# On Ideals of the Algebra of $p$-adic Bounded Analytic Functions on a Disk 

Alain Escassut Nicolas Maïnetti


#### Abstract

Let $K$ be an algebraically closed field, complete for a non-trivial ultrametric absolute value. We denote by $A$ the $K$ - Banach algebra of bounded analytic functions in the unit disk $\{x \in K||x|<1\}$. We study some properties of ideals of $A$. We show that maximal ideals of infinite codimension are not of finite type and that $A$ is not a Bezout ring.


## 1 Introduction and Results

Definitions and notation: Let $K$ be an algebraically closed field complete with respect to a non-trivial ultrametric absolute value $|$.$| .$

Given $a \in K$ and $r, s \in] 0,+\infty[(r<s)$, we put $d(a, r)=\{x \in K| | x-a \mid \leq r\}$, $d\left(a, r^{-}\right)=\{x \in K| | x-a \mid<r\}$ and $\Gamma(a, r, s)=\{x \in K|r<|x-a|<s\}$.

We denote by $A$ the $K$-algebra of bounded power series converging inside $d\left(0,1^{-}\right)$.
Given $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $\left.\left.r \in\right] 0,1\right]$, we put $|f|(r)=\sup _{n \in \mathbb{N}}\left|a_{n}\right| r^{n}$ and $\|f\|=|f|(1)$. The multiplicative norm $\|$.$\| defined on A$ makes $A$ a $K$-Banach algebra, [1, 2].

One of the main differences between $p$-adic and complex analytic functions consists in the existence of sequences of zeroes for some elements of $A$. This is recalled in Theorem A, [1] (theorem 25.5) and [7].

[^0]Theorem A: $\quad \operatorname{Let}\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of $d\left(0,1^{-}\right)$such that $\left|a_{n}\right| \leq\left|a_{n+1}\right|, \forall n \in \mathbb{N}$, and $\lim _{n \rightarrow+\infty}\left|a_{n}\right|=1$. Let $\left(q_{n}\right)_{n \in \mathbb{N}} \subset \mathbb{N}$ and $\left.B \in\right] 1,+\infty[$. There exists $f \in A$ satisfying

1. $f(0)=1$,
2. $\sup \left\{|f(x)| \mid x \in d\left(0,\left|a_{n}\right|\right)\right\} \leq B \prod_{j=0}^{n}\left|\frac{a_{n}}{a_{j}}\right|^{q_{j}}, \forall n \in \mathbb{N}$,
3. $a_{n}$ is a zero of $f$ of order $s_{n} \geq q_{n}, \forall n \in \mathbb{N}$.

Moreover, if $K$ is spherically complete, for every sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of $d\left(0,1^{-}\right)$ such that $\lim _{n \rightarrow+\infty}\left|a_{n}\right|=1$ and for every sequence of positive integers $\left(s_{n}\right)_{n \in \mathbb{N}}$, there exist functions $f \in A$ admitting each $a_{n}$ as a zero of order $s_{n}$ and having no other zero.

If $K$ is not spherically complete, there exist sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ of $d\left(0,1^{-}\right)$such that $\lim _{n \rightarrow+\infty}\left|a_{n}\right|=1$ and sequences of positive integers $\left(s_{n}\right)_{n \in \mathbb{N}}$ such that no function $f \in A$ admits each $a_{n}$ as a zero of order $s_{n}$ and has no other zero.

Theorem B: Let $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ be a sequence of $d\left(0,1^{-}\right)$such that $0<\left|\alpha_{n}\right|<\left|\alpha_{n+1}\right|$, $\forall n \in \mathbb{N}$, and $\lim _{n \rightarrow+\infty}\left|\alpha_{n}\right|=1$. If the ideal I of the $f \in A$ such that $\lim _{n \rightarrow+\infty} f\left(\alpha_{n}\right)=$ 0 is not null, it is not of finite type.

Remark and definition: In a complex Banach algebra, every maximal ideal has codimension 1, [5], [4]. This is not the same on an ultrametric field. The maximal ideals of codimension 1 are easily characterized by the points of $d\left(0,1^{-}\right)$e.g. a maximal ideal of codimension 1 of $A$ is of the form $(x-a) A$, where $|a|<1$. But there also exist maximal ideals of infinite codimension. They are called non-trivial maximal ideals of $A,[1,2]$.

Recall that a ring is called a Bezout ring if it has no divisor of zero and if any ideal of finite type is principal.

Theorem C: Non-trivial maximal ideals of $A$ are not of finite type.
Theorem D: $A$ is not a Bezout ring.
Acknowledgement: The authors are grateful to the referee for pointing out many misprints and errors of redaction.

## 2 The Proofs

Definitions and notation: Let $D$ be a closed bounded subset of $K$. We denote by $R(D)$ the $K$-algebra of rational functions without pole in $D$. It is provided with the $K$-algebra norm of uniform convergence on $D$ that we denote by $\|.\|_{D}$. We then denote by $H(D)$ the completion of $R(D)$ for the topology of uniform convergence on $D: H(D)$ is a Banach $K$-algebra whose elements are called the analytic elements on $D,[1,6]$. It is known that if $f \in A$ then $f \in H(d(0, r)), \forall r \in] 0,1[$, [1] (Th. 13.3).

For $a \in K$ and $r>0$, we call circular filter of center a and diameter $r$ on $K$ the filter $\mathcal{F}$ which admits as a generating system the family of sets $\Gamma\left(\alpha, r^{\prime}, r^{\prime \prime}\right)$ with
$\alpha \in d(a, r), r^{\prime}<r<r^{\prime \prime}$, i.e. $\mathcal{F}$ is the filter which admits for base the family of sets of the form $\left.\bigcap_{i=1}^{q} \Gamma\left(\alpha_{i}, r_{i}^{\prime}, r_{i}^{\prime \prime}\right)\right)$ with $\alpha_{i} \in d(a, r), r_{i}^{\prime}<r<r_{i}^{\prime \prime} \quad(1 \leq i \leq q, q \in \mathbb{N})$.

We call circular filter with no center, of diameter $r$ of canonical base $\left(D_{n}\right)_{n \in \mathbb{N}}$ a filter admitting for base a sequence $\left(D_{n}\right)_{n \in \mathbb{N}}$ where each $D_{n}$ is a disk $d\left(a_{n}, r_{n}\right)$, such that $\bigcap_{n=1}^{\infty} d\left(a_{n}, r_{n}\right)=\emptyset$ and $\lim _{n \rightarrow \infty} r_{n}=r$ [1], [2], [3]

Finally the filter of neighborhoods of a point $a \in K$ is called circular filter of center $a$ and diameter 0 or Cauchy circular filter of limit $a$.
A circular filter is said to be large if it has diameter different from 0 . If $\mathcal{F}$ is a large circular filter secant to some disk $d(0, r)$, then for any $f \in H(d(0, r))$, the limit $\lim _{\mathcal{F}}|f(x)|$ exists and is strictly positive if $f \neq 0$, [1].

A sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ in $L$ is said to be an increasing distances sequence (resp. a decreasing distances sequence) if the sequence $\left|u_{n+1}-u_{n}\right|$ is strictly increasing (resp. decreasing) and has a limit $\ell \in \mathbb{R}_{+}^{*}$.

The sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ will be said to be a monotonous distances sequence if it is either an increasing distances sequence or a decreasing distances sequence.

A sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ in $L$ will be said to be an equal distances sequence if $\left|u_{n}-u_{m}\right|=\left|u_{m}-u_{q}\right|$ whenever $n, m, q \in \mathbb{N}$ such that $n \neq m \neq q \neq n$.

Lemma 1: Let $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ be a sequence of $d\left(0,1^{-}\right)$without any cluster point and let $f \in A, f \neq 0$, such that $\lim _{n \rightarrow+\infty} f\left(\alpha_{n}\right)=0$. Then $\lim _{n \rightarrow+\infty}\left|\alpha_{n}\right|=1$.

Proof. Suppose the lemma is false. Then there exists a disk $d(0, s) \subset d\left(0,1^{-}\right)$ containing a subsequence of $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ and by Theorem 3.1, [1], we can extract a subsequence which is either a monotonous distances sequence or an equal distances sequence. Therefore, by Proposition 3.15, [1], there exists a unique large circular filter $\mathcal{F}$ secant with $d(0, s)$ and less thin than this subsequence. Since, by Lemma $12.5[1]|f(x)|$ has a limit $\varphi_{\mathcal{F}}(f s)$ along $\mathcal{F}$ we then have $\lim _{\mathcal{F}} f(x)=0$. On the other hand, the restriction of $f$ to $d(0, s)$ belongs to $H(d(0, s))$. Now, by Proposition 40.1 in [1], $\varphi_{\mathcal{F}}$ is an absolute value on $H(d(0, s))$, so $\lim _{\mathcal{F}} f(x)=0$ implies $f=0$.

Lemma 2 is immediate:
Lemma 2: Let $f \in A$. Then $|f(x)-f(y)| \leq\|f\||x-y|$.
Corollary: Let $\left(\alpha_{n}\right)_{n \in \mathbb{N}}\left(\beta_{n}\right)_{n \in \mathbb{N}}$ be sequences of $d\left(0,1^{-}\right)$such that $\lim _{n \rightarrow+\infty}\left|\alpha_{n}\right|=$ 1 and $\lim _{n \rightarrow+\infty} \alpha_{n}-\beta_{n}=0$. The ideal of the $f \in A$ such that $\lim _{n \rightarrow+\infty} f\left(\alpha_{n}\right)=0$ is equal to the ideal of the $f \in A$ such that $\lim _{n \rightarrow+\infty} f\left(\beta_{n}\right)=0$.

Lemma 3 is given in [9] as (3.1):
Lemma 3: Let $f_{1}, \ldots, f_{q} \in A$ satisfying
$\inf _{x \in D}\left(\max \left(\left|f_{1}(x)\right|, \ldots,\left|f_{q}(x)\right|\right)\right)>0$. Then there exist $g_{1}, \ldots, g_{q} \in A$ such that $\sum_{j=1}^{q} g_{j} f_{j}=1$.

Proof of Theorem B. Suppose $I \neq\{0\}$ and suppose that there exist $f_{1}, \cdots, f_{q} \in I$ such that $I=\sum_{j=1}^{q} f_{j} A$.

Since the zeroes of each $f_{j}$ are isolated, we can obviously find a sequence $\left(\beta_{n}\right)_{n \in \mathbb{N}}$ in $d\left(0,1^{-}\right)$such that $\left|\alpha_{n}\right|=\left|\beta_{n}\right| \forall n \in \mathbb{N}, f_{j}\left(\beta_{n}\right) \neq 0 \forall j=1, \ldots, q \forall n \in \mathbb{N}$ and $\lim _{n \rightarrow+\infty} f\left(\beta_{n}\right)=0$. Then by the Corollary of Lemma $2, I$ is the ideal of the $f \in A$ such that $\lim _{n \rightarrow+\infty} f\left(\beta_{n}\right)=0$. Thus, without loss of generality, we may assume that $f_{j}\left(\alpha_{n}\right) \neq 0 \forall j=1, \ldots, q \forall n \in \mathbb{N}$.

Now, since $\lim _{n \rightarrow+\infty} \max _{1 \leq j \leq q}\left(\left|f_{j}\left(\alpha_{n}\right)\right|\right)=0$, we can extract a subsequence $\left(\alpha_{\tau(m)}\right)_{m \in \mathbb{N}}$ such that

$$
\max _{1 \leq j \leq q}\left(\left|f_{j}\left(\alpha_{\tau(m)}\right)\right|\right)<\max _{1 \leq j \leq q}\left(\left|f_{j}\left(\alpha_{\tau(m-1)}\right)\right|\right) \forall m \in \mathbb{N} .
$$

Then, for at least one of the index $k$ (among $1, \ldots, q$ ) the equality $\max _{1 \leq j \leq q}\left(\left|f_{j}\left(\alpha_{\tau(m)}\right)\right|\right)=$ $\mid f_{k}\left(\alpha_{\tau(m)} \mid\right.$ holds for infinitely many integers $m$. Thus we can extract a new sequence $\left(\alpha_{\tau(\phi(m))}\right)_{m \in \mathbb{N}}$ such that $\max _{1 \leq j \leq q}\left(\left|f_{j}\left(\alpha_{\tau(\phi(m))}\right)\right|\right)=\mid f_{k}\left(\alpha_{\tau(\phi(m))} \mid \forall m \in \mathbb{N}\right.$.

Set $t(m)=\tau(\phi(m))$. Thus, we have $\max _{1 \leq j \leq q}\left(\left|f_{j}\left(\alpha_{t(m))}\right)\right|\right)=\mid f_{k}\left(\alpha_{t(m))} \mid \forall m \in \mathbb{N}\right.$. For convenience, we may suppose $k=1$ and set $M=\left\|f_{1}\right\|$. For each $m \in \mathbb{N}$, set $r_{m}=\left|\alpha_{t(m)}\right|$, let $\left(\gamma_{j}\right)_{1 \leq j \leq u(m)}$ be the finite sequence of the zeroes of $f_{1}$ in $d\left(0, r_{m}\right)$ and let $s_{j}$ be the order of $\gamma_{j}(1 \leq j \leq u(m)$.

Now, consider $\psi_{m}=\frac{f_{1}}{\prod_{j=1}^{u(m)}\left(1-\frac{x}{\gamma_{j}}\right)^{s_{j}}}$. Since $\psi_{m}$ has no zero in $d\left(0, r_{m}\right)$, by Theorem 23.6 [1], we know that $\left|\psi_{m}(x)\right|=\left|\psi_{m}(0)\right|=\left|f_{1}(0)\right|, \forall x \in d\left(0,\left|r_{m}\right|\right)$.

Next, since $\prod_{j=1}^{u(m)}\left(1-\frac{x}{\gamma_{j}}\right)^{s_{j}}$ has no zeroes in $\Gamma\left(0, r_{m}, 1\right)$ and has all its zeroes in $d\left(0, r_{m}\right)$, we know that $\left|\prod_{j=1}^{u(m)}\left(1-\frac{x}{\gamma_{j}}\right)^{s_{j}}\right| \geq \prod_{j=1}^{u(m)}\left(\frac{|x|}{\left|\gamma_{j}\right|}\right)^{s_{j}} \forall x \in \Gamma\left(0, r_{m}, 1\right)$, hence $\left\|\psi_{m}\right\| \leq M$.

By induction, we can clearly define a sequence $\left(\lambda_{m}\right)_{m \in \mathbb{N}}$ in $K$ such that $\sqrt{\left|f_{1}\left(\alpha_{t(m)}\right)\right|} \leq$ $\left|\lambda_{m}\right|<\sqrt{\left|f_{1}\left(\alpha_{t(m-1)}\right)\right|}, \forall m \geq 1$ and satisfying further for each $m \in \mathbb{N}\left|\lambda_{m} \psi_{m}\left(\alpha_{t(m)}\right)\right| \neq$ $\left|\lambda_{j} \psi_{j}\left(\alpha_{t(m)}\right)\right| \forall j \neq m$. Since $\lim _{m \rightarrow+\infty}\left|\lambda_{m}\right|=0$ and since $\left\|\psi_{m}\right\| \leq M$, the series $h=\sum_{m=0}^{+\infty} \lambda_{m} \psi_{m}$ converges in $A$. Then, since the $\left|\lambda_{j} \psi_{j}\left(\alpha_{t(m)}\right)\right|$ are all distinct, we have $\left|h\left(\alpha_{t(m)}\right)\right|=\max _{j \in \mathbb{N}}\left|\lambda_{j} \psi_{j}\left(\alpha_{t(m)}\right)\right| \geq\left|\lambda_{m} \psi_{m}\left(\alpha_{t(m)}\right)\right| \geq\left|\lambda_{m} f_{1}(0)\right|$ (because $\left|\psi_{m}(x)\right|=\left|f_{1}(0)\right| \forall x \in d\left(0, r_{m}\right)$, hence $\left|h\left(\alpha_{t(m)}\right)\right| \geq \sqrt{\left|f_{1}\left(\alpha_{t(m)}\right)\right|}$ i.e. $\left|h\left(\alpha_{t(m)}\right)\right| \geq \max _{1 \leq j \leq q} \sqrt{\left|f_{j}\left(\alpha_{t(m)}\right)\right|}$. Consequently
$\lim _{n \rightarrow+\infty} \frac{\left|h\left(\alpha_{t(m)}\right)\right|}{\max _{1 \leq j \leq q}\left|f_{j}\left(\alpha_{t(m)}\right)\right|}=+\infty$ and therefore $h$ does not belong to $I$.
But now, we notice that for each $n>t(m)$, we have

$$
\left|h\left(\alpha_{n}\right)\right|=\left|\sum_{n=0}^{\infty} \lambda_{m} \psi_{m}\left(\alpha_{n}\right)\right| \leq \sup _{m \in \mathbb{N}}\left|\lambda_{m}\right|\left|f_{1}\left(\alpha_{n}\right)\right|
$$

hence $\lim _{n \rightarrow+\infty} h\left(\alpha_{n}\right)=0$ and hence, $h$ belongs to $I$, a contradiction that finishes the proof.

Proof of Theorem C. Let $\mathcal{M}$ be a non-trivial maximal ideal of $A$ and let us suppose that $\mathcal{M}=\sum_{j=1}^{q} f_{j} A$. By Lemma 3 there exists a sequence $\left(\beta_{s}\right)_{s \in \mathbb{N}}$ in $d\left(0,1^{-}\right)$such that $\lim _{s \rightarrow \infty}\left|f_{j}\left(\beta_{s}\right)\right|=0$, for any $j=1, . ., q$ because if such a sequence does not exist, then $\sum_{j=1}^{q} f_{j} A=A$.

If the sequence $\left(\beta_{s}\right)_{s \in \mathbb{N}}$ has a cluster point $a \in d\left(0,1^{-}\right)$, then $f_{j}(a)=0$ for any $j=1, . ., q$, hence $f(a)=0 \forall f \in \mathcal{M}$ and it follows that $\mathcal{M}$ is the ideal of the $f \in A$ such that $f(a)=0$. By Corollary 13.4 [1] we know that such functions factorize in the form $(x-a) g$, with $g \in A$, hence $\mathcal{M}=(x-a) A$ a contradiction. Hence the sequence $\left(\beta_{s}\right)_{s \in \mathbb{N}}$ has no cluster point. Then, by Lemma 1, we can extract a subsequence $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$, where $\alpha_{n}=\beta_{\sigma(n)}, \forall n \in \mathbb{N}$, such that $0<\left|\alpha_{n}\right|<\left|\alpha_{n+1}\right|$, $\lim _{n \rightarrow+\infty}\left|\alpha_{n}\right|=1$. We then have $\lim _{n \rightarrow \infty} f_{j}\left(\alpha_{n}\right)=0$, for any $j=1, . ., q$ and hence $\lim _{n \rightarrow \infty} f\left(\alpha_{n}\right)=0$, for any $f \in \mathcal{M}$. But since $\mathcal{M}$ is maximal, $\mathcal{M}$ is the ideal of the $f \in A$ such that $\lim _{n \rightarrow \infty} f\left(\alpha_{n}\right)=0$ and so $\mathcal{M}$ is not of finite type by Theorem B.

Proof of Theorem D. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a bounded sequence of $K$ such that the sequence $\left(\left|\frac{a_{n}}{a_{n+1}}\right|\right)$ is strictly increasing. Let $f(x)=\sum_{n=0}^{+\infty} a_{n} x^{n}$, and for any $n \in \mathbb{N}$, set $r_{n}=$ $\left|\frac{a_{n}}{a_{n+1}}\right|$. Since the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is bounded, we know that $f$ belongs to $A$. Then, by Theorem 23.15 ([1]), we know that $f$ admits a unique zero $\alpha_{n} \in C\left(0, r_{n}\right)$, of order 1 , for any $n \in \mathbb{N}$ and does not admit any other zero.

Let $\left(\beta_{n}\right)$ be a sequence of $d\left(0,1^{-}\right)$such that $\beta_{n} \in C\left(0, r_{n}\right), 0<\left|\alpha_{n}-\beta_{n}\right|<r_{n}$, $\lim _{n \rightarrow+\infty}\left(\beta_{n}-\alpha_{n}\right)=0$. For any $\rho>0$, we set $D_{\rho}=d\left(0,1^{-}\right) \backslash \bigcup_{n=0}^{+\infty} d\left(\alpha_{n}, \rho^{-}\right)$. We then know that the meromorphic product $u(x)=\prod_{n=0}^{+\infty} \frac{x-\beta_{n}}{x-\alpha_{n}}$ converges in $H\left(D_{\rho}\right)$, for any $\rho>0,[1,8]$.

On the other hand, for any $s \in] 0, \rho[$, we know that the restriction of $f$ to $d(0, s)$ belongs to $H(d(0, s))$, [1], (Proposition 13.3). We set $D_{\rho, s}=D_{\rho} \cap d(0, s)$. Let $g=u f$. Then $u$ belongs to $H\left(D_{\rho, s}\right)$ and in each hole $d\left(\alpha_{n}, \rho^{-}\right)$of $D_{\rho, s}, g$ is meromorphic in this hole ([1], Chap. 31) but does not admit any pole. Hence $g \in H(d(0, s))$ for any $s<\rho$. Moreover, we see that $|f(x)|=|g(x)|$, for any $x \in d\left(0,1^{-}\right) \backslash \bigcup_{n=0}^{+\infty} d\left(\alpha_{n}, r_{n}^{-}\right)$ because $|u(x)|=1$ in this set. Thus, we have, $\lim _{|x| \rightarrow 1}|f(x)|=\lim _{|x| \rightarrow 1}|g(x)|$, hence $g$ is bounded in $d\left(0,1^{-}\right)$; i.e. $g \in A$.

Now, by construction, the $\beta_{n}$ are the only zeroes of $g$. So, $f$ and $g$ have no common zero. Let $I=f A+g A$. Next, since $\lim _{n \rightarrow+\infty}\left(\beta_{n}-\alpha_{n}\right)=0$ by Lemma 2 we see that $\lim _{n \rightarrow+\infty} f\left(\beta_{n}\right)=0$, hence $\lim _{n \rightarrow+\infty} \phi\left(\beta_{n}\right)=0, \forall \phi \in I$. Suppose that $I$ is a principal ideal, generated by some $h \in A$. Obviously, $\lim _{n \rightarrow+\infty} h\left(\beta_{n}\right)=0$. But since $f$ and $g$ have no common zero, $h$ does not admit any zero in $d\left(0,1^{-}\right)$because any zero of $h$ would be a common zero of $f$ and $g$. Now, by Theorem 23.6 ( $[1]$ ), any function $\phi \in A$ which does not admit any zero in $d\left(0,1^{-}\right)$satisfies $|\phi(x)|=|\phi(0)|$, $\forall x \in d\left(0,1^{-}\right)$, hence $\left|h\left(\beta_{n}\right)\right|=|h(0)| \forall n \in \mathbb{N}$, a contradiction to $\lim _{n \rightarrow+\infty} h\left(\beta_{n}\right)=0$. Hence $A$ is not a Bezout ring.

## References

[1] Escassut, A. Analytic Elements in p-adic Analysis, World Scientific Publishing Inc., Singapore (1995).
[2] Escassut, A. Ultrametric Banach Algebras, World Scientific Publishing Inc., Singapore (2003).
[3] Garandel, G. Les semi-normes multiplicatives sur les algèbres d'éléments analytiques au sens de Krasner, Indag. Math., 37, n4, p.327-341, (1975).
[4] Gelfand, I.M., Raikov, D.A., Chilov, G.E. Les anneaux normés commutatifs, Monographies Internationales de Mathématiques Modernes, GauthierVillars, Paris, (1964).
[5] Hoffman, K. Banach Spaces of Analytic Functions. Prentice-Hall Inc. (1962).
[6] Krasner, M. Prolongement analytique uniforme et multiforme dans les corps valués complets, Les tendances géométriques en algèbre et théorie des nombres, Colloques Internationaux du CNRS, Clermont-Ferrand, 143, p. 194141 (1966).
[7] Lazard, M. Les zéros des fonctions analytiques sur un corps valué complet, IHES, Publications Mathématiques n14, p.47-75 ( 1962).
[8] Sarmant, M.-C. Produits méromorphes, Bull. Sci. Math., t. 109, P. 155-178, (1985).
[9] Van Der Put, M. The Non-Archimedean Corona Problem Table Ronde Anal. non Archimédienne, Bull. Soc. Math. Mémoire 39-40, p. 287-317 (1974).

Alain Escassut
Laboratoire de Mathématiques UMR 6620
Université Blaise Pascal
(Clermont-Ferrand)
Les Cézeaux
63177 AUBIERE CEDEX
FRANCE
Alain.Escassut@math.univ-bpclermont.fr

Nicolas Maïnetti
LAIC, EA 2146,
IUT, Campus des Cézeaux,
Université d'Auvergne
F-63170 AUBIERE
FRANCE
Nicolas.Mainetti@iut.u-clermont1.fr


[^0]:    2000 Mathematics Subject Classification : Primary 12J25, Secondary 46S10.
    Key words and phrases : bounded analytic functions, ideals of infinite type.

