd → F is C `,σ, for each C∞-map γ : Kd → U ,
then also f ◦ γ : V → F is C `,σ, for each C∞-map γ : V → U defined on an open
subset V ⊆ Kd.

Proof. Given x0 ∈ V , there exists a smooth map κ : Kd → V such that κ|W = idW

for some open neighbourhood W ⊆ V of x0. In fact, if K is ultrametric, we can
choose an open, closed neighbourhood W ⊆ V of x0 and define κ(x) := x if x ∈ W ,
κ(x) := x0 if x ∈ V \ W . In the real case, we can manufacture κ by standard
arguments, using a cut-off function. Then η := γ ◦ κ : Kd → U is smooth and hence
f ◦ η is C`,σ. Then (f ◦ γ)|W = (f ◦ η)|W is C`,σ. Hence f ◦ γ is locally C`,σ and thus
C`,σ, by Lemma 2.35. �

Proof of Theorem 5.1. If f is C`,σ, then f ◦ γ is C`,σ for each C∞-map
γ : K`+1 → U , by Lemma 2.33 and Remark 2.30. To prove the converse direction,
we first assume that K is an ultrametric field. We start with the case ` = 0. If f is
not C0,σ, then the condition formulated in Definition 2.26 is violated by some x0 ∈ U .
Hence, there exists a gauge q on F such that, for each neighbourhood V ⊆ U of x0

and gauge p on E, there are x, y ∈ V such that ‖f(x) − f(y)‖q > (‖x − y‖p)
σ.

After a translation, we may assume that x0 = 0. Pick a gauge q0 on E such that
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Bq0
1 (0) ⊆ U , and extend it to a calibration (qn)n∈N0 on E such that {qn : n ∈ N0} is a

fundamental system of gauges. Also, pick ρ ∈ K× such that |ρ| < 1. After replacing
q1, q2, . . . by large multiples if necessary, we may assume that

q0 ≤
(

1
2

+ 1
|ρ|

)−1
q1 . (25)

Applying the above property of q for a given n ∈ N to V := B
q2n+3
1
2
n−n|ρ|n(0) and

p := n
1
σ nnq2n+2, we find xn, yn ∈ E such that

‖xn‖q2n+3 , ‖yn‖q2n+3 ≤ 1

2
n−n|ρ|n (26)

and

‖f(xn)− f(yn)‖q > n · nσn
(
‖xn − yn‖q2n+2

)σ
. (27)

Case 1. If ‖xn − yn‖q2n+2 6= 0, let kn be the unique integer such that

|ρ|kn ≤ nn‖xn − yn‖q2n+2 < |ρ|kn−1 . (28)

Since nn‖xn − yn‖q2n+2 ≤ nn(‖xn‖q2n+3 + ‖yn‖q2n+3) ≤ |ρ|n by (26), we have kn ≥ n.

Case 2. If ‖xn − yn‖q2n+2 = 0 holds, we choose the integer kn ≥ n so large that
‖f(xn)− f(yn)‖q ≥ n(|ρ|kn)σ.

In either case, we define

γn : B
K
|ρ|n(0) → E , γn(t) := xn +

t

ρkn
(yn − xn) .

By Lemma 5.7, we then have γ<k>
n = 0 for k ≥ 2, furthermore

‖γ<1>
n ‖q2n,∞ =

‖xn − yn‖q2n

|ρ|kn
≤ ‖xn − yn‖q2n+2

|ρ|kn
<

n−n

|ρ|

by definition of kn, and finally

‖γn‖q2n,∞ ≤ |ρn|‖xn − yn‖q2n+1

|ρ|kn
+ ‖xn‖q2n+1 < n−n

|ρ| + 1
2
n−n|ρ|n <

(
1
2

+ 1
|ρ|

)
n−n ,

entailing that ‖γn‖q0,∞ < 1 (see (25)) and thus im γn ⊆ Bq0
1 (0) ⊆ U . In view of the

preceding, (23) in Remark 5.5 is satisfied by the calibration (qn)n∈N0 with C = 1
2
+ 1

|ρ| .

Therefore the General Curve Lemma (Lemma 5.4) provides a smooth map γ : K → E

with γ(K) ⊆ U such that γ(t) = γn(t− ρn−1) for each n ∈ N and t ∈ B
K
|ρ|n(ρn−1). In

particular, γ(ρn−1) = γn(0) = xn and γ(ρn−1 + ρkn) = γn(ρkn) = yn for each n ∈ N.
Hence

‖f(γ(ρn))− f(γ(ρn−1 + ρkn))‖q =‖f(xn)− f(yn)‖q > n · nσn(‖xn − yn‖q2n+2)
σ (29)

=n · nσk

(
‖xn − yn‖q2n+2

|ρkn|

)σ

|ρkn|σ ≥ n|ρkn|σ (30)
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in Case 1, using (27) in (29) and then (28) for the final inequality. In Case 2, we
have

‖f(γ(ρn))− f(γ(ρn−1 + ρkn))‖q = ‖f(xn)− f(yn)‖q ≥ n · (|ρ|kn)σ (31)

by choice of kn. Thus (31) holds for each n, and hence f ◦ γ is not C0,σ. In fact, if
f ◦ γ were C0,σ, there would be a 0-neighbourhood J ⊆ K and a gauge g on K such
that ‖f(γ(t))− f(γ(s))‖q ≤ (‖t− s‖g)

σ for all s, t ∈ J . As a consequence of Lemma
2.21, there is C > 0 such that g ≤ C|.|. Hence ‖f(γ(t))− f(γ(s))‖q ≤ Cσ|t− s|σ for
all s, t ∈ J , which contradicts (31).

The general case: Let ` be a positive integer now. If f ◦γ is C`,σ for each smooth map
γ : K`+1 → U , then f ◦γ is C` in particular and hence f is C`, by [2, Theorem 12.4].
To prove that f is C`,σ, it only remains to show that f [`] is C0,σ. We assume that
f [`] is not C0,σ and derive a contradiction. Since U ]`[ is dense in the domain U [`]

of the continuous map f [`], Lemma 2.28 shows that there exists x0 ∈ U [`] and a
gauge q on F such that, for each neighbourhood V ⊆ U [`] of x0 and gauge p on E[`],
there are x, y ∈ V ∩ U ]`[ such that ‖f [`](x) − f [`](y)‖q > (‖x − y‖p)

σ. We now pick
xn, yn ∈ U ]`[ as above in the case ` = 0, applied to f [`] instead of f , and obtain a
smooth curve γ : K → U [`] such that γ(ρn−1) = xn and γ(ρn−1 + ρn) = yn. Applying
[2, Lemma 12.3] with m := 1, V := K, D := {ρn−1 : n ∈ N} ∪ {ρn−1 + ρn : n ∈ N}
and X0 := {0}, we obtain a smooth map Γ: W → U , defined on an open subset
W ⊆ K`+1, an open neighbourhood Y of 0 in K, and a smooth map g : Y → W [`]

such that
(∀t ∈ D ∩ Y ) f [`](γ(t)) = (f ◦ Γ)[`](g(t)) . (32)

There is N ∈ N such that ρn−1 ∈ Y and ρn−1 + ρn ∈ Y for each integer n ≥ N . The
hypothesis implies that f ◦ Γ is C`,σ (see Lemma 5.8). As a consequence, (f ◦ Γ)[`]

is C0,σ and hence also (f ◦ Γ)[`] ◦ g is C0,σ. However, by construction of γ and (32),
for each n ≥ N we have

‖(f ◦ Γ)[`](g(ρn−1))− (f ◦ Γ)[`](g(ρn−1 + ρn))‖q

= ‖f [`](γ(ρn−1))− f [`](γ(ρn−1 + ρn))‖q = ‖f [`](xn)− f [`](yn)‖q

≥ n|ρn|σ ,

arguing as in (30) to pass to the last line. Hence (f ◦Γ)[`]◦g is not C0,σ, contradicting
the preceding. This closes the proof in the ultrametric case.

Now assume that K = R, and pick r ∈ ]0, 1[. If f is not C0,σ, then there exists
x0 ∈ U and a gauge q on F such that, for each neighbourhood V ⊆ U of x0 and
gauge p on E, there are x, y ∈ V such that ‖f(x) − f(y)‖q > (‖x − y‖p)

σ. After a
translation, we may assume that x0 = 0. Take a gauge q0 on E such that B

q0

1 (0) ⊆ U ,
and extend it to a calibration (qn)n∈N0 on E such that {qn : n ∈ N0} is a fundamental
system of gauges. We may assume that q0 ≤ 2

7
q1. Applying the above property of q

for a given n ∈ N to V := B
q2n+3
1
2
n−nrn(0) and p := n

1
σ nnq2n+2, we find xn, yn ∈ E such

that

‖xn‖q2n+3 , ‖yn‖q2n+3 ≤ 1

2
n−nrn

and ‖f(xn)− f(yn)‖q > n · nσn
(
‖xn − yn‖q2n+2

)σ
.
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Case 1: If ‖xn − yn‖q2n+2 6= 0, define sn := nn‖xn − yn‖q2n+2 ≤ rn. Case 2: If
‖xn − yn‖q2n+2 = 0, choose sn ∈ ]0, rn] such that ‖f(xn) − f(yn)‖q ≥ n · (sn)σ. In
either case, we define rn := sn + 2

n2 and

γn : [−rn, rn] → E , γn(t) := xn +
t

sn

(yn − xn) .

By Lemma 5.7, we then have γ<k>
n = 0 for k ≥ 2, furthermore ‖γ<1>

n ‖q2n,∞ =
‖yn−xn‖q2n

sn
≤ n−n by definition of sn, and finally ‖γn‖q2n,∞ < 7

2
n−n because

‖γn(x)‖q2n ≤ ‖xn‖q2n+1 + rn
‖yn − xn‖q2n+1

sn

≤ 1
2
n−nrn +

(
rn + 2

n2

)
n−n ≤ 7

2
n−n,

entailing that ‖γn‖q0,∞ ≤ 1 and thus im γn ⊆ B
q0

1 (0) ⊆ U . In view of the preceding,
(23) in Remark 5.5 is satisfied with C = 7

2
. Therefore the General Curve Lemma

(Lemma 5.6) provides a smooth map γ : R → E with γ(R) ⊆ [0, 1]B
q0

1 (0) = B
q0

1 (0) ⊆
U , and a convergent sequence (tn)n∈N of reals such that γ(tn + t) = γn(t) for each
n ∈ N and t ∈ R such that |t| ≤ sn. In particular, γ(tn) = γn(0) = xn and
γ(tn + sn) = γn(sn) = yn for each n ∈ N. Hence

‖f(γ(tn))− f(γ(tn + sn))‖q = ‖f(xn)− f(yn)‖q > n · nσn(‖xn − yn‖q2n+2)
σ

= n · nσk

(
‖xn − yn‖q2n+2

sn

)σ

(sn)σ = n · (sn)σ

in Case 1. In Case 2, we have

‖f(γ(tn))− f(γ(tn + sn))‖q = ‖f(xn)− f(yn)‖q ≥ n · (sn)σ (33)

by choice of sn. Thus (33) holds for each n, and hence f ◦ γ is not C0,σ.

The general case: If ` is a positive integer and f is not C`,σ although f ◦ γ is
C`,σ for each smooth map γ : K`+1 → U , we reach a contradiction along the lines
of the ultrametric case. First, applying the case ` = 0 to f [`] instead of f , we
find a gauge q on F and xn, yn ∈ U ]`[, positive reals sn such that

∑∞
n=1 sn < ∞,

a smooth curve γ : R → U [`] and a convergent sequence (tn)n∈N of reals such that
γ(tn) = xn, γ(tn + sn) = yn and ‖f [`](xn)− f [`](yn)‖q ≥ n(sn)σ for each n ∈ N. Let
t∞ := limn→∞ tn. Applying [2, Lemma 12.3] with m := 1, V := K, D := {tn : n ∈
N}∪{tn +sn : n ∈ N} and X0 := {t∞}, we obtain a smooth map Γ: W → U , defined
on an open subset W ⊆ R`+1, an open neighbourhood Y of t∞ in R, and a smooth
map g : Y → W [`] such that (32) holds. There is N ∈ N such that tn ∈ Y and
tn + sn ∈ Y for all n ≥ N . The hypothesis implies that f ◦ Γ is C`,σ (Lemma 5.8).
As a consequence, (f ◦ Γ)[`] is C0,σ and hence also (f ◦ Γ)[`] ◦ g is C0,σ. However,
by construction of γ and (32), we have ‖(f ◦ Γ)[`](g(tn))− (f ◦ Γ)[`](g(tn + sn))‖q =
‖f [`](γ(tn)) − f [`](γ(tn + sn))‖q = ‖f [`](xn) − f [`](yn)‖q ≥ n(sn)σ for each n ≥ N ,
whence (f ◦ Γ)[`] ◦ g is not C0,σ, which is absurd. �
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6 Weakly H ölder differentiable maps

If K is a topological field and E a topological K-vector space, we let E ′ be the space
of all continuous linear functionals λ : E → K.

Definition 6.1. Let E and F be topological vector spaces over a valued field K and
f : U → F be a map on a subset U ⊆ E. Let σ > 0. We say that f is weakly C0,σ if
λ ◦ f : U → K is C0,σ for each λ ∈ F ′. If U has dense interior and k ∈ N ∪ {∞}, we
say that f is weakly Ck,σ if λ ◦ f : U → K is Ck,σ for each λ ∈ F ′.

Remark 6.2. Note that each Ck,σ-map is weakly Ck,σ (cf. Lemma 2.34).

Remark 6.3. Let f : U → F be a weakly Ck,σ-map on a subset U ⊆ E with
dense interior and g : V → U be a Ck,1-map on a subset V with dense interior of a
topological K-vector space H (e.g., a Ck+1-map). Then λ ◦ (f ◦ g) = (λ ◦ f) ◦ g is
Ck,σ for each λ ∈ F ′ (by Lemma 2.33) and thus f ◦ g is weakly Ck,σ.

Recall that a topological vector space over an ultrametric field is called locally
convex if its vector topology can be defined by a family of ultrametric seminorms
(cf. [16] for further information).

Lemma 6.4. Let (E, ‖.‖) be a normed space over a locally compact field K, F be a
locally convex space over K and f : K → F be a map on a compact set K ⊆ E. Let
σ > 0. Then the following conditions are equivalent:

(a) f is a C0,σ-map.

(b) For each continuous seminorm q on F , there is C ∈ [0,∞[ such that

‖f(y)− f(x)‖q ≤ C (‖y − x‖)σ for all x, y ∈ K. (34)

(c) f is weakly C0,σ.

Proof. (a)⇒(b): Let q be as in (b). If f is C0,σ, then for each z ∈ K there exists an
open neighbourhood Uz ⊆ K of z and a gauge pz on E such that

‖f(y)− f(x)‖q ≤ (‖y − x‖pz)
σ for all x, y ∈ Uz.

Let Vz be an open neighbourhood of z in K with compact closure Vz ⊆ Uz. There
exists a finite subset Φ ⊆ K such that K =

⋃
z∈Φ Vz. For each z ∈ Φ, there exists

rz > 0 such that pz ≤ rz‖.‖ (cf. Lemma 2.21). Let r := max{rz : z ∈ Φ}. The sets
Vz and K \ Uz being compact and disjoint, we can define

s := sup {‖y − x‖−σ : z ∈ Φ, x ∈ Vz, y ∈ K \ Uz} ∈ [0,∞[ .

Then (34) holds with C := max{rσ, 2s max ‖f(K)‖q}. In fact, given x, y ∈ K, there
exists z ∈ Φ such that x ∈ Vz. If y ∈ Uz, then ‖f(y) − f(x)‖q ≤ (‖y − x‖pz)

σ ≤
(rz)

σ‖y−x‖σ ≤ C‖y−x‖σ. If y 6∈ Ux, also ‖f(y)−f(x)‖q ≤ ‖f(y)‖q+‖f(x)‖q

‖y−x‖σ ‖y−x‖σ ≤
2s max ‖f(K)‖q‖y − x‖σ ≤ C‖y − x‖σ.

(b)⇒(a): Given a gauge g on F , by local convexity there exists a continuous
seminorm q (which can be chosen ultrametric if K is a local field) such that g ≤ q
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(cf. Lemma 2.21). Let C be as in (b). Then p := C
1
σ ‖.‖ is a gauge on E such that

‖f(y)− f(x)‖g ≤ ‖f(y)− f(x)‖q ≤ (‖x− y‖p)
σ for all x, y ∈ K. Thus (a) holds.

(a)⇒(c): See Remark 6.2.

(c)⇒(b): Pick ρ ∈ K× with |ρ| < 1 and define β(r) := ρk for r ∈ ]0,∞[, where
k ∈ Z is the unique integer such that |ρ|k+1 < rσ ≤ |ρ|k. Then

|ρ| · |β(r)| < rσ ≤ |β(r)| for all r ∈ ]0,∞[. (35)

If f is weakly C0,σ, define

B :=

{
f(y)− f(x)

β(‖y − x‖)
: x, y ∈ K such that x 6= y.

}

We claim that B is bounded. If this is true, then M := sup ‖B‖q < ∞ for each
continuous seminorm (or gauge) q on F (see Lemma 2.24) and hence

‖f(y)−f(x)‖q =
‖f(y)− f(x)‖q

|β(‖y − x‖)|
|β(‖y−x‖)| ≤ M |β(‖y−x‖)| ≤ M |ρ|−1‖y−x‖σ

for all x, y ∈ K such that x 6= y, using (35) for the final inequality. Hence (34) holds
with C := M |ρ|−1.

It remains to show that B is bounded, or equivalently, that λ(B) ⊆ K is bounded
for each λ ∈ F ′ (see [17, Theorem 3.18] for the real case (from which the complex
case follows) and [19, Theorem 4.21] for the case where K is a local field). However,
for each λ ∈ F ′, the map λ ◦ f : K → K is C0,σ and hence, by (a)⇒(b) already
established, there exists C ∈ [0,∞[ such that

|λ(f(y))− λ(f(x))| ≤ C ‖y − x‖σ for all x, y ∈ K.

But then sup |λ(B)| ≤ C (whence λ(B) is bounded), since∣∣∣∣∣λ
(

f(y)− f(x)

β(‖y − x‖)

)∣∣∣∣∣ = |λ(f(y))− λ(f(x))|
|β(‖y − x‖)|

≤ |λ(f(y))− λ(f(x))|
‖y − x‖σ

≤ C (36)

for all x, y ∈ K such that x 6= y, using (35) to obtain the first inequality. �

Remark 6.5. If K is a local field in the situation of Lemma 6.4, it suffices to consider
ultrametric continuous seminorms in (b) (as the proof shows).

Recall that a topological vector space E over a topological field K is called se-
quentially complete if every Cauchy sequence in E is convergent. We say that E
is Mackey complete if every Mackey-Cauchy sequence in E is convergent. Here, a
sequence (xn)n∈N in E is called a Mackey-Cauchy sequence if there exists a bounded
subset B ⊆ E and elements µn,m ∈ K such that xn − xm ∈ µn,mB for all n, m ∈ N
and µn,m → 0 in K as both n, m →∞.

Note that every Mackey-Cauchy sequence also is a Cauchy sequence; hence every
sequentially complete topological K-vector space is Mackey complete. In the real
locally convex case, Mackey completeness is a (particularly weak) standard com-
pleteness property, which is of great usefulness for infinite-dimensional calculus (see
[12, notably §2] for an in-depth discussion).



900 H. Glöckner

Theorem 6.6. Let K 6= C be a locally compact field, E and F be topological K-
vector spaces, f : U → F be a map on an open set U ⊆ E, k ∈ N0 ∪ {∞} and
σ ∈ ]0, 1]. If E is metrizable and F is both Mackey complete and locally convex,
then f is Ck,σ if and only if f is weakly Ck,σ.

Proof. The other implication being trivial, we only need to show that if f is weakly
Ck,σ, then f is Ck,σ. As a consequence of Theorem 5.1, f will be Ck,σ if we can show
that g := f ◦ γ : K` → F is Ck,σ for each ` ∈ N and each smooth map γ : K` → U .
Note that g is weakly Ck,σ since so is f (see Remark 6.3). Hence, after replacing f
with g, we may assume that U = E = K` for some ` ∈ N. We may assume that
k ∈ N0; the proof is by induction on k.

If k = 0 and f : E = K` → F is weakly C0,σ, let x ∈ E and K ⊆ E be a compact
neighbourhood of x. Then f |K is C0,σ by Lemma 6.4. Hence f is C0,σ locally and
hence f is C0,σ, by Lemma 2.35.

Induction step. If k ≥ 1 and f : E = K` → F is weakly Ck,σ, given x, y ∈ E choose

a sequence (tn)n∈N of pairwise distinct elements in B
K
1 (0) \ {0} with tn → 0. Set

B :=
{

f ]1[(x, y, tm)− f ]1[(x, y, tn)

β(|tm − tn|)
: n,m ∈ N

}
,

where β : ]0,∞[→ K× is as in the proof of Lemma 6.4 (as well as ρ used to
define β). Then λ(B) ⊆ K is bounded for each λ ∈ F ′ and hence B is bounded (by
[17, Theorem 3.18], resp., [19, Theorem 4.21]). In fact, since λ ◦ f is C1,σ, it follows
that (λ ◦ f)[1] is C0,σ. Applying now Lemma 6.4 to the restriction of (λ ◦ f)[1] to the

compact set {x} × {y} ×B
K
1 (0), we find C ∈ [0,∞[ such that

|(λ ◦ f)[1](x, y, t)− (λ ◦ f)[1](x, y, s)| ≤ C|t− s|σ for all s, t ∈ B
K
1 (0).

Repeating the calculation in (36), we find that sup |λ(B)| ≤ C. Hence B is indeed
bounded.

Since f ]1[(x, y, tm) − f ]1[(x, y, tn) ∈ β(|tm − tn|)B, where B is bounded and
β(|tm − tn|) → 0 as both n,m →∞, we deduce that (f ]1[(x, y, tn))n∈N is a Mackey-
Cauchy sequence in F and thus convergent; we let g(x, y, 0) be its limit.
Then λ(g(x, y, 0)) = limn→∞(λ ◦ f)]1[(x, y, tn) = (λ ◦ f)[1](x, y, 0) for each λ.
Furthermore, trivially λ(g(x, y, t)) = (λ ◦ f)[1](x, y, t) for g(x, y, t) := f ]1[(x, y, t) =
t−1(f(x+ty)−f(x)) if (x, y, t) ∈ E×E×K×. Thus λ◦g = (λ◦f)[1] is Ck−1,σ for each
λ, whence g is Ck−1,σ, by induction. Hence f is C1,σ, with f [1] = g a Ck−1,σ-map.
Thus f is Ck,σ. �

A Details for Section 2

In this appendix, proofs are provided for the lemmas of Section 2.

Proof of Lemma 2.11. The assertions are obvious from our definitions of U>α<

and f>α<. �

Proof of Lemma 2.12. The 1-dimensional case of this lemma is well known (see
[18, Exercise 29.A]). Having done this exercise (or not), the reader should not have
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difficulties to work out the details of the following sketch: We start with formula (3)
for f>α<(x), and split the sum

∑αi
ji=0 occurring there into the sum

∑βi
ji=1, plus the

two remaining summands with ji = 0 and ji = αi, respectively. In the sum
∑βi

ji=1,
rewrite the factor 1

x
(i)
ji
−x

(i)
0

· 1

x
(i)
ji
−x

(i)
αi

of the product involved in the summands as

1

x
(i)
0 − x

(i)
αi

·

 1

x
(i)
ji
− x

(i)
0

− 1

x
(i)
ji
− x

(i)
αi

 .

Finally, take 1

x
(i)
0 −x

(i)
αi

out of the sum and combine the summands to

f>β<(x(1), . . . , x(i−1), x
(i)
0 , . . . , x

(i)
βi

, x(i+1), . . . , x(d))

−f>β<(x(1), . . . , x(i−1), x
(i)
1 , . . . , x(i)

αi
, x(i+1), . . . , x(d)) .

After a reordering of the arguments in the second term with the help of Lemma 2.11,
we obtain (5). �

Proof of Lemma 2.14. The validity of (6) is clear from the definition of U<α>.
Since U>α< is dense in U<α>, if suffices to check (7) for x ∈ U>α<. But then (7)
holds by Lemma 2.11. �

Proof of Lemma 2.15. We let W be the set of all x ∈ U<α> such that x
(i)
0 6= x(i)

αi
,

and define h(x) by (8) for x ∈ W . Then both f<α>|W and h : W → F are continuous
and coincide with f>α< on U>α<, by Lemma 2.12. Since U>α< is dense in W , it
follows that f<α>|W = h. �

Proof of Lemma 2.24. If B ⊆ E is bounded and q is a gauge, then there exists
t ∈ K× such that tB ⊆ Bq

1(0). Thus |t| · ‖x‖q = ‖tx‖q < 1 for all x ∈ B and thus
sup q(B) ≤ |t|−1. Conversely, suppose that q(B) is bounded for each gauge q. If
U ⊆ E is a 0-neighbourhood, there exists a gauge q on E such that Bq

1(0) ⊆ U .
Choose r > 0 such that r sup q(B) < 1. Then BK

r (0) · B ⊆ Bq
1(0) ⊆ U , showing

that B is bounded. �

Proof of Lemma 2.27. (a) Given x0 ∈ U , a gauge q on F , and ε > 0, we choose
a gauge p on E and a neighbourhood W ⊆ U of x0 such that ‖f(y) − f(x)‖q ≤
(‖y − x‖p)

σ for all x, y ∈ W . Define δ := ε
1
σ . Then f(W ∩ Bp

δ (x0)) ⊆ Bq
δσ(f(x0)) =

Bq
ε(f(x0)), as ‖f(y)− f(x0)‖q ≤ (‖y − x0‖p)

σ for all y ∈ W . Hence f is continuous
at x0 (see [9, Lemma 1.27 (b)]).

(b) Since f is C0,σ, given x0 ∈ U and a gauge q on F , we find a gauge p on E
and a neighbourhood W ⊆ U of x0 such that ‖f(y) − f(x)‖q ≤ (‖y − x‖p)

σ for all
x, y ∈ W . Let s be a gauge on E such that p(x+y) ≤ s(x)+s(y) for x, y ∈ E. After
replacing W with W ∩Bs

1/2(x0), we may assume that ‖y− x‖p < 1 for all x, y ∈ W .
Then ‖f(y) − f(x)‖q ≤ (‖y − x‖p)

σ = (‖y − x‖p)
σ−τ (‖y − x‖p)

τ ≤ (‖y − x‖p)
τ for

all x, y ∈ W , whence f is C0,τ .
(c) Let x0 ∈ U . Given a gauge q on H, there exists a gauge p on F and a

neighbourhood R ⊆ V of f(x0) such that ‖g(y) − g(x)‖q ≤ (‖y − x‖p)
τ for all

x, y ∈ R. There exists a gauge s on E and a neighbourhood S ⊆ f−1(R) of x0 such
that ‖f(y) − f(x)‖p ≤ (‖y − x‖s)

σ for all x, y ∈ S. Then ‖g(f(y)) − g(f(x))‖q ≤
(‖f(y)− f(x)‖p)

τ ≤ (‖y − x‖s)
σ·τ for all x, y ∈ S.

(d) See [9, Lemma 2.5 (c)]. �
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Proof of Lemma 2.28. If f is not C0,σ, then there exists x0 ∈ U and a gauge q0

on F such that, for each neighbourhood V ⊆ U of x0 and gauge p on E, there are
x, y ∈ V such that ‖f(y)− f(x)‖q0 > (‖y − x‖p)

σ. Let q be a gauge on F such that
q0(u + v) ≤ q(u) + q(v) for all u, v ∈ F . After replacing q with a larger gauge, we
may assume that q is upper semicontinuous (cf. Remark 2.18 and Lemma 2.21). We
now verify that x0 and q have the desired properties. To this end, let V ⊆ U be a
neighbourhood of x0 and p0 be a gauge on E. Let p ≥ p0 be an upper semicontinuous
gauge. Then there are x, y ∈ V such that ε := ‖f(y) − f(x)‖q0 − (‖y − x‖p)

σ > 0.
Choose r > ‖y − x‖p such that rσ ≤ (‖y − x‖p)

σ + ε
2
. Since Bp

r (0) and Bq
ε/2(0)

are open and the relevant maps are continuous, we find x′, y′ ∈ V ∩ D such that
‖y′ − x′‖p < r and ‖f(y) − f(x) − f(y′) + f(x′)‖q < ε

2
. Using the fake triangle

inequality, we now obtain

‖f(y′)− f(x′)‖q ≥ ‖f(y)− f(x)‖q0 − ‖f(y)− f(x)− f(y′) + f(x′)‖q

> ‖f(y)− f(x)‖q0 −
ε

2
= (‖y − x‖p)

σ +
ε

2
≥ (‖y′ − x′‖p)

σ ≥ (‖y′ − x′‖p0)
σ ,

as desired. �

Proof of Lemma 2.34. If k = 0, then λ ◦ f is C0,σ by Lemma 2.27 (c), exploiting
that λ, being continuous linear, is C∞

BGN and hence Lipschitz continuous. If f is
Ck+1,σ

BGN , then λ◦f is Ck,σ
BGN by induction, with (λ◦f)[k] = λ◦f [k]. Furthermore, λ◦f is

Ck+1
BGN , by 2.3. Now (λ◦f)[k+1] = ((λ◦f)[k])[1] = λ[1]◦T̂ (f [k]) = λ◦(f [k])[1] = λ◦f [k+1]

is C0,σ, using 2.3 for the second equality, 2.2 for the third (cf. also [9, Remark 1.7]).
Hence λ ◦ f is Ck+1,σ

BGN with (λ ◦ f)[k+1] = λ ◦ f [k+1] of the desired form. �

Proof of Lemma 2.32. If f is Ck,σ
BGN , then also fi = pri ◦f is Ck,σ

BGN , since pri

is continuous linear (Lemma 2.34). Conversely, assume that each component fi of
f : U → ∏

i∈I Fi = F is Ck,σ
BGN . We proceed by induction.

The case k = 0. Given a gauge q on F , there exists a finite subset J ⊆ I and bal-
anced, open 0-neighbourhoods Wj ⊆ Fj for j ∈ J such that W :=

⋂
j∈J pr−1

j (Wj) ⊆
Bq

1(0). We let s := µW : F → [0,∞[ be the Minkowski functional of W (see Re-
mark 2.18), and sj : Fj → [0,∞[ be the Minkowski functional of Wj, for j ∈ J .
Then s(x) = max{sj(xj) : j ∈ J} holds for each x = (xi)i∈I ∈ F . Furthermore,
q(x) ≤ s(x). In fact, given x ∈ F and t ∈ K× such that x ∈ tW , we have
q(x) = q(t(x/t)) = |t|·q(x/t) ≤ |t| (using that W ⊆ Bq

1(0)). Letting |t| → µW (x), we
see that q(x) ≤ µW (x) = s(x). For each j ∈ J , there is a gauge pj on E and a neigh-
bourhood Vj of x0 in U such that ‖fj(y)−fj(x)‖sj

≤ (‖y−x‖pj
)σ for all x, y ∈ Vj. Set

V :=
⋂

j∈J Vj and p(x) := max{pj(x) : j ∈ J} for x ∈ E. Then p is a gauge on E such
that ‖f(y)−f(x)‖q ≤ ‖f(y)−f(x)‖s = max{‖fj(y)−fj(x)‖sj

: j ∈ J} ≤ (‖y−x‖p)
σ

for all x, y ∈ V .

Induction step. Assume that each component fi is Ck,σ
BGN , where k ≥ 1. Then f is

C1
BGN , with f [1] = (f

[1]
i )i∈I (cf. [2, Lemma 10.2]). The components f

[1]
i of this map

are Ck−1,σ
BGN , whence f [1] is Ck−1,σ

BGN , by induction. Hence f is Ck,σ
BGN . �
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Proof of Lemma 2.33. We proceed by induction on k ∈ N0. If k = 0, then
Lemma 2.33 is a special case of Lemma 2.27 (c).

Induction step: If f is Ck,σ
BGN and g is Ck,τ

BGN with k ≥ 1, then g ◦ f is Ck
BGN

and (g ◦ f)[1] = g[1] ◦ T̂ f with T̂ f : U [1] → V [1] ⊆ F × F × K, T̂ f(x, y, t) :=
(f(x), f [1](x, y, t), t) (see 2.3). Here the second component of T̂ f is Ck−1,σ

BGN ; the
final component is continuous linear and hence C∞,σ

BGN (since σ ≤ 1); and the first
component is a composition of the Ck,σ

BGN -map f and (a restriction of) the continuous
linear (and hence C∞,1

BGN -) mapping E × E ×K → E, (x, y, t) 7→ x, whence also the
first component is Ck−1,σ

BGN , by the case k − 1 (valid by induction). Now Lemma 2.32
shows that T̂ f is Ck−1,σ

BGN , and thus (g ◦ f)[1] = g[1] ◦ T̂ f is Ck−1,σ·τ
BGN , by induction.

Hence g ◦ f is Ck,σ·τ
BGN . �

Proof of Lemma 2.35. We may assume that k ∈ N0; the proof is by induction. If
k = 0 and f |Ui

is C0,σ for each i ∈ I, then f is C0,σ, as is obvious from the definition.
Induction step: If f |Ui

is Ck+1,σ
BGN , then f is Ck,σ

BGN by induction, and furthermore f

is C1
BGN (by Lemma 2.4). The sets U

[1]
i together with U ]1[ form an open cover for

U [1], and f [1]|
U

[1]
i

= (f |Ui
)[1] is Ck,σ

BGN for each i ∈ I. For (x, y, t) ∈ U ]1[, we have

f [1](x, y, t) = f(x+ty)−f(x)
t

; since f is Ck,σ
BGN , we deduce with Lemma 2.33 from the

preceding formula that f [1]|U ]1[ is Ck,σ
BGN . Applying the inductive hypothesis, we see

that f [1] is Ck,σ
BGN . Hence f is Ck+1,σ

BGN . �
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[7] Glöckner, H., Aspects of p-adic non-linear functional analysis, pp. 237–253 in:
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