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Abstract

This paper consists of a survey of the most important results on p-adic
inductive limits obtained by the authors in recent years, together with some
new results on the subject. It is mainly devoted to regularity properties and
their relations with strictness and closedness properties. As a product we get
the p-adic version of the Dieudonné-Schwartz Theorem.

Introduction

A first systematic study of p-adic inductive limits was carried out in 1997, [9]. Since
then the authors of this paper continued the investigation on the subject. A survey
of their most important results together with some new ones can be found here.

Although some of the conditions (on strictness, closedness and regularity) are
inspired by the real or complex case, the results may be different in the non-
archimedean context. This happens especially when the spherical completeness of
the underlying field of scalars is involved. These differences are pointed out in this
paper, which also provides counterexamples to every implication that appears there.

As usual, the Preliminaries (Section 1) contain the necessary material to read
the paper. Then, Section 2 is devoted to conditions of strictness and closedness and
the implications between them (for that we follow [13]). In Section 3, which mostly
contains the new results, the same is done for regularity conditions. Section 4 covers
the essential results of [14], related to the validity of the p-adic version of the classical
Dieudonné-Schwartz Theorem (“Every strict LF-space is regular”, [6], Proposition
4) and of its extensions and improvements given later in the archimedean literature
(see e.g. [15], Theorem 2.12.2, [16], [17], [18] and [22]). Finally, in Section 5, we
present some classes of inductive sequences that turn up to be very useful for the
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construction of most of our (counter)examples, which either do not have a classical
counterpart or if they have one it has a typically archimedean character.

1 Preliminaries

Throughout this paper K = (K, | . |) is a non-archimedean non-trivially valued field
that is complete with respect to the metric induced by the valuation | . |.

Unless explicitly stated otherwise, all the vector spaces and locally convex spaces
we will consider in this paper are over K.

For fundamentals on normed and locally convex spaces we refer to [24] and [25]
respectively.

Let E be a vector space. For a subset A of E we denote by [A] its linear hull.
A is absolutely convex if 0 ∈ A and x, y ∈ A, λ, µ ∈ K, max(|λ| , |µ|) ≤ 1 implies
λ x + µ y ∈ A. For an absolutely convex set A ⊂ E we define Ae := A if the
valuation of K is discrete, Ae :=

⋂{λ A : λ ∈ K, |λ| > 1} otherwise. A is called
edged if A = Ae. By E∗ we mean the algebraic dual of E i.e. the vector space
of all functionals E→K. For f ∈ E∗, Ker f := {x ∈ E : f(x) = 0} and, for A ⊂ E,
f |A is the restriction of f to A.

Let E = (E, τ) be a locally convex space. For a subset A of E we denote by
A

τ
the closure of A in E, and by τ |A the restriction of τ to A. The set A is called

compactoid if for every zero neighbourhood U in E there is a finite set B in E such
that A ⊂ U + aco B, where aco B is the absolutely convex hull of B, that is, the
smallest absolutely convex set containing B. If F is another locally convex space, a
linear map T : E→F is called compact if there is a zero neighbourhood V in E for
which T (V ) is a compactoid in F . Also, E is called nuclear if for every continuous
seminorm p on E there is a continuous seminorm q on E, q ≥ p, such that the
natural map Eq→Ep is compact, where Ep and Eq are the canonical normed spaces
associated to p and q respectively.

By E ′ we denote the dual of E i.e. the vector space of all continuous functionals
E→K. The following basic result will be frequently used through the paper. We
omit its proof, which is a simple adaptation of the classical one given in Theorem
III.1.4 of [28].

Proposition 1.1 Let E be a locally convex space, let f ∈ E∗. Then f is continuous
(i.e. f ∈ E ′) if and only if Ker f is closed in E.

The weak topology σ(E, E ′) is the locally convex topology on E generated
by the family of seminorms {|f | : f ∈ E ′}. Let Z be a subspace of E, endow Z
with the induced topology τ |Z. We say that Z has the Hahn-Banach Extension
Property (HBEP) in E if every f ∈ Z ′ has a continuous linear extension to the
whole space.

A continuous seminorm p on E is called polar if p = sup{|f | : f ∈ E ′, |f | ≤
p}. E is called polar if its topology is generated by a family of polar seminorms;
strongly polar if every continuous seminorm p on E with p(E) ⊂ |K| is polar
(where |K| is the closure in R of {|λ| : λ ∈ K}). E is called of countable type if
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for every continuous seminorm p on E the associated normed space Ep is of countable
type (recall that a normed space is said to be of countable type if it is the closed linear
hull of a countable set). If K is spherically complete, every locally convex space is
strongly polar. For any K, strongly polar spaces are polar and spaces of countable
type are strongly polar. Also, every nuclear space, in particular (E, σ(E, E ′)), is
of countable type. One verifies that each closed subspace of a strongly polar space
(resp. each finite dimensional closed subspace of a polar space) is weakly closed and
has the HBEP.

Now suppose that K is not spherically complete. In this case the situation
is less satisfactory and at the same time more exciting from the non-archimedean
point of view. There exist Banach spaces having a trivial dual, which leads to the
construction of polar Banach spaces having proper closed subspaces that are weakly
dense (so they are not weakly closed) and that do not have the HBEP. Indeed,
(`∞/c0)

′ = {0} ([24], Corollary 4.3). It follows that c0 is a weakly dense subspace of
the polar Banach space `∞ ([12], Example 3, p. 257) without the HBEP in `∞ ([24],
Theorem 4.15). There exist even Banach spaces with orthonormal bases (hence
polar) having closed subspaces with the above properties (note that `∞ does not
have an orthonormal base, [24], Corollary 5.19). In fact, one can find a set I with
cardinality large enough such that `∞/c0 is isometrically isomorphic to a quotient
c0(I)/Z for some closed subspace Z of c0(I). Take x ∈ c0(I), x 6∈ Z. Then Z + Kx
is a closed subspace of c0(I) that is weakly dense and does not have the HBEP in
c0(I); we leave its verification to the reader. Finally we recall the existence of a
proper closed subspace of `∞ that is weakly dense and has the HBEP in `∞ ([26],
Remark after Proposition 1.5) and the existence of a set I such that `∞(I) has a
weakly closed subspace without the HBEP in `∞(I) ([26], Example 3.3).

A very interesting class of locally convex spaces, to which is devoted the present
paper, is formed by the locally convex inductive limits. We point out the central role
that they play in the definition of a p-adic Laplace and Fourier Transform given in
[10] and [11] respectively and in the index theory of p-adic differential equations (see
e.g. [2], [3], [4], [5] and [23]). The last of these references shows also the influence
of inductive limits in the study of the p-adic Monsky-Washnitzer cohomology.

An inductive sequence is an increasing sequence E1 ⊂ E2 ⊂ . . . of subspaces
of a vector space E such that E =

⋃
n En and where, for each n, En is provided

with a locally convex topology τn in such a way that each inclusion En→En+1 is
continuous. The inductive limit of the sequence (En)n is the space E endowed
with the strongest locally convex topology τind for which all the inclusions En→E
are continuous.

If the steps En are normed (resp. Banach, metrizable, Fréchet) spaces then (En)n

is called an LN (resp. LB, LM, LF)-space. As usual, a Fréchet space is a metrizable
complete locally convex space.

We finish these Preliminaries with examples of sequence spaces, which will be
used through the paper.
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Let B := (bn
k)k,n be an infinite matrix consisting of strictly positive real numbers

such that bn
k ≤ bn+1

k for all k, n. For each n ∈ N,

c0(N, 1/bn) := {(λk)k ∈ KN : lim
k
|λk| /bn

k = 0},

is a Banach space of countable type under the norm (λk)k 7→ maxk |λk| /bn
k . The

monotonicity condition we imposed on the matrix B implies that (c0(N, 1/bn))n is an
inductive sequence. Its inductive limit, the so called Köthe dual space, is usually
denoted by Λ0(B).

Further, for each j,

c0(N, bj) := {(λk)k ∈ KN : lim
k
|λk| bj

k = 0},

is a Banach space of countable type under the norm pj defined by

pj((λk)k) := max
k
|λk| bj

k, (λk)k ∈ c0(N, bj). (1)

We consider on the so-called Köthe space Λ0(B) :=
⋂

j c0(N, bj) the normal topol-
ogy, n0,∞, which is the one defined by the family of norms {pj : j ∈ N}. Then
(Λ0(B), n0,∞) is a Fréchet space of countable type. Note that if bn

k = 1 for all n, k
then Λ0(B) is the space c0 of sequences in K tending to 0, equipped with the usual
supremum norm. By c00 we denote the subspace of c0 generated by the canonical
unit vectors.

When bn
k = nk, Λ0(B) is the space of germs of analytic functions at zero, and

Λ0(B) is the space of entire functions on K. For more details on Λ0(B) and Λ0(B),
see Section 3.2 of [9].

From now on in this paper (En)n is an inductive sequence of locally convex spaces
(En, τn) with inductive limit (E, τind).

2 Strictness and closedness properties

Apart from Examples 2.9, the context of this section is in [13], where there are the
details of the proofs.

First we consider some strictness properties.

Definition 2.1 We say that (En)n is
(i) strict if τn+1|En = τn for each n,
(ii) weakly strict if σn+1|En = σn for each n, or equivalently ([13], Proposition

2.6), if (En, σn+1|En)′ = E ′
n for each n (by σn we denote the weak topology on En),

(iii) almost weakly strict if (En, τn+1|En)′ = E ′
n for each n.

Proposition 2.2 ([13], Corollary 2.9, Propositions 2.11, 2.12)
(i) Strictness −→ almost weak strictness.
If, in addition, all the En are metrizable and polar then strictness is equivalent

to almost weak strictness.
(ii) Weak strictness −→ almost weak strictness.
If, in addition, all the En are strongly polar then weak strictness is equivalent to

almost weak strictness.
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In some special cases there are relations between strictness and weak strictness.

Proposition 2.3 ([13], Proposition 2.3)
(i) If all the En are strongly polar then strictness implies weak strictness.
(ii) If all the En are metrizable and polar then weak strictness implies strictness.

But in general strictness and weak strictness are independent properties, as we
show in the next examples, which also prove that the converses of (i) and (ii) of
Proposition 2.2 are not always true.

Examples 2.4 ([13], Examples 2.4)

1. There exist inductive sequences of spaces of countable type that are weakly
strict but not strict.

Proof. Take the inductive sequence (En)n or (Fn)n of 5.1.4 with F of countable
type and Z any subspace of F .

2. If K is not spherically complete then there exist inductive sequences of polar
Banach spaces (even having orthonormal bases) that are strict but not weakly strict.

Proof. Let I be a set such that c0(I) has a closed subspace Z without the HBEP
in c0(I). Then take the inductive sequence (En)n of 5.1.3 with F := c0(I) and Z as
above.

Remark 2.5 It is easily seen that our notion of almost weak strictness coincides
with property (H-8) of the classical paper [16]. In Lemma 1 of this paper the
authors prove that (H-8) is equivalent to: For all n, every fn ∈ E ′

n has an extension
fn ∈ E ′

n+1. This last property is equivalent to our weak strictness (apply [9], Lemma
1.4.5,(i)). Therefore, the result of [16] is in sharp contrast with the p-adic situation
for non-spherically complete fields, because we know that in this case almost weak
strictness (even strictness) does not imply weak strictness, see Example 2.4.2.

Next we consider some closedness properties. Following [13] and [14]:

Definition 2.6 We say that (En)n satisfies
(CI) if En is closed in En+1 for each n,
(CII) if En is closed in E for each n,
(CIII) if En

τind ⊂ En+1 for each n,
(C3) if for each n there exists an m ≥ n such that En

τind ⊂ Em,
(CIV) if, for all n, every closed absolutely convex subset of En is closed in En+1

(or equivalently if, for all n, every closed absolutely convex subset of En is closed in
E, [13], Proposition 3.4),

(CV) if, for all n, every closed absolutely convex and edged subset of En is closed
in En+1 (or equivalently if, for all n, every closed absolutely convex and edged subset
of En is closed in E, [13], Proposition 3.6).

Remark 2.7 One can easily check that if in the definitions of the strictness prop-
erties and of the closedness properties (CI), (CIV) and (CV) we replace the index
n + 1 by an m ≥ n, then it does not make any difference. However, to do this
replacement in the definition of (CIII) leads to (C3), a weaker (and different, see
Example 2.9.1) closedness property.
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Proposition 2.8 ([13], Propositions 3.2, 3.9) (CIV)⇒ (CV)⇒ (CII)⇒ (CI),(CIII);
(CIII) ⇒ (C3).

In the next examples we show that the converses of the above proposition fail.
We also prove that (CI) and (CIII) (resp. (CI) and (C3)) are independent properties
and that they together do not imply (CII) (resp. (CIII)).

Examples 2.9

1. There exist inductive sequences of normed spaces of countable type that satisfy
(CI) and (C3) but not (CIII).

Proof. Take the inductive sequence (En)n of 5.1.2, for m ≥ 2, with Z := Ker f (f
as in 5.1.2). Since Z is τ ′-closed but not τ -closed (Proposition 1.1), it follows from
Theorem 5.1,(v),(vi).(a),(vi).(b) that (En)n satisfies (CI) and (C3) but not (CIII).

2. There exist inductive sequences of metrizable spaces of countable type that
satisfy (CI) but not (C3).

Proof. Take the inductive sequence (Fn)n of 5.1.2 with Z := Ker f (f as in 5.1.2).
With similar reasoning as above we obtain that (Fn)n meets the requirements.

Examples 2.10 ([13], Examples 3.3, 3.10)

1. There exist inductive sequences of normed spaces of countable type that satisfy
(CIII) but not (CI).

Proof. Take the inductive sequence (En)n of 5.1.3, for m = 1, with F of countable
type and Z a non-norm closed subspace of F (e.g. Z := Ker g, where g is a functional
on F that is not norm continuous, Proposition 1.1).

2. There exist inductive sequences of normed spaces of countable type that satisfy
(CI) and (CIII) but not (CII).

Proof. Take the inductive sequence (En)n of 5.1.2, for m = 1, with Z := Ker f
(f as in 5.1.2).

3. There exist inductive sequences of normed spaces of countable type that satisfy
(CII) but not (CV).

Proof. Take the inductive sequence (En)n or (Fn)n of 5.1.2 with Z = {0}.
4. If K is not spherically complete then there exist inductive sequences of spaces

of countable type that satisfy (CV) but not (CIV).

Proof. Take the inductive sequence of Example 2.4.1, where we additionally
assume that Z is norm closed (i.e. τ ′-closed).

It is not possible to give a variant of Example 2.10.4 neither for spherically
complete fields nor for metrizable steps. Indeed, we have the following.

Proposition 2.11 ([13], Proposition 3.11) Suppose either

(a) K is spherically complete,

or

(b) all the En are metrizable and polar.

Then (CIV) is equivalent to (CV).
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We finish this section by discussing the relations between strictness and closed-
ness properties. For more results in this line, see Section 4.

Firstly we see that each of the properties strict and (almost) weakly strict is in
general independent of each of the properties (CI), (CII), (CIII) and (C3).

Examples 2.12 ([13], Examples 4.1)

1. There exist inductive sequences of normed spaces of countable type that are
strict and weakly strict but do not satisfy neither (CI) nor (C3).

Proof. The normed space c0/c00 is infinite dimensional (otherwise, c0 would have
countable dimension, which is not the case because of the Baire Category Theorem,
see e.g. [7], 3.9.3). So there exists a sequence (yn)n in c0 such that y1 6∈ c00 and
yn+1 6∈ c00 + [y1, . . . , yn] for all n.

Then take En := c00 + [y1, . . . , yn] (n ∈ N) equipped with the norm induced by
c0 (note that in the proof carried out in Example 4.1.1 of [13] in order to see that
(CIII) fails for this (En)n, it is implicitly proved that (C3) also fails).

2. There exist inductive sequences of normed spaces of countable type that satisfy
(CII) but are not almost weakly strict.

Proof. Take the inductive sequences of Example 2.10.3.

Because of the independence we now are going to investigate what happens when
we combine some of the strictness properties with some of the closedness properties
(CI)−(CIII) or (C3). At the same time we obtain more information about their
relations with (CIV) and (CV) (for instance, we see that each of the properties
(CIV) and (CV) is not independent of each of strictness properties).

First we start with (CI).

Theorem 2.13 ([13], Theorem 4.3) For an inductive sequence (En)n consider the
following properties.

(a) Strict + (CI).
(b) (CIV).
(c) (CV).
(d) Almost weakly strict + (CI).
(e) Weakly strict + (CI).
Then we have:
(i) (a) −→ (b) −→ (c) −→ (d) ⇐= (e).
(ii) If all the En are strongly polar, then

(c) ⇐⇒ (d) ⇐⇒ (e).

(iii) If all the En are metrizable and polar, then

(a) ⇐⇒ (b) ⇐⇒ (c) ⇐⇒ (d).

If, in addition, all the En are strongly polar, then

(a) ⇐⇒ (b) ⇐⇒ (c) ⇐⇒ (d) ⇐⇒ (e).

(iv) If K is spherically complete, then

(b) ⇐⇒ (c) ⇐⇒ (d) ⇐⇒ (e).
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Remark 2.14 Theorem 2.13 also holds when we replace (CI) by (CII) ([13], Propo-
sition 4.6), but it is not true when we replace (CI) by (CIII) or by (C3) ([13], Remark
4.7.3).

Next we show that the conclusions of (ii), (iii) and (iv) of Theorem 2.13 fail when
the assumptions on the En or on K are removed.

Counterexamples 2.15 (Counterexamples to Theorem 2.13, [13], Counterexam-
ples 4.4)

1. If K is spherically complete then there exist inductive sequences of spaces of
countable type for which (b) holds but (a) fails.

Proof. Take the inductive sequence of Example 2.4.1, where we additionally
assume that Z is a norm closed subspace of F .

Now suppose that K is not spherically spherically complete. Then we have the
following.

2. There exist inductive sequences of spaces of countable type for which (c) holds
but (b) fails.

Proof. This is Example 2.10.4.

3. There exist inductive sequences of polar spaces for which (e) holds (even for
(CII)) but (c) fails.

Proof. Take the inductive sequence (En)n or (Fn)n of 5.1.4 with F being not
strongly polar and Z a weakly closed subspace of F with the HBEP in F .

4. There exist inductive sequences of polar Banach spaces (even having orthonor-
mal bases) for which (d) holds (even (a) holds) but (e) fails.

Proof. The inductive sequence of Example 2.4.2 satisfies the desired conditions.

Problem ([13], Problem 4.5) Suppose K is not spherically complete. Do there
exist inductive sequences (of polar spaces or of spaces of countable type) for which
(b) holds but (a) fails?

The last result of this section gives information about the behaviour of inductive
limits of Fréchet spaces.

Proposition 2.16 ([13], Proposition 4.8) Let (En)n be an inductive sequence such
that all the En are Fréchet spaces. Then each of the properties (CI), (CII), (CIV)
and (CV) characterizes the strictness of the sequence. If, in addition, all the En are
polar (resp. strongly polar) then each of these properties characterizes almost weak
strictness (resp. weak strictness) of (En)n.

Problem ([13], Problem 4.9) Let (En)n be an inductive sequence whose steps En

are Fréchet spaces. Does property (CIII) or (C3) characterize strictness of (En)n?
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3 Regularity properties

Following [18] and [20],

Definition 3.1 We say that (En)n is
(i) regular if for every bounded subset B of E there is an n such that B ⊂ En

and is bounded in En,
(ii) α-regular if for every bounded subset B of E there is an n such that B ⊂ En,
(iii) almost regular if for all n and every bounded subset B of En there is an

m ≥ n such that B
τind ⊂ Em and is bounded in Em,

(iv) almost α-regular if for all n and every bounded subset B of En there is
an m ≥ n such that B

τind ⊂ Em.

The proofs of the next two propositions are straightforward and left to the reader.

Proposition 3.2
(i) regular −→ α-regular −→ almost α-regular.
(ii) regular −→ almost regular −→ almost α-regular.

Proposition 3.3
(i) (En)n is regular ⇐⇒ (En)n is α-regular and for every bounded set B in E

that is contained in some En, there exists m ≥ n such that B is bounded in Em.
(ii) (En)n is almost regular ⇐⇒ (En)n is almost α-regular and for all n and every

bounded set B in En such that B
τind is contained in some Em, m ≥ n, there exists

r ≥ m such that B
τind is bounded in Er.

(iii) (En)n is regular ⇐⇒ (En)n is almost regular and for every bounded set B
in E there exists an n and a bounded set Bn in En such that B ⊂ Bn

τind.
(iv) (En)n is almost α-regular and for every bounded set B in E there exists an

n and a bounded set Bn in En such that B ⊂ Bn
τind −→ (En)n is α-regular.

Remarks 3.4

1. When (En)n satisfies that for every bounded set B in E that is contained in
some En, there exists m ≥ n such that B is bounded in Em ((i)), it is said that
(En)n is β-regular, see [20]. Also, when (En)n satisfies that for every bounded set B
in E there exists an n and a bounded set Bn in En such that B ⊂ Bn

τind ((iii), (iv)),
it is said that (En)n has the Qiu property, see [1].

2. The converse of (iv) is not true, see Remark 3.13.

3. With the same philosophy as in Remark 2.7 one could ask what happens if in
(iii) and (iv) of Definition 3.1 we replace the index m ≥ n by n or by n + 1. This
time the replacements lead to properties that are not adequate for the purposes of
this paper. In fact, there exist inductive sequences of normed spaces of countable
type that are regular but do not satisfy any of these too strong properties. For an
example take the inductive sequence (En)n of Example 2.9.1. By Theorem 5.1,(ix)
this inductive sequence is regular. Next, we will find a B ⊂ Z that is τ ′-bounded but
for which B

τ * Z. (Then, with a simple adaptation of the proof of the first part of
(xii) of Theorem 5.1 we obtain that, for each n, Cn := Bn+m+1×{0}N is a bounded
set in En for which Cn

τind * En+1, and we are done). Let B := {x ∈ Z : ‖x‖f ≤ 1}
(= {x ∈ Z : ‖x‖ ≤ 1}, recall that Z = Ker f). Clearly B is τ ′-bounded. Also, as
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f is not ‖ . ‖-continuous, it follows from Proposition 1.1 that Z is ‖ . ‖-dense in F .
Hence B

τ
= {x ∈ F : ‖x‖ ≤ 1}. Thus, B

τ * Z (otherwise, Z = F i.e. f = 0, a
contradiction).

Proposition 3.5 Suppose either
(a) (En)n is strict,
or
(b) (En)n is weakly strict and all the En are polar,
or
(c) (En)n satisfies (CV) and all the En are polar.
Then we have the following.
(i) (En)n is regular ⇐⇒ (En)n is α-regular.
(ii) (En)n is almost regular ⇐⇒ (En)n is almost α-regular.

Proof. By (i) and (ii) of Proposition 3.3 it suffices to prove that, under the
assumptions of (a), (b) or (c), the following holds:

For each n, τind|En and τn have the same bounded sets.

First assume (a). Then τn = τind|En ([9], Theorem 1.4.7,(i)) and clearly the
above holds.

Now assume (b). Since τind|En ≤ τn we have that every τn-bounded set is τind|En-
bounded. Now let B ⊂ En be τind|En-bounded. By weak strictness, σn = σ|En,
where σn and σ denote the weak topology on En and E respectively ([9], Theorem
1.4.7,(ii)). Thus, E ′

n = (En, σn)′ = (En, σ|En)′ ⊂ (En, τind|En)′. Hence B is weakly
bounded in En and by polarity of En, B is τn-bounded ([25], Theorem 7.5), and we
are done.

Finally assume (c). Then τn and τind|En have the same closed, absolutely convex
and edged sets. By Proposition 1.1, E ′

n = (En, τind|En)′. The rest follows as in (b).

Problem Are (a) and (b) true when we replace “strict” and “weakly strict”
respectively by “almost weakly strict”?

Note that by Proposition 2.2 this question has a partial affirmative answer when
either K is spherically complete or all the En are of countable type or all the En are
metrizable and polar.

Proposition 3.6 Suppose (En)n is an LN-space. Then we have the following.
(i) (En)n is regular ⇐⇒ (En)n is almost regular
(ii) (En)n is α-regular ⇐⇒ (En)n is almost α-regular.

Proof. A simple adaptation of the proof done in Theorem 2 of [18] shows that
every (LN)-space has the Qiu property (see Remark 3.4.1 for this concept). Then
apply (iii) and (iv) of Proposition 3.3.

Remark 3.7 Proposition 3.6 is not true for LM-spaces. In fact, in Example 3.10
we will prove that there exist LM-spaces that are almost regular but not α-regular.
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Next we use the inductive sequences (Fn)n constructed in Theorem 5.1 to give
examples showing that α-regular and almost regular are independent properties and
that the converses of Proposition 3.2 fail if the extra conditions of Propositions 3.5
or 3.6 are removed. First two preliminary lemmas.

Lemma 3.8 Let (Fn)n be the inductive sequence of 5.1.1. Then, for any choice of
Z, we have that

(Fn)n is almost regular ⇐⇒ (Fn)n is almost α-regular.

Proof. The implication almost regular −→ almost α-regular is always true
(Proposition 3.2,(ii)).

Now suppose that the (Fn)n of 5.1.1 is almost α-regular and let us prove that it
is almost regular. By Theorem 5.1,(xii),(xiii) it suffices to see that for all B ⊂ Λ0(B)
that is τ ′-bounded (i.e. pj(B) is bounded for all j), B

τ
is τ ′-bounded. To this end,

choose for each j an Mj > 0 such that pj(x) ≤ Mj for all x ∈ B. Then

B ⊂ B1 := {(λk)k ∈ Λ0(B) : |λk| ≤
Mj

bj
k

for all j, k} =

{(λk)k ∈ Λ0(B) : |λk| ≤ rk for all k},

where, rk := infj
Mj

bj
k

(k ∈ N).

Since the projection maps on Λ0(B), (λk)k 7→ λk (k ∈ N), are pj0-continuous
(=τ -continuous), the set B1 is τ -closed (so it contains B

τ
). Also, B1 is τ ′-bounded,

hence so is B
τ
.

Lemma 3.9 Let (Fn)n be the inductive sequence of 5.1.2. Then, for any choice of
Z, we have that

(Fn)n is regular ⇐⇒ (Fn)n is almost regular.

Proof. The implication regular −→ almost regular is always true (Proposition
3.2,(ii)).

Now suppose that the (Fn)n of 5.1.2 is almost regular and let us see that it is
regular. For that we will apply Corollary 5.3.

First we prove that τ |Z = τ ′|Z. Suppose not i.e. f |Z is not ‖ . ‖-continuous; we
derive a contradiction. The set

B := Bz ∩Ker f |Z

(with BZ := {x ∈ Z : ‖x‖ ≤ 1}) is contained in Z and is τ ′-bounded, hence by
almost regularity and Theorem 5.1,(xiii), B

τ
is τ ′-bounded. However, as f |Z is not

‖ . ‖-continuous, it follows from Proposition 1.1 that Ker f |Z is ‖ . ‖-dense in Z, so

B
τ ⊃ B

τ |Z
= BZ . Thus, τ ′-boundedness of B

τ
, would imply that BZ is τ ′-bounded,

from which the normed topologies τ |Z and τ ′|Z would have the same bounded sets,
a contradiction.
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Now we prove that Z is τ -closed (and by Corollary 5.3 we are done). Since (Fn)n

is almost regular and τ |Z = τ ′|Z, it follows from Theorem 5.1,(xiii) that for all
B ⊂ Z that is τ -bounded (=τ ′-bounded), B

τ ⊂ Z. From Proposition 5.2,(iii) we
conclude that Z is τ -closed.

Example 3.10 There exist inductive sequences of metrizable spaces of countable
type that are almost regular but not α-regular.

Proof. Let (Fn)n be the inductive sequence of 5.1.1. Suppose the matrix B
satisfies

for every j there exists j′ > j such that limk bj
k/b

j′

k = 0. (2)

Let Z be a subspace of Λ0(B) that is n0,∞-closed but not pj0-closed (such as Z exists;
in fact, if n0,∞ and pj0 would have the same closed subspaces then, by Proposition
1.1, (Λ0(B), n0,∞)′ = (Λ0(B), pj0)

′, which implies that pj0 and n0,∞ have the same
bounded sets ([25], Theorem 7.5). Hence τpj0

= n0,∞ ([21], Lemma 4.2): a con-
tradiction because, by (2) and Proposition 3.5 of [8], (Λ0(B), n0,∞) is nuclear and
infinite-dimensional, so it cannot be normable).

Since Z is not τ -closed it follows from Proposition 5.2,(iii) that (Fn)n is not
α-regular.

Now we pass to get almost regularity of (Fn)n. By Lemma 3.8 this is equivalent
to see almost α-regularity, and to prove this last one we will use Theorem 5.1,(xii).
Let B ⊂ Z be n0,∞-bounded, we may assume B absolutely convex. Let us prove that
B

τ ⊂ Z. Since (Λ0(B), n0,∞) is a nuclear Fréchet space we have that A := B
n0,∞ is

absolutely convex, metrizable, compactoid and complete for n0,∞. By [27], Theorem
9.1 we obtain that τpj0

|A = n0,∞|A. Hence A is pj0-complete, so pj0-closed. Also,

B ⊂ A ⊂ Z (the last inclusion because Z is n0,∞-closed). Therefore, B
pj0 ⊂ Z.

Example 3.11 There exist inductive sequences of metrizable spaces of countable
type that are α-regular but not almost regular.

Proof. Let (Fn)n be the inductive sequence of 5.1.2. Take a subspace Z of F and
an f ∈ F ∗ such that f |Z is not ‖ . ‖-continuous (it is possible whenever Z is infinite-
dimensional). Suppose also that Z is ‖ . ‖-closed. Applying Proposition 5.2,(iii) and
Corollary 5.3 we obtain that (Fn)n is α-regular but not regular (equivalently, not
almost regular, by Lemma 3.9).

Example 3.12 There exist inductive sequences of metrizable spaces of countable
type that are α-regular and almost regular, but not regular.

Proof. Let (Fn)n be the inductive sequence of 5.1.1. Suppose the matrix B
satisfies (2). Let Z be an infinite-dimensional pj0-closed subspace of Λ0(B). By
τ -closedness of Z and Proposition 5.2,(iii) we have that (Fn)n is α-regular, which
implies that it is almost α-regular (Proposition 3.2,(i)), or equivalently almost reg-
ular, by Lemma 3.8.

Next we prove that (Fn)n is not regular. By Corollary 5.3 we have to see that
τ |Z 6= τ ′|Z. This inequality is a consequence of the fact that, by (2) and Proposition
3.5 of [8], (Z, τ ′|Z) is nuclear. However, (Z, τ |Z) is an infinite-dimensional normed
space, which cannot be nuclear.
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Remark 3.13 Example 3.12 also shows that the converse of Proposition 3.3,(iv) is
not true. In fact, if this converse holds then (En)n would have the Qiu property (see
Remark 3.4.1 for this concept). Then by almost regularity and Proposition 3.3,(iii)
we would obtain that the (En)n of Example 3.12 is regular, a contradiction.

We finish this section by showing some relations between closedness and regu-
larity properties. More relations will be given in the next section.

Proposition 3.14
(i) (C3) −→ α-regular.
(ii) If (En)n is a strict LM-space, (C3) ⇐⇒ α-regular.
(iii) (CV) −→ almost regular.
(iv) If all the En are polar, (CV) −→ regular.

Proof. The proofs of (i) and (ii) are simple adaptations of the classical ones given
in [16], Theorem 1 and [22], Theorem 2 respectively.

(iii). Let n ∈ N, let B ⊂ En be a bounded set in En. We may assume that B is
absolutely convex. Then (B

τn
)e is a τn-closed absolutely convex and edged subset of

En. By (CV) we have that this last set is τind-closed. Hence B
τind ⊂ (B

τn
)e. Since

(B
τn

)e is τn-bounded then so is B
τind and we get almost regularity.

(iv). Suppose all the En are polar. Since (CV) −→ (C3) (Proposition 2.8) it
follows from (i) that (CV) −→ α-regular. Now apply Proposition 3.5,(c).

For LF-spaces we have the following.

Corollary 3.15
(i) Every strict LF-space is regular.
(ii) Every weakly strict LF-space with polar steps is regular

Proof. Every strict LF-space satisfies (C3), so it is α-regular by Proposition
3.14,(i) and hence regular by Proposition 3.5,(a). Now (ii) follows from (i) and
Proposition 2.3,(ii).

Proposition 3.16 ([14], Proposition 3.4) Let (En)n be an LF-space. Then, any of
the closedness properties (CI)−(CV) and (C3) implies regularity.

Next we show that if in Proposition 3.14 we consider a weaker closedness property
or a stronger regularity one then there exist LM-spaces with steps of countable
type for which the implications fail (compare with the classical examples of (CII)
; regular and (CI) ; α-regular given in [17], in which the steps are not even
metrizable).

Examples 3.17
1. There exist inductive sequences of metrizable spaces of countable type that

satisfy (CII) but are not almost regular.

Proof. The inductive sequence (Fn)n of Example 3.11 satisfies the conditions.
Indeed, in the mentioned example we proved that (Fn)n is not almost regular. Also,
Z is τ -closed i.e. (Fn)n satisfies (CII) (Theorem 5.1,(vi).(d)).
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2. There exist inductive sequences of metrizable spaces of countable type that
satisfy (CI) but do not satisfy any of the regularity properties.

Proof. Let (Fn)n be the inductive sequence of Example 2.9.2. We know that
it satisfies (CI). Now we see that almost α-regularity fails for this (Fn)n (and by
Proposition 3.2 we are done). Indeed, by Theorem 5.1,(xii) we have to find a B ⊂ Z
that is τ ′-bounded but for which B

τ * Z. Let B := {x ∈ Z : ‖x‖f ≤ 1}. With the
same reasoning as in the example given in Remark 3.4.3 we conclude that this B
meets the requirements.

Finally we show that the converses of (i), (iii) and (iv) of Proposition 3.14 are
not always true.

Example 3.18 ([14], Example 3.8.(i)) There exist inductive sequences of Banach
spaces of countable type that are regular and do no satisfy any of the strictness and
any of the closedness properties.

Proof. Let B be a matrix satisfying (2). Then, for each n, take En := c0(N, 1/bn).

Remark 3.19 Example 3.18 is the p-adic substitute of the classical ones given in
Example 4 of [16], Example of [18] and Counterexample of [22], all of them with a
typically archimedean character.

4 The p-adic Dieudonn é-Schwartz Theorem

The classical Dieudonné-Schwartz Theorem ([6], Proposition 4) states that every
strict LF-space is regular. This is still valid in the p-adic context (Corollary 3.15).
Some extensions were given in Proposition 3.14. Now we mix (weak) strictness and
closedness. This leads to new extensions of that theorem. For the proofs of the
results and for the details of the examples included in this section, see Section 3 of
[14].

Theorem 4.1 (p-adic Dieudonné-Schwartz Theorem, [14], Theorems 3.1, 3.2)
(i) Strict + (C3) −→ regular.
(ii) Strict + (CI) −→ (CIV) + regular.
(iii) If all the En are polar, then

Weakly strict + (C3) −→ regular.

(iv) If all the En are strongly polar, then

Weakly strict + (CI) −→ (CV) + regular.

(v) If either
(v.a) K is spherically complete,
or
(v.b) all the En are metrizable and polar,
then

Weakly strict + (CI) −→ (CIV) + regular.
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Remark 4.2 In (i) and (iii) of Theorem 4.1 we cannot assume other closedness
properties (apart from the stated one (C3)). In fact, there exist inductive sequences
of normed spaces of countable type that are strict and weakly strict and satisfy (C3)
(resp (CIII)) but do not satisfy any of the other closedness properties (resp. do not
satisfy (CI)). An example is the inductive sequence (En)n of 5.1.3, for m ≥ 2 (resp.
for m = 1), with F of countable type and Z a non-norm closed subspace of F (e.g.
Z := Ker g, where g is a functional on F that is not norm continuous). To see that
this (En)n satisfies the required conditions, apply Theorem 5.1.

The examples presented in this remark are the p-adic substitutes of Example 1
of [16].

In the classical case the implication “Weakly strict + (CI) −→ (CIV) + regular”
of Theorem 4.1 is always true (see [16]). In contrast to that, the next examples
show that, for p-adic inductive limits with polar steps, the conclusions of Theorem
4.1,(iv),(v) may fail when K is not spherically complete.

Counterexamples 4.3 (Counterexamples to Theorem 4.1, [14], Examples 3.6)
Suppose K is not spherically complete.

1. There exist inductive sequences of polar spaces that are weakly strict and
satisfy (CI), but do not satisfy any of the other closedness properties and any of the
regularity properties.

Proof. Let F := `∞. There is a closed subspace Z of F that has the HBEP in F ,
contains c0, and is not weakly closed in F . Then take the inductive sequence (Fn)n

of 5.1.4 with F and Z as above.
2. There exist inductive sequences of polar spaces that are weakly strict and

satisfy (CII) (hence are regular, Theorem 4.1,(iii)), but do not satisfy (CV).

Proof. Take the inductive sequence of Example 2.15.3.
3. There exist inductive sequences of spaces of countable type that are weakly

strict and satisfy (CV) (hence are regular, Theorem 4.1,(iii)), but do not satisfy
(CIV).

Proof. The inductive sequence of Example 2.10.4 satisfies the requirements.

Remarks 4.4

1. For real or complex inductive limits we also have that “(CIV) −→ Weakly
strict + (CI)” (see [16]). The same happens in the non-archimedean case when either
K is spherically complete or all the En are metrizable and strongly polar (Theorem
2.13). However, this is not the case in general (see Counterexample 2.15.4).

This also proves that the converses of (iv) and (v) of Theorem 4.1 may fail (note
that by Proposition 3.14,(iv), for polar steps we always have (CIV) −→ regular).

2. The converse of Theorem 4.1,(ii) holds when all the En are metrizable and
strongly polar (Theorem 2.13). But it fails even when K is spherically complete (see
Counterexample 2.15.1).

3. The failure of the converses in (i) and (iii) of Theorem 4.1 is shown by Example
3.18. Also, there exist inductive sequences of spaces of countable type that are strict,
weakly strict and regular, but do not satisfy any of the closedness properties, see
[14], Example 3.8.(ii). This is the p-adic substitute of the classical one given in [16],
Example 2, which has a typically archimedean character.
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4. By using Proposition 2.2 we obtain the validity of (iv) and (v) of Theorem 4.1
when we replace “weakly strict” by “almost weakly strict”. Also, this proposition
leads to the validity of (i), (ii) (resp. (iii)) when we replace “strict” (resp. “weakly
strict”) by “almost weakly strict” and, additionally, either K is spherically complete,
or all the steps are metrizable and polar.

On the other hand, the (Fn)n of Counterexample 4.3.1 shows that (ii) may fail
after the above replacement. In fact, we know that this inductive sequence does
not satisfy any of the regularity properties and any of the closedness properties
(CII)−(CV). However, by Theorem 5.1,(iii), (Fn)n is almost weakly strict.

But the following is unsolved:

Problem Are (i) and (iii) of Theorem 4.1 always true when we replace “strict”
and “weakly strict” respectively by “almost weakly strict”?

Note that, by Proposition 3.14,(i), a negative answer to this problem would imply
a negative answer to the one posed after Proposition 3.5.

Next, we show that the conclusions of the p-adic Dieudonné-Schwartz Theorem
4.1 are not true when the closedness condition is dropped. Examples 3.17 showed
that the same occurs when the (weak) strictness condition is the dropped one.

Examples 4.5 ([14], Examples 3.10)
1. There exist inductive sequences of normed spaces of countable type that are

strict and weakly strict, but do not satisfy any of the regularity and any of the
closedness properties.

Proof. Take the inductive sequence (En)n of Example 2.12.1.

2. There exist inductive sequences of spaces of countable type that are weakly
strict, but are not strict and do not satisfy any of the regularity and any of the
closedness properties.

Proof. Take the inductive sequence (Fn)n of 5.1.4 with F := c0, Z := c00.

3. If K is not spherically complete, there exist inductive sequences of polar
metrizable spaces that are strict, but are not weakly strict and do not satisfy any of
the regularity and any of the closedness properties.

Proof. Take the inductive sequence (Fn)n of 5.1.3 with F := `∞, Z := c00.

Remarks 4.6

1. Applying Proposition 2.3 we obtain that the steps of Example 4.5.3 cannot
be strongly polar. In particular, they cannot be of countable type, and also it is not
possible to give a counterpart of Example 4.5.3 when K is spherically complete.

2. There exist inductive sequences of Banach spaces of countable type that do not
satisfy any of the strictness, closedness and regularity properties, see [14], Example
3.12, where the inductive sequence is of the form (c0(N, 1

bn ))n for a certain matrix
(bn

k)k,n.
Observe that when K is not spherically complete the steps of the above sequence

are reflexive ([24], Corollary 4.18). This fact is in sharp contrast with the classical
case ([18], Theorem 4), where it was proved that any real or complex LB-space with
reflexive steps is regular.
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However, if K is spherically complete, the non-archimedean version of Theorem
4 of [18] holds. Indeed, in this case if the steps En are reflexive Banach spaces then
they are finite-dimensional ([24], Theorem 4.1.6). So (En)n is strict, hence regular
by Corollary 3.15,(i).

In the classical case there exist also inductive sequences of Fréchet nuclear
(hence reflexive) spaces that are not regular (see [19]). This example has a typ-
ically archimedean character. In a subsequent paper we will study if it admits a
p-adic substitute and, if it is the case (which we really hope), we will investigate its
applications.

5 Very useful examples of inductive sequences

This section is devoted to the classes of inductive sequences constructed in [13] and
[14]. They provide most of the examples needed along the paper.

Theorem 5.1 Let τ, τ ′ be Hausdorff locally convex topologies on a vector space F ,
τ ≤ τ ′, let X := (F, τ), Y := (F, τ ′). Let Z be a subspace of F which we equip with
the topology τ ′|Z. Let m ∈ N, and for each n ∈ N, set

En := Xn × Y × Zm × {0}N.

Also, for each n ∈ N, set

Fn := Xn × Y ×
∏

i>n+1

Z,

where all the product spaces appearing in the definitions of En and Fn are endowed
with the corresponding product topologies. Then we have the following.

(i) (En)n (resp. (Fn)n) is an inductive sequence of Hausdorff locally convex
spaces. If (E, τind) is its inductive limit then E ⊂ XN and τπ|E ≤ τind, where
τπ is the product topology on XN. In particular, (E, τind) is Hausdorff.

(ii) (En)n (resp. (Fn)n) is strict ⇐⇒ τ = τ ′.
(iii) (En)n (resp. (Fn)n) is almost weakly strict ⇐⇒ X ′ = Y ′.
(iv) (En)n (resp. (Fn)n) is weakly strict ⇐⇒ X ′ = Y ′ and Z has the HBEP in

Y .
(v) (En)n (resp. (Fn)n) satisfies (CI) ⇐⇒ Z is τ ′-closed.
(vi) (a) (En)n always satisfies (C3).
(b) If m ≥ 2, (En)n satisfies (CII) ⇐⇒ (En)n satisfies (CIII) ⇐⇒ Z is τ -closed.
(c) If m = 1, (En)n always satisfies (CIII); (En)n satisfies (CII) ⇐⇒ Z is τ -

closed.
(d) (Fn)n satisfies (CII) ⇐⇒ (Fn)n satisfies (CIII) ⇐⇒ (Fn)n satisfies (C3) ⇐⇒

Z is τ -closed.
(vii) (En)n (resp. (Fn)n) satisfies (CIV) −→ Z is τ ′-closed and every τ ′-closed

absolutely convex subset of F is τ -closed.
(viii) (En)n (resp. (Fn)n) satisfies (CV) −→ Z is τ ′-closed and every τ ′-closed

absolutely convex and edged subset of F is τ -closed.
(ix) (En)n is always regular.
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(x) Z is τ -closed −→ (Fn)n is α-regular −→ for all B ⊂ Z that is τ -bounded,
B

τ ⊂ Z.
(xi) (Fn)n is regular ⇐⇒ (Fn)n is α-regular and every τ -bounded subset of Z is

τ ′-bounded.
(xii) (Fn)n is almost α-regular ⇐⇒ for all B ⊂ Z that is τ ′-bounded, B

τ ⊂ Z.
(xiii) (Fn)n is almost regular ⇐⇒ for all B ⊂ Z that is τ ′-bounded, B

τ ⊂ Z and
B

τ
is τ ′-bounded.

Proof. For (i)−(v) and (vii)−(viii), see [13], Theorems 5.1, 5.1′, Remark 5.2 and
[14], Theorem 4.1.

For (vi).(a) (resp. (vi).(b), (vi).(c)), see Remark 3.15 (resp. Theorem 5.1 and
Remark 5.2, Theorem 5.1′) of [13].

For (vi).(d), (x), and (xi), see [14], Theorem 4.1.

For (ix), see [14], Remark 4.5.

Before proving (xii) and (xiii) we recall the following (see (b) of the proof of
Theorem 4.1 of [14]), which will be used in their proofs: Let (E, τind) be the inductive
limit of (Fn)n. Let r ∈ N and let B1, B2, . . . be non-empty subsets of F with Bi ⊂ Z
for i > r + 1. Then ∏

i

Bi

τind

= (
∏
i

Bi
τ
)
⋂

E. (3)

(xii). Suppose (Fn)n is almost α-regular. Let B ⊂ Z be τ ′-bounded. Let n ∈ N.
Then BN is bounded in Fn and by hypothesis there exists an m ≥ n such that
BNτind ⊂ Fm, which by (3) means that CN ∩ E ⊂ Fm, with C := B

τ
. In particular,

CN ∩ Fm+1 = Cm+2 ×
∏

i>m+2

C ∩ Z ⊂ Fm = Fm+1 ×
∏

i>m+1

Z,

which implies that B
τ

= C ⊂ Z.
Conversely, suppose that for all B ⊂ Z that is τ ′-bounded, B

τ ⊂ Z. Let n ∈ N
and let A ⊂ Fn be a bounded subset of Fn. Then, for i > n+1, πi(A) is a τ ′-bounded
subset of Z (for each i, πi is the i-th projection). So by assumption its τ -closure is
contained in Z. By using (3) we have

A
τind ⊂

∏
i

πi(A)
τind

= (
∏
i

πi(A)
τ
) ∩ E

⊂ (F n+1 ×
∏

i>n+1

Z) ∩ E = Fn,

which implies that A
τind ⊂ Fn and so we get almost α-regularity.

(xiii). Suppose (Fn)n is almost regular. Let B ⊂ Z be τ ′-bounded. By almost α-
regularity and (xii) we have that C := D

τ ⊂ Z. Now let n ∈ N. Then BN is bounded
in Fn. By almost regularity there exists an m ≥ n such that BNτind

= CN ∩E = CN

(by (3)) is contained and bounded in Fm. Hence πm+1(C
N) = C is bounded in Y

i.e. B
τ

is τ ′-bounded.
Conversely suppose that the condition after the ⇐⇒ of (xiii) is satisfied. By

(xii), (Fn)n is almost α-regular. Now let n ∈ N and let B be a bounded set in
Fn such that B

τind is contained in some Fm, m ≥ n. Let us find an r ≥ m such
that B

τind is bounded in Fr (and by Proposition 3.3,(ii) we get almost regularity of
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(Fn)n). For that, since B
τind ⊂ Fm we have πi(B

τind) ⊂ Z for i > m + 1. Also, as
all the projections πi : Fn→X are continuous, each πi(B) is τ -bounded (hence, so is
its τ -closure). Further, the continuity of the projections πi : E→X implies that

πi(B
τind) ⊂ πi(B)

τ
for all i. (4)

Thus, π1(B
τind), . . . , πm+1(B

τind) are τ -bounded. Apart from that, it follows from
the hypothesis that for the τ ′-bounded subsets of Z, πi(B) (i > m + 1), their τ -
closures πi(B)

τ
are τ ′-bounded. Hence by (4) so are πi(B

τind) (i > m + 1).
Finally,

B
τind ⊂ π1(B

τind)× . . .× πm+1(B
τind)×

∏
i>m+1

πi(B
τind),

and as the set after the inclusion is bounded in Fm+1, we have the same for B
τind .

Therefore, r := m + 1 meets the requirements.

The next proposition gives some partial affirmative answers to the validity of
the converses of (vii), (viii) and (x) of Theorem 5.1. The situation in general is
unknown.

Proposition 5.2 Let X,Y, Z and (Fn)n be as in Theorem 5.1. Then we have the
following.

(i) Suppose either
(a) X and Y are metrizable and polar,
or
(b) K is spherically complete.
Then the converse of (vii) holds.
(ii) Suppose either
(a) X and Y are metrizable and polar,
or
(b) K is spherically complete,
or
(c) Y is of countable type.
Then the converse of (viii) holds.
(iii) Suppose X is metrizable. Then the converses of (x) hold i.e.

Z is τ -closed ⇐⇒ (Fn)n is α-regular ⇐⇒ for all B ⊂ Z that is τ -bounded, B
τ ⊂ Z.

Proof. For (i) and (ii), see [13], Propositions 5.3 and 5.4 for (En)n and [14],
Remark 4.2 for (Fn)n.

For (iii), see [14], Proposition 4.3.

Corollary 5.3 ([14], Corollary 4.4) Let X,Y, Z and (Fn)n be as in Theorem 5.1.
Suppose X and Y are metrizable. Then

(Fn)n is regular ⇐⇒ Z is τ -closed and τ |Z = τ ′|Z.
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Particular cases of Theorem 5.1 The following choices for F , τ and τ ′ are
frequently used through the paper.

5.1.1 F := the Köthe space Λ0(B) associated to an infinite matrix B, τ := the
topology on F defined by one fixed norm pj0 , as defined in (1) for j = j0, τ ′:= the
normal topology n0,∞.

5.1.2 F := an infinite dimensional normed space of countable type with norm
‖ . ‖, τ := the topology on F defined by ‖ . ‖, τ ′:= the topology on F defined by
the norm ‖ . ‖f : x 7→ max(‖x‖, |f(x)|), where f is a functional F→K that is not
‖ . ‖-continuous.

5.1.3 F := an infinite dimensional polar normed space, τ = τ ′:= the norm
topology on F .

5.1.4 F := an infinite dimensional polar normed space, τ := the weak topology
σ(F, F ′) on F , τ ′:= the norm topology on F .

For any of these choices we usually change the subspace Z in the examples given
along the paper, according to the purpose of each of these examples.

Clearly the steps of 5.1.1, 5.1.2 and 5.1.3 are metrizable spaces (note that the
En of 5.1.2 and 5.1.3 are even normed). Using the hereditary properties of spaces
of countable type and of polar spaces ([25], Propositions 4.12 and 5.3 respectively)
we obtain that, for any Z, the steps of 5.1.1 and 5.1.2 are always of countable type,
and that the steps of 5.1.3 and 5.1.4 are always polar, being of countable type if and
only if F is of countable type.

A final Remark

Let us reflect on the character of the steps appearing in the examples given along
the paper, analyzing how closed they are of being Banach spaces of countable type.
For instance, the steps of Example 3.18 have these properties.

Theorems 2.13 and 4.1 tell us that the “quality” of the steps of Counterexamples
2.15 and 4.3 is the best possible one in the sense that if, for some of them, its steps are
not (of countable type, normed, Banach, metrizable, Fréchet), it is not possible to
make an improvement by requiring to the steps one of this extra (apparently mixed)
properties. The same happens with Examples 2.4 and Example 2.10.4, thanks this
time to Propositions 2.3 and 2.11 respectively.

Also, it follows from Proposition 2.16 that Examples 2.9.1, 2.10.2, 2.10.3, 2.12
and 4.5.1 (resp. Examples 2.9.2, 4.5.3) in which the steps are normed spaces of
countable type (resp. metrizable spaces of countable type, metrizable polar spaces)
do not have a counterpart for Banach (resp. Fréchet) steps.

Analogously, applying Proposition 2.3,(ii) (resp. Proposition 3.6, resp. Proposi-
tion 3.16) we obtain that Example 4.5.2 (resp. Examples 3.10 and 3.12, resp. Ex-
amples 3.17) in which the steps are locally convex spaces (resp. metrizable spaces)
of countable type do not have a counterpart for metrizable (resp. normed, resp.
Fréchet) steps.

But the following is unknown.
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Problem 1 Do there exist counterparts of Example 2.10.1 (resp. Examples
2.9.2, 3.17, 4.5.3, resp. Examples 3.10 and 3.12) with Banach (resp. normed, resp.
Fréchet) steps?

Problem 2 Does there exist a counterpart of Example 3.11 with normed (Ba-
nach, Fréchet) steps?
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différentielles p-adiques IV, Invent. Math. 143 (2001), 629-672.
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1994.

[24] A.C.M. van Rooij, Non-Archimedean Functional Analysis, Marcel Dekker, New
York, 1978.

[25] W.H. Schikhof, Locally convex spaces over nonspherically complete valued fields
I-II, Bull. Soc. Math. Belg. Sér. B 38 (1986), 187-224.

[26] W.H. Schikhof, The complementation property of `∞ in p-adic Banach spaces,
Lecture Notes in Math., 1454, Springer Verlag, Berlin, 1990, 342-350.

[27] W.H. Schikhof, A perfect duality between p-adic Banach spaces and com-
pactoids, Indag. Math. N.S. 6 (1995), 325-339.

[28] A.E. Taylor, D.C. Lay, Introduction to Functional Analysis, John Wiley & Sons,
New York, 1980.

Groene Laan 36 (302)
B 2830 Willebroek
Belgium

Department of Mathematics
Facultad de Ciencias, Universidad de Cantabria
Avda. de los Castros s/n
39071 Santander
Spain
email: perezmc@unican.es


