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Abstract

Let K be an algebraically closed field, complete for a non-trivial ultra-
metric absolute value. We denote by A the K- Banach algebra of bounded
analytic functions in the unit disk {x ∈ K | |x| < 1}. We study some proper-
ties of ideals of A. We show that maximal ideals of infinite codimension are
not of finite type and that A is not a Bezout ring.

1 Introduction and Results

Definitions and notation: Let K be an algebraically closed field complete with
respect to a non-trivial ultrametric absolute value | . |.

Given a ∈ K and r, s ∈]0,+∞[ (r < s), we put d(a, r) = {x ∈ K | |x− a| ≤ r},
d(a, r−) = {x ∈ K | |x− a| < r} and Γ(a, r, s) = {x ∈ K | r < |x− a| < s}.

We denote byA theK-algebra of bounded power series converging inside d(0, 1−).

Given f(x) =
∞∑

n=0

anx
n and r ∈]0, 1], we put |f |(r) = sup

n∈N
|an|rn and ‖f‖ = |f |(1).

The multiplicative norm ‖ . ‖ defined on A makes A a K-Banach algebra, [1, 2].

One of the main differences between p-adic and complex analytic functions con-
sists in the existence of sequences of zeroes for some elements of A. This is recalled
in Theorem A, [1] (theorem 25.5) and [7].
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Theorem A: Let (an)n∈N be a sequence of d(0, 1−) such that |an| ≤ |an+1|, ∀n ∈ N,
and limn→+∞ |an| = 1. Let (qn)n∈N ⊂ N and B ∈]1,+∞[. There exists f ∈ A
satisfying

1. f(0) = 1,

2. sup{|f(x)| | x ∈ d(0, |an|)} ≤ B
∏n

j=0

∣∣∣an

aj

∣∣∣qj

, ∀n ∈ N,

3. an is a zero of f of order sn ≥ qn, ∀n ∈ N.

Moreover, if K is spherically complete, for every sequence (an)n∈N of d(0, 1−)
such that limn→+∞ |an| = 1 and for every sequence of positive integers (sn)n∈N, there
exist functions f ∈ A admitting each an as a zero of order sn and having no other
zero.

If K is not spherically complete, there exist sequences (an)n∈N of d(0, 1−) such
that limn→+∞ |an| = 1 and sequences of positive integers (sn)n∈N such that no func-
tion f ∈ A admits each an as a zero of order sn and has no other zero.

Theorem B: Let (αn)n∈N be a sequence of d(0, 1−) such that 0 < |αn| < |αn+1|,
∀n ∈ N, and limn→+∞ |αn| = 1. If the ideal I of the f ∈ A such that limn→+∞ f(αn) =
0 is not null, it is not of finite type.

Remark and definition: In a complex Banach algebra, every maximal ideal has
codimension 1, [5], [4]. This is not the same on an ultrametric field. The maximal
ideals of codimension 1 are easily characterized by the points of d(0, 1−) e.g. a
maximal ideal of codimension 1 of A is of the form (x − a)A, where |a| < 1. But
there also exist maximal ideals of infinite codimension. They are called non-trivial
maximal ideals of A, [1, 2].

Recall that a ring is called a Bezout ring if it has no divisor of zero and if any
ideal of finite type is principal.

Theorem C: Non-trivial maximal ideals of A are not of finite type.

Theorem D: A is not a Bezout ring.

Acknowledgement: The authors are grateful to the referee for pointing out many
misprints and errors of redaction.

2 The Proofs

Definitions and notation: Let D be a closed bounded subset of K. We denote by
R(D) the K-algebra of rational functions without pole in D. It is provided with the
K-algebra norm of uniform convergence on D that we denote by ‖ . ‖D. We then
denote by H(D) the completion of R(D) for the topology of uniform convergence
on D: H(D) is a Banach K-algebra whose elements are called the analytic elements
on D, [1, 6]. It is known that if f ∈ A then f ∈ H(d(0, r)), ∀r ∈]0, 1[, [1] (Th. 13.3).

For a ∈ K and r > 0, we call circular filter of center a and diameter r on K
the filter F which admits as a generating system the family of sets Γ(α, r′, r′′) with
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α ∈ d(a, r), r′ < r < r′′, i.e. F is the filter which admits for base the family of sets

of the form
q⋂

i=1

Γ(αi, r
′
i, r

′′
i )) with αi ∈ d(a, r), r′i < r < r′′i (1 ≤ i ≤ q , q ∈ N).

We call circular filter with no center, of diameter r of canonical base (Dn)n∈N a
filter admitting for base a sequence (Dn)n∈N where each Dn is a disk d(an, rn), such

that
∞⋂

n=1

d(an, rn) = ∅ and lim
n→∞

rn = r [1], [2], [3]

Finally the filter of neighborhoods of a point a ∈ K is called circular filter of
center a and diameter 0 or Cauchy circular filter of limit a.

A circular filter is said to be large if it has diameter different from 0. If F is a
large circular filter secant to some disk d(0, r), then for any f ∈ H(d(0, r)), the limit
limF |f(x)| exists and is strictly positive if f 6= 0, [1].

A sequence (un)n∈N in L is said to be an increasing distances sequence (resp. a
decreasing distances sequence) if the sequence |un+1−un| is strictly increasing (resp.
decreasing) and has a limit ` ∈ R∗

+.
The sequence (un)n∈N will be said to be a monotonous distances sequence if it is

either an increasing distances sequence or a decreasing distances sequence.
A sequence (un)n∈N in L will be said to be an equal distances sequence if

|un − um| = |um − uq| whenever n,m, q ∈ N such that n 6= m 6= q 6= n.

Lemma 1: Let (αn)n∈N be a sequence of d(0, 1−) without any cluster point and let
f ∈ A, f 6= 0, such that limn→+∞ f(αn) = 0. Then limn→+∞ |αn| = 1.

Proof. Suppose the lemma is false. Then there exists a disk d(0, s) ⊂ d(0, 1−)
containing a subsequence of (αn)n∈N and by Theorem 3.1, [1], we can extract a
subsequence which is either a monotonous distances sequence or an equal distances
sequence. Therefore, by Proposition 3.15, [1], there exists a unique large circular
filter F secant with d(0, s) and less thin than this subsequence. Since, by Lemma
12.5 [1] |f(x)| has a limit ϕF(fs) along F we then have limF f(x) = 0. On the other
hand, the restriction of f to d(0, s) belongs to H(d(0, s)). Now, by Proposition 40.1
in [1], ϕF is an absolute value on H(d(0, s)), so limF f(x) = 0 implies f = 0.

Lemma 2 is immediate:

Lemma 2: Let f ∈ A. Then |f(x)− f(y)| ≤ ‖f‖|x− y|.

Corollary: Let (αn)n∈N (βn)n∈N be sequences of d(0, 1−) such that limn→+∞ |αn| =
1 and limn→+∞ αn − βn = 0. The ideal of the f ∈ A such that limn→+∞ f(αn) = 0
is equal to the ideal of the f ∈ A such that limn→+∞ f(βn) = 0.

Lemma 3 is given in [9] as (3.1):
Lemma 3: Let f1, ..., fq ∈ A satisfying

inf
x∈D

(max(|f1(x)|, ..., |fq(x)|)) > 0. Then there exist g1, ..., gq ∈ A such that
q∑

j=1

gjfj = 1.
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Proof of Theorem B. Suppose I 6= {0} and suppose that there exist f1, · · · , fq ∈ I
such that I =

∑q
j=1 fjA.

Since the zeroes of each fj are isolated, we can obviously find a sequence (βn)n∈N
in d(0, 1−) such that |αn| = |βn| ∀n ∈ N, fj(βn) 6= 0 ∀j = 1, ..., q ∀n ∈ N and
limn→+∞ f(βn) = 0. Then by the Corollary of Lemma 2, I is the ideal of the f ∈ A
such that limn→+∞ f(βn) = 0. Thus, without loss of generality, we may assume that
fj(αn) 6= 0 ∀j = 1, ..., q ∀n ∈ N.

Now, since limn→+∞ max1≤j≤q(|fj(αn)|) = 0, we can extract a subsequence
(ατ(m))m∈N such that

max
1≤j≤q

(|fj(ατ(m))|) < max
1≤j≤q

(|fj(ατ(m−1))|) ∀m ∈ N.

Then, for at least one of the index k (among 1, ..., q) the equality max1≤j≤q(|fj(ατ(m))|) =
|fk(ατ(m)| holds for infinitely many integers m. Thus we can extract a new sequence
(ατ(φ(m)))m∈N such that max1≤j≤q(|fj(ατ(φ(m)))|) = |fk(ατ(φ(m))| ∀m ∈ N.

Set t(m) = τ(φ(m)). Thus, we have max1≤j≤q(|fj(αt(m)))|) = |fk(αt(m))| ∀m ∈ N.
For convenience, we may suppose k = 1 and set M = ‖f1‖. For each m ∈ N, set
rm = |αt(m)|, let (γj)1≤j≤u(m) be the finite sequence of the zeroes of f1 in d(0, rm)
and let sj be the order of γj (1 ≤ j ≤ u(m).

Now, consider ψm =
f1∏u(m)

j=1 (1− x
γj

)sj

. Since ψm has no zero in d(0, rm), by

Theorem 23.6 [1], we know that |ψm(x)| = |ψm(0)| = |f1(0)|, ∀x ∈ d(0, |rm|).
Next, since

∏u(m)
j=1 (1 − x

γj
)sj has no zeroes in Γ(0, rm, 1) and has all its zeroes

in d(0, rm), we know that
∣∣∣∣ ∏u(m)

j=1 (1 − x
γj

)sj

∣∣∣∣ ≥ ∏u(m)
j=1 ( |x||γj |)

sj ∀x ∈ Γ(0, rm, 1), hence

‖ψm‖ ≤M .

By induction, we can clearly define a sequence (λm)m∈N inK such that
√
|f1(αt(m))| ≤

|λm| <
√
|f1(αt(m−1))|, ∀m ≥ 1 and satisfying further for eachm ∈ N |λmψm(αt(m))| 6=

|λjψj(αt(m))| ∀j 6= m. Since limm→+∞ |λm| = 0 and since ‖ψm‖ ≤ M , the se-
ries h =

∑+∞
m=0 λmψm converges in A. Then, since the |λjψj(αt(m))| are all dis-

tinct, we have |h(αt(m))| = maxj∈N |λjψj(αt(m))| ≥ |λmψm(αt(m))| ≥ |λmf1(0)|
(because |ψm(x)| = |f1(0)| ∀x ∈ d(0, rm)), hence |h(αt(m))| ≥

√
|f1(αt(m))| i.e.

|h(αt(m))| ≥ max1≤j≤q

√
|fj(αt(m))|. Consequently

lim
n→+∞

|h(αt(m))|
max1≤j≤q |fj(αt(m))|

= +∞ and therefore h does not belong to I.

But now, we notice that for each n > t(m), we have

|h(αn)| = |
∞∑

n=0

λmψm(αn)| ≤ sup
m∈N

|λm||f1(αn)|,

hence limn→+∞ h(αn) = 0 and hence, h belongs to I, a contradiction that finishes
the proof.

Proof of Theorem C. Let M be a non-trivial maximal ideal of A and let us suppose
that M =

∑q
j=1 fjA. By Lemma 3 there exists a sequence (βs)s∈N in d(0, 1−) such

that lims→∞ |fj(βs)| = 0, for any j = 1, .., q because if such a sequence does not
exist, then

∑q
j=1 fjA = A.
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If the sequence (βs)s∈N has a cluster point a ∈ d(0, 1−), then fj(a) = 0 for any
j = 1, .., q, hence f(a) = 0 ∀f ∈ M and it follows that M is the ideal of the f ∈ A
such that f(a) = 0. By Corollary 13.4 [1] we know that such functions factorize
in the form (x − a)g, with g ∈ A, hence M = (x − a)A a contradiction. Hence
the sequence (βs)s∈N has no cluster point. Then, by Lemma 1, we can extract a
subsequence (αn)n∈N, where αn = βσ(n), ∀n ∈ N, such that 0 < |αn| < |αn+1|,
limn→+∞ |αn| = 1. We then have limn→∞ fj(αn) = 0, for any j = 1, .., q and hence
limn→∞ f(αn) = 0, for any f ∈ M. But since M is maximal, M is the ideal of the
f ∈ A such that limn→∞ f(αn) = 0 and so M is not of finite type by Theorem B.

Proof of Theorem D. Let (an)n∈N be a bounded sequence of K such that the sequence
(| an

an+1
|) is strictly increasing. Let f(x) =

∑+∞
n=0 anx

n, and for any n ∈ N, set rn =

| an

an+1
|. Since the sequence (an)n∈N is bounded, we know that f belongs to A. Then,

by Theorem 23.15 ([1]), we know that f admits a unique zero αn ∈ C(0, rn), of order
1, for any n ∈ N and does not admit any other zero.

Let (βn) be a sequence of d(0, 1−) such that βn ∈ C(0, rn), 0 < |αn − βn| < rn,
limn→+∞(βn − αn) = 0. For any ρ > 0, we set Dρ = d(0, 1−) \ ⋃+∞

n=0 d(αn, ρ
−). We

then know that the meromorphic product u(x) =
∏+∞

n=0
x−βn

x−αn
converges in H(Dρ),

for any ρ > 0, [1, 8].
On the other hand, for any s ∈]0, ρ[, we know that the restriction of f to d(0, s)

belongs toH(d(0, s)), [1], (Proposition 13.3). We setDρ,s = Dρ∩d(0, s). Let g = uf .
Then u belongs to H(Dρ,s) and in each hole d(αn, ρ

−) of Dρ,s, g is meromorphic in
this hole ([1], Chap. 31) but does not admit any pole. Hence g ∈ H(d(0, s)) for any
s < ρ. Moreover, we see that |f(x)| = |g(x)|, for any x ∈ d(0, 1−) \ ⋃+∞

n=0 d(αn, r
−
n )

because |u(x)| = 1 in this set. Thus, we have, lim|x|→1 |f(x)| = lim|x|→1 |g(x)|, hence
g is bounded in d(0, 1−); i.e. g ∈ A.

Now, by construction, the βn are the only zeroes of g. So, f and g have no
common zero. Let I = fA + gA. Next, since limn→+∞(βn − αn) = 0 by Lemma 2
we see that limn→+∞ f(βn) = 0, hence limn→+∞ φ(βn) = 0, ∀φ ∈ I. Suppose that I
is a principal ideal, generated by some h ∈ A. Obviously, limn→+∞ h(βn) = 0. But
since f and g have no common zero, h does not admit any zero in d(0, 1−) because
any zero of h would be a common zero of f and g. Now, by Theorem 23.6 ([1]), any
function φ ∈ A which does not admit any zero in d(0, 1−) satisfies |φ(x)| = |φ(0)|,
∀x ∈ d(0, 1−), hence |h(βn)| = |h(0)| ∀n ∈ N, a contradiction to limn→+∞ h(βn) = 0.
Hence A is not a Bezout ring.
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