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Abstract

We give a complete description of the Fredholm disjointness preserving op-
erators between ultrametric spaces of (bounded and not necessarily bounded)
continuous functions defined on N-compact spaces.

1 Introduction

The aim of this paper is to provide a complete description of Fredholm disjointness
preserving maps between some spaces of continuous functions in the ultrametric
context (roughly speaking, a disjointness preserving map is a map which preserves
zero products. See definitions below). We will study the case of operators defined
on spaces C(X) (of all continuous functions) and C∗(X) (of all bounded continuous
functions).

A study with a similar purpose has recently been carried out in the real and com-
plex settings (see [7]), although the techniques we use in this paper are independent
of those used there.

The spaces studied in [7] are those of functions vanishing at infinity, requiring
in particular the underlying topological spaces to be locally compact. On the other
hand, a representation of bijective disjointness preserving maps defined between this
kind of spaces was previously known (see [5, 6, 8]).

In the ultrametric context we know the representation of disjointness preserving
maps defined on spaces C(X) or C∗(X), when the underlying topological spaces are
N-compact (see [1, 2]). This will be useful in our study.
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We also wish to point out that some aspects of Fredholm operators in the ultra-
metric setting have been recently studied (see for instance [3, 9, 11]), but they are
not directly related to our results here.

1.1 Basic definitions

We start by defining disjointness preserving maps (also known as separating) be-
tween rings, and Fredholm operators between vector spaces.

Definition 1.1. Let R, R′ be rings. A map T : R → R′ is said to be disjointness
preserving if (Ta)(Tb) = 0 whenever ab = 0, a, b ∈ R.

Definition 1.2. Let V and W be linear spaces over a field. A linear operator
T : V → W is said to be Fredholm if its kernel, Ker T , and the codimension of its
range, codim T := W/R(T ), are finite.

1.2 Notation

Let K be a field endowed with a nonarchimedean valuation, and let X be a topolog-
ical space. Then C(X) will denote the space of all K-valued continuous functions
on X, and C∗(X) will be the space of all bounded K-valued continuous functions
on X.

In general we will consider C(X) and C∗(X) just as linear spaces over K, with
no additional topological structure. Nevertheless, the sup norm, given as ‖f‖ :=
supx∈X |f(x)| for each f ∈ C∗(X) makes the space into a Banach space. We will at
some points use the notation ‖f‖ to denote the supremum of absolute values taken
by f .

For a (not necessarily continuous) f : X → K, we denote by c(f) and z(f)
its cozero and zero sets respectively, that is, c(f) := {x ∈ X : f(x) 6= 0}, and
z(f) := X \ c(f). For a subset Z of X, clX Z will be the closure of Z in X.

Given a set A, we denote by ξA the K-valued characteristic function on A. Also
BK(0, 1) will be the closed unit ball with center 0 in K.

For all basic and unexplained terminology we refer the reader to [10].

Notice that if K is locally compact and X is N-compact, then every bounded
continuous function f : X → K can be extended to a continuous function f ′ : β0X →
K (where β0X denotes the Banaschewski compactification of X). This implies that
C∗(X) and C(β0X) are indistinguishable both as rings and as linear spaces. This
fact will be important when choosing the contexts we will work in.

Assumptions on underlying spaces and on fields. From now on, unless
otherwise stated, the topological spaces X and Y are assumed to be N-compact.

K will be a field endowed with a nonarchimedean valuation for which it is com-
plete. In the case of spaces C(X), C(Y ), no extra assumptions will be made on
K. Nevertheless, if X (resp. Y ) is not compact and we deal with the space C∗(X)
(resp. C∗(Y )), we will also assume that K is not locally compact.

Statement of results. Some results will be valid both for spaces of continuous
and bounded continuous functions.
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We will use a special notation: Throughout A(X) and A(Y ) will be some sub-
algebras of C(X) and C(Y ), respectively. As it will be announced each time, when
in a statement we say that (A(X), A(Y )) = (C∗(X), C∗(Y )) or (C(X), C(Y )), we
mean that this statement is true in the following two cases:

• when A(X) = C∗(X) and A(Y ) = C∗(Y ),

• when A(X) = C(X) and A(Y ) = C(Y ).

This means in particular the sentence Let T : A(X) → A(Y ) be... cannot be
translated into Let T : C∗(X) → C(Y ) be...

We suppose that T : A(X) → A(Y ) is any (fixed) disjointness preserving Fred-
holm operator. We define D :=

⋃
f∈A(X) c(Tf), that is, Y \D consists of those points

in Y whose image by Tf is equal to 0 for every f ∈ A(X).
It is well known that in some contexts, every disjointness preserving operator

has an associated map called support map. The idea is as follows: given any point
y ∈ D, there exists a point x in X (or in a certain compactification of X) with the
property that for every neighborhood U of x (in X or in that compactification),
there exists f ∈ A(X) such that c(f) ⊂ U and (Tf)(y) 6= 0. The point x is usually
called support point of y, and the support map is that sending each point of D to
its support point.

In our case, if (A(X), A(Y )) = (C∗(X), C∗(Y )) or (C(X), C(Y )), the support
map of T is a function h : D → β0X (see [1, 2]).

Among the properties of the support map we have the following, which will be
used later.

Proposition 1.1. (see [1, 2]) Let (A(X), A(Y )) = (C∗(X), C∗(Y )) or (C(X), C(Y )).
The support map h : D → β0X is continuous. Also, if T is injective, then its im-
age is dense in β0X. Moreover, for y ∈ D and U ⊂ β0X, if h(y) /∈ clβ0X U , then
(Tf)(y) = 0 for every f ∈ A(X) such that c(f) ⊂ U .

Now, we may split D into three different subsets, namely

D1 := {y ∈ D : h(y) ∈ β0X \X},
D2 := {y ∈ D \D1 : ∃f ∈ A(X) such that f(h(y)) = 0 and (Tf)(y) 6= 0} , and

D3 := D \ (D1 ∪D2) .

2 Main results

Here we state the main results of the paper.

Theorem 2.1. Suppose that (A(X), A(Y )) = (C∗(X), C∗(Y )). Then

(1) If N := dim Ker T , then there exists a set A consisting of N isolated points in
X such that Ker T = {f : f(X \ A) ≡ 0}.

(2) The sets D1, D2 and Y \D are finite and consist of isolated points.
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(3) The image of the restriction of h to D3 is X \ A. Moreover the preimage in
D3 by h of each point of X \A is a finite set, which consists of a single point
in all but a finite number of cases.

(4) If in D3, we consider the equivalence relation xRy if h(x) = h(y), then the
map hR : D3/R → X \ A (sending the equivalence class of each y ∈ D3 into
h(y)) is a surjective homeomorphism.

(5) If M := codim R(T ), then

M = card (Y \D) + card D1 + card D2

+
∑

x∈X\A

[
card

(
D3 ∩ h−1 ({x})

)
− 1

]
.

(6) There exists a ∈ C∗(D3) such that inf{|a(y)| : y ∈ D3} > 0 and such that
(Tf)(y) = a(y)f(h(y)) for every f ∈ C∗(X) and y ∈ D3.

Theorem 2.2. Suppose that (A(X), A(Y )) = (C(X), C(Y )). Then (1), (2), (3),
(4), and (5) in Theorem 2.1 hold. On the other hand, (6) must be replaced by the
following:

(6′) There exists a ∈ C(D3) such that a(y) 6= 0 for every y ∈ D3, and such that
(Tf)(y) = a(y)f(h(y)) for every f ∈ C(X) and y ∈ D3.

Remark. We see in Theorem 2.1 (and 2.2) that all points in D1 ∪ D2 ∪ (Y \ D)
are isolated. One may wonder if when x ∈ X \ A satisfies that D3 ∩ h−1({x}) has
more than one point, each point of the subset must be isolated. In fact this is not
true in general. It could even be the case that none of the points of the subset is
isolated, as we see in the following example.

Example. Let X := Zp, Y := Zp × {0, 1}. Take any (x, i) ∈ Y with x 6= 0,
and suppose that |x|p = p−n, n ∈ N ∪ {0}. Then define h(x, i) := pnx if i = 0,

and h(x, i) := pn+1x if i = 1. Define also h(0, i) := 0 for i = 1, 2. It is easy to
see that the map h : Y → X is continuous and the range of the composition map
T : C(X) → C(Y ) defined as Tf := f ◦ h has codimension 1. Nevertheless D3 = Y
has no isolated points.

3 Some lemmas and propositions

Lemma 3.1. Let (A(X), A(Y )) = (C∗(X), C∗(Y )) or (C(X), C(Y )). Let f ∈ A(X)
and y ∈ Y be such that (Tf)(y) = 0. If U ⊂ X is clopen, then (TfξU)(y) = 0.

Proof. It is clear that if for some clopen U , we have (TfξU)(y) 6= 0, then the
fact (Tf)(y) = 0 would imply that (TfξX\U)(y) = −(TfξU)(y) 6= 0, and this would
go against the fact that T is disjointness preserving (notice that we do not use the
fact that T is Fredholm, but only linearity).

Proposition 3.2. Let (A(X), A(Y )) = (C∗(X), C∗(Y )) or (C(X), C(Y )), and let
N := dim Ker T . Then there exists a subset A of X consisting of N isolated points
such that Ker T = {f ∈ A(X) : f(X \ A) ≡ 0}.
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Proof. Let
A :=

⋃
f∈Ker T

c(f).

We are going to see that card A = N . Suppose that card A > N . Then we can take
mutually distinct x1, . . . , xN+1 ∈ A, and functions f1, . . . , fN+1 ∈ Ker T satisfying
xi ∈ c(fi) for each i.

Next take pairwise disjoint clopen subsets U1, . . . , UN+1 ⊂ A with xi ∈ Ui for
every i, and define gi := fiξUi

, i = 1, . . . , N +1. Now by Lemma 3.1, each gi belongs
to Ker T . This implies that dim Ker T ≥ N + 1, which is impossible. We deduce
that A consists of at most N points and, since it is open, they must be isolated.
Finally, is is obvious that if A does not contain N points, then dim Ker T < N .

Lemma 3.3. Let (A(X), A(Y )) = (C∗(X), C∗(Y )) or (C(X), C(Y )). Let (fn) be
a sequence in A(X) such that c(fn) ∩ c(fm) = ∅ if n 6= m. Suppose that the map
f : X → K, defined pointwise as f(x) :=

∑∞
n=1 fn(x) for each x ∈ X, satisfies

f ∈ A(X).
Then there exists a (not necessarily continuous) function g : Y → K satisfying

c(g) ∩ c(Tfn) = ∅ for every n ∈ N, and Tf = g +
∑∞

n=1 Tfn (pointwise).

Proof. Let D0 :=
⋃∞

n=1 c(Tfn). Given any y ∈ D0, there exists ny ∈ N such that

(Tfny)(y) 6= 0. Also, since T is disjointness preserving and c(fny)∩c
(∑

n6=ny
fn

)
= ∅,

then we see that
(
T

∑
n6=ny

fn

)
(y) = 0, and consequently (Tf)(y) = (Tfny)(y) +(

T
∑

n6=ny
fn

)
(y) = (Tfny)(y) 6= 0. So we conclude that for each y ∈ D0, (Tf)(y) =∑∞

n=1(Tfn)(y).
It is now clear that, if we define g := ξY \D0Tf , then Tf = g +

∑∞
n=1 Tfn (point-

wise), as we wanted to see.

Lemma 3.4. Let (A(X), A(Y )) = (C∗(X), C∗(Y )) or (C(X), C(Y )). Let (fn) be
a sequence in A(X) such that c(fn) ∩ c(fm) = ∅ if n 6= m. Suppose that the map
f : X → K, defined pointwise as f(x) :=

∑∞
n=1 fn(x) for each x ∈ X, satisfies

f ∈ A(X).
Assume that at least one of the following two conditions holds:

(1) limn→∞ ‖fn‖ = 0,

(2) X is not compact, and
⋂∞

k=1 (clX
⋃∞

n=k c(fn)) = ∅.

Then
∑∞

n=1 Tfn belongs to A(Y ).

Proof. As in the proof of Lemma 3.3, let D0 :=
⋃∞

n=1 c(Tfn). Lemma 3.3
gives us the representation Tf = g +

∑∞
n=1 Tfn, with c(g) ∩ c(Tfn) = ∅ for every

n ∈ N. In particular, this implies that, since Tf =
∑∞

n=1 Tfn on the open set D0

and Tf belongs to A(Y ), then
∑∞

n=1 Tfn is continuous on D0 (and bounded when
A(Y ) = C∗(Y )). On the other hand, since

∑∞
n=1 Tfn ≡ 0 on Y \ clY D0, then we

have that
∑∞

n=1 Tfn belongs to A(Y ) if and only if it is continuous at every point of
∂D0, the boundary of D0.
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Next suppose that for a certain point y ∈ ∂D0 there exists k ∈ N such that y does
not belong to the closure of

⋃∞
n=k+1 c(Tfn). Then we have that T

(∑∞
n=k+1 fn

)
=

T
(
f −∑k

n=1 fn

)
= g +

∑∞
n=k+1 Tfn. Now, the fact that y /∈ clY

⋃∞
n=k+1 c(Tfn)

implies that
∑∞

n=k+1 Tfn is continuous at y, that is,
∑∞

n=1 Tfn is continuous at y.
As a consequence we see that the points where

∑∞
n=1 Tfn may not be continuous

are included in the set

∂0D0 :=

{
y ∈ ∂D0 : y ∈ clY

∞⋃
n=k

c(Tfn) ∀k ∈ N
}

.

Suppose then that y0 ∈ ∂0D0, and that
∑∞

n=1 Tfn is not continuous at y0. This
implies that (Tf)(y0) 6= 0. Put r := |(Tf)(y0)|. Let U0 be a clopen neighborhood
of y0 in Y such that |(Tf)(y)− (Tf)(y0)| < r/2 whenever y ∈ U0.

Assume first (1), that is, limn→∞ ‖fn‖ = 0, and take a sequence (αn) in K such
that limn→∞ |αn| = +∞ and limn→∞ |αn| ‖fn‖ = 0. Notice that a sequence like

this exists, because it is enough to take αn ∈ K satisfying |αn| ≤ 1/
√
‖fn‖ for each

n ∈ N. Then define g′ :=
∑∞

n=1 αnfn, which is clearly continuous and bounded. By
continuity of the map Tg′, there exists a clopen neighborhood U1 of y0 such that

|(Tg′)(y)− (Tg′)(y0)| < r/2 (1)

for every y ∈ U1. Since we are assuming that y0 belongs to ∂0D0, then there is a
strictly increasing sequence (nk) of natural numbers such that U0∩U1∩ c(Tfnk

) 6= ∅
for every nk. For each nk, take a point ynk

in that intersection. We have that
|(Tf)(ynk

)− (Tf)(y0)| < r/2, so |(Tf)(ynk
)| = r for every nk, which is to say

that |(Tfnk
)(ynk

)| = r for every nk. Consequently |αnk
(Tf)(ynk

)| = |αnk
| r, and

this implies that |(Tg′)(ynk
)| = |αnk

| r, which gives that Tg′ is not bounded in U1,
against Equation 1. So, when we assume limn→∞ ‖fn‖ = 0, the function

∑∞
n=1 Tfn

is continuous.

Assume next (2). Then we can take a sequence (αn) in K such that |αn − αm| >
1/2 whenever n 6= m. Notice that, if (A(X), A(Y )) = (C∗(X), C∗(Y )), or more in
general if K is not locally compact, then we can take it such that 1/2 < |αn| ≤ 1 for
every n ∈ N.

Now define g′ :=
∑∞

n=1 αnfn, which is clearly an element of A(X), because we
are assuming (2). It is easy to see that αnf ≡ g′ on c(fn), which means that
αnTf ≡ Tg on c(Tfn). Now we have that there exists a neighborhood U1 ⊂ U0 of y0

such that |(Tg′)(y)− (Tg′)(y0)| < r/2 whenever y ∈ U1. Take k1, k2 ∈ N such that
U1 ∩ c(Tfki

) 6= ∅ for i = 1, 2. Then we have that, for i = 1, 2, if yi ∈ U1 ∩ c(Tfki
),

|(Tf)(y1)− (Tf)(y2)| < r/2 and |(Tg)(y1)− (Tg)(y2)| < r/2, which implies

|αk1(Tfk1)(y1)− αk1(Tfk2)(y2)| < r/2

and
|αk1(Tfk1)(y1)− αk2(Tfk2)(y2)| < r/2.

This would imply that

|αk1(Tfk2)(y2)− αk2(Tfk2)(y2)| < r/2,

so |αk1 − αk2| < 1/2, which goes against the way we have taken the sequence (αn).
�
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Proposition 3.5. Let (A(X), A(Y )) = (C∗(X), C∗(Y )) or (C(X), C(Y )). Then D1

consists of a finite set of isolated points.

Proof. It is obvious that if X is compact, then D1 is empty. Assume then that
X is not compact. Let L ∈ N, and suppose that y1, . . . , yL are points in D1. We are
going to find an open set contained in D1 and which contains all yi.

First, it is clear that there exist K ∈ N, K ≤ L, and x1, . . . , xK ∈ β0X \X, such
that h({y1, . . . , yL}) = {x1, . . . , xK}.

Since X is N-compact, we know that there exists a sequence (Un) of clopen sets
of β0X all of them containing {x1, . . . , xK} such that Un+1 ⊂ Un for every n ∈ N and
such that X ∩ (

⋂∞
n=1 Un) = ∅. Without loss of generality we may assume U1 = β0X.

For each n ∈ N, let Vn := Un \ Un+1, and let fn be the restriction to X of the
characteristic function on Vn.

On the other hand, it is easy to see that there exists f ∈ A(X) such that
(Tf)(yi) 6= 0 for each i ∈ {1, . . . , L}. Also f =

∑∞
n=1 ffn, so by Lemmas 3.3 and

3.4(2), we have that there exists g1 ∈ A(Y ) with c(g1)∩c(Tffn) = ∅ for every n ∈ N,
and such that Tf = g1 +

∑∞
n=1 Tffn.

Now fix any k ∈ N. It is clear that T
(∑∞

n=k+1 ffn

)
= g1 +

∑∞
n=k+1 Tffn.

Consequently, given y ∈ c(g1), we have that h(y) does not belong to V1 ∪ · · · ∪ Vk,
that is, h(y) belongs to Uk+1. Then we have h(c(g1)) ⊂

⋂∞
n=1 Un. Also, it is easy to

see that y1, . . . , yL ∈ c(g1).
Let M := codim R(T ). We are going to see that the open set c(g1) cannot have

more than M elements. Otherwise we can find M + 1 pairwise disjoint (nonempty)
clopen subsets W1, . . . ,WM+1 of c(g1). Since the codimension of R(T ) is M , then
there exist α1, α2, . . . , αM+1 ∈ K such that g2 :=

∑M+1
i=1 αiξWi

belongs to R(T ) \ {0}.
Let f ′ ∈ A(X) such that Tf ′ = g2. Let us see that f ′ ≡ 0. Notice first that,

for any k ∈ N, c(f ′) ∩ c (
∑∞

n=k ffn) 6= ∅ because, otherwise, due to the disjointness
preserving property of T , we would have c(g2) ∩ c (T

∑∞
n=k ffn) = ∅.

We deduce that there are infinitely many n ∈ N such that c(f ′) ∩ c(fn) 6= ∅. By
Proposition 3.2, there exists n0 ∈ N such that c(f ′)∩c(fn0) 6= ∅ and T l 6= 0 for every
l ∈ A(X) with c(l) ⊂ c(fn0). Take U clopen and nonempty with U ⊂ c(f ′)∩ c(fn0).
We know then that there exists a point y ∈ Y such that (T (f ′ξU))(y) 6= 0, which by
Lemma 3.1 implies that (Tf ′)(y) 6= 0, that is, g2(y) 6= 0. On the other hand, since

U ⊂ c(fn0), we have that
(
T

∑∞
n=n0+1 ffn

)
(y) = 0, which implies that g1(y) = 0,

and consequently g2(y) = 0.
This contradiction proves that, for L ∈ N, the open set c(g1) has at most M

points. This implies that there is a finite number of them, L ≤ M , and that all of
them are isolated.

Proposition 3.6. Let (A(X), A(Y )) = (C∗(X), C∗(Y )) or (C(X), C(Y )). Then D2

consists of a finite set of isolated points.

Proof. The proof of this proposition is similar to that of Proposition 3.5. Let L,
K, and M be defined as there. Suppose that y1, . . . , yL are points in D2 such that
h({y1, . . . , yL}) = {x1, . . . , xK} ⊂ X. Next consider pairwise disjoint open subsets
U1, . . . , UK of X such that xi ∈ Ui for each i, and h(D1)∩ clβ0X (U1 ∪ · · · ∪UK) = ∅.
For each i = 1, . . . , K, take functions fi ∈ A(X) such that we have c(fi) ⊂ Ui,
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‖fi‖ = 1, fi(xi) = 0, and (Tfi)(y) 6= 0 whenever h(y) = xi and y ∈ {y1, . . . , yL}.
Let f :=

∑K
i=1 fi.

For each n ∈ N, let An := {x ∈ X : |f(x)| ≤ 1/n}. We can write f =
∑∞

n=1 fξAn .
By Lemmas 3.3 y 3.4(1), we have Tf = g1 + g2, where g1 :=

∑∞
n=1 T (fξAn), g2 ∈

A(Y ), and c(g1) ∩ c(g2) = ∅.
Now it is clear from Proposition 1.1 that h(c(g1)) ⊂ c(f) and h(c(g2)) ⊂ z(f).

Also {y1, . . . , yL} ⊂ c(g2), so we are in a similar situation as in the proof of Propo-
sition 3.5. That is, for any L points in D2, we can find an open set c(g2) containing
them whose image by h is included in z(f).

We next prove that c(g2) has at most M points, and this will imply that L ≤ M ,
and that each point in D2 is isolated. Suppose on the contrary that c(g2) has more
than M points. Then we can select pairwise disjoint (nonempty) clopen subsets
V1, . . . , VM+1 of c(g2), and α1, . . . , αM+1 ∈ K in such a way that there exists g ∈
A(X) such that Tg =

∑M+1
i=1 αiξVi

.
In the same way as it is proved in Proposition 3.5, we can prove here that f ≡ 0

outside z(g). Consequently, we have that c(g) ⊂ z(f), that is, fg ≡ 0, so we must
have (Tf)(Tg) ≡ 0, which is not the case.

We conclude that there are at most M different points in c(g2), and that they
are isolated.

The following result gives us a representation of images of functions at points of
D3. Its proof is easy.

Proposition 3.7. Let (A(X), A(Y )) = (C∗(X), C∗(Y )) or (C(X), C(Y )). Then
(Tf)(y) = (TξX)(y)f(h(y)) for every f ∈ A(X) and every y ∈ D3.

Proposition 3.8. Let (A(X), A(Y )) = (C∗(X), C∗(Y )) or (C(X), C(Y )). Then the
set Y \D consists of a finite set of isolated points.

Proof. First, we have that, since by Proposition 3.7, Tf = TξX · f ◦ h in D3 for
every f ∈ A(X), then (TξX)(y) 6= 0 for every y ∈ D3.

Suppose that D is not clopen. Take α ∈ K with |α| > 1. Let M := codim R(T ),
and, for i = 1, . . . ,M + 1, we define αi,1 := αi ∈ K. Next, also for n ∈ N, we put
αi,n := αn

i , and define the set

An :=
{
y ∈ Y \ (D1 ∪D2) :

∣∣∣αn
M+1,n

∣∣∣ |(TξX)(y)| < 1
}

.

Obviously, by Propositions 3.5 and 3.6, each An is a clopen subset of Y containing
Y \D. Also, since Y \D is not clopen, then D3 ∩An is nonempty for every n ∈ N.
Now we put Bn := An \An+1 for each n ∈ N. Let gi :=

∑∞
n=1 αi,nξBnTξX ∈ A(Y ). It

is clear that there is a (nonzero) linear combination g :=
∑M+1

i=1 γigi which belongs
to R(T ).

This means that, if δn := γ1α1,n + · · · + γM+1αM+1,n ∈ K for each n ∈ N, then
there exists f ∈ C(X) such that,

Tf ≡ δnTξX ,

that is, f ◦ h = δn on Bn. We also know by Proposition 1.1 (taking into account
Propositions 3.5 and 3.6), that if A is given as in Proposition 3.2, then

X \ A = clX h(D \D1) = h(D2) ∪ clX
∞⋃

n=1

h(Bn).
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Now it is easy to see that f ≡ δn on h(Bn) and limn→∞ |δn| = +∞. This implies
in particular that f is not bounded, so we arrive at a contradiction in the case when
(A(X), A(Y )) = (C∗(X), C∗(Y )). Consequently in this case D is clopen.

When (A(X), A(Y )) = (C(X), C(Y )), the same implies that there exists n0 ∈ N
such that clX h(Bn) ∩ clX

⋃
k 6=n h(Bk) = ∅ for each n ≥ n0. This gives in particular

that h(Bn) has an open closure in X for n ≥ n0. Also, in the same way we can see
that every point in X \ (A ∪ h(D2)) belongs to the closure of one h(Bn), that is,
X \ A = h(D2) ∪

⋃∞
n=1 clX h(Bn). Now we define, for n ≥ n0, a map g′ : X → K as

g′ :=
∞∑

n=n0

αn+1
M+1,n+1ξclX h(Bn).

It is easy to check that g′ belongs to C(X), and that |(Tg′)(y)| ≥ 1 for every
y ∈ D3 ∩ An0 , so D is clopen.

Consequently we see that in every case, D is clopen. Now we easily conclude
that Y \D is finite, and all its points must be isolated.

Proposition 3.9. Let (A(X), A(Y )) = (C∗(X), C∗(Y )). Then

inf{|(TξX)(y)| : y ∈ D3} > 0.

Proof. Notice that a closer look at the proof of Proposition 3.8 reveals that the
contradiction we obtain for the case when (A(X), A(Y )) = (C∗(X), C∗(Y )) comes
directly from the fact that no set D3 ∩An is empty (with no need for assuming that
D is not clopen). We deduce then that there exists n0 ∈ N with D3 ∩An0 = ∅, and
we are done.

Proposition 3.10. Let (A(X), A(Y )) = (C∗(X), C∗(Y )) or (C(X), C(Y )). Suppose
that T is injective, and that D3 = Y . Then h is a surjective closed map.

Proof. Using Proposition 3.9 when (A(X), A(Y )) = (C∗(X), C∗(Y )), and the
fact that (TξX)(y) 6= 0 for every y ∈ D3 = Y when (A(X), A(Y )) = (C(X), C(Y )),
it is easy to see that, taking into account the representation given in Proposition 3.7,
we can assume without loss of generality that TξX = ξY .

By Proposition 1.1, the result is obvious if Y is compact.

We assume that Y is not compact. Again by Proposition 1.1, it is clear that the
continuous map h : Y → X can be extended to a continuous surjection (which we
also call h) h : β0Y → β0X.

Let us see first that there is no point y ∈ β0Y \ Y with h(y) ∈ X. Suppose on
the contrary that y0 ∈ β0Y \ Y and x0 := h(y0) belongs to X. Then there exists a
sequence of clopen sets (Un) in β0Y with Un+1 ⊂ Un and y0 ∈ Un for every n ∈ N,
such that Y ∩ (

⋂∞
n=1 Un) = ∅. Let Vn := Y ∩ (Un \ Un+1), for each n ∈ N.

Let M := codim R(T ) ∈ N ∪ {0}. Define M0 := {n(M + 1) : n ∈ N}, M1 :=
{n(M + 1) + 1 : n ∈ N}, . . . , MM := {n(M + 1) + M : n ∈ N}. Next let (αn)
be a sequence in K (which we take in BK(0, 1) if we assume that (A(X), A(Y )) =
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(C∗(X), C∗(Y ))) such that |αn − αm| ≥ 1/2 when n 6= m. Set

g0 :=
∑

n∈M0

αnξVn

g1 :=
∑

n∈M1

αnξVn

...

gM :=
∑

n∈MM

αnξVn .

It is easy to see that each gi belongs to A(Y ). By hypothesis there are β0, β1, . . . , βM ∈
K (not all of them equal to 0), and f ∈ A(X) such that Tf =

∑M
i=0 βigi. Let us see

that this is impossible by checking the value of f at x0. We are assuming that, for
every y ∈ Y , (Tf)(y) = f(h(y)), so f(h(y)) =

∑M
i=0 βigi. Let α := f(x0) and fix

any ε > 0. Since f is continuous, there exists a clopen neighborhood U(x0) of x0

in X such that |f(x)− α| < ε for every x ∈ U(x0). Let Û be clopen in β0X such
that U(x0) = Û ∩ X. Since h : β0Y → β0X is continuous, we have that h−1(Û) is
a clopen subset of β0Y which contains y0. Let V := Y ∩ h−1(Û). It is clear that,
since D3 = Y , if y ∈ V , then h(y) ∈ U(x0). This implies that for every y ∈ V ,
|(Tf)(y)− α| < ε. But, as in the proof of Lemma 3.4, we can see that this is not
possible.

We next see that h : D3 → X is a closed map. If C ⊂ D3 is closed, then there
exists a closed subset C ′ of β0D3 such that C = C ′ ∩ D3. Also h(C ′) is a closed
subset of β0X, and by the comment above, we conclude that h(C) = h(C ′) ∩ X,
that is, h(C) is closed in X.

Finally, since h(β0D3) = β0X, again the above remarks show that h(D3) = X,
and h : D3 → X is surjective.

4 Proof of the main results

We just prove Theorem 2.1. The proof of Theorem 2.2 is similar.

Proof of Theorem 2.1. For (1), see Proposition 3.2. (2) is given in Proposi-
tions 3.5, 3.6 and 3.8. Also (6) is Proposition 3.7 combined with Proposition 3.9.

Let us see now the second part of (3). Suppose that n1, n2, . . . , nk ∈ N, and
that we have some (pairwise disjoint) subsets of D3, say G1 := {y1

1, . . . , y
1
n1
}, . . . ,

Gk := {yk
1 , . . . , y

k
nk
} such that h(Gi) = xi ∈ X \ A, for i ∈ {1, . . . , k}. Consider

pairwise disjoint clopen subsets U j
i of D3, such that yj

i ∈ U j
i for j = 1, . . . , k, and

i = 1, . . . , nj. It is clear from the representation of T given in (6) that no linear
combination of the functions ξUj

i
, j = 1, . . . , k, i ≥ 2, belongs to R(T ). This implies

in particular that just a few points x ∈ X satisfy card h−1({x}) > 1.
Consider X \ A, where A is given in (1). It is clear that the first part of (3)

follows from Proposition 3.10.

Now let us prove (4). By Proposition 3.10, we know that the continuous map
h : D3 → X \ A is also closed and surjective. Consequently, the map hR : D3/R →
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X \ A is a surjective homeomorphism (see for instance [4, Proposition 2.4.3 and
Corollary 2.4.8]).

Let us finally prove (5). Consider the linear subspace B := {ξD3Tf : f ∈
C∗(X)} ⊂ C∗(Y ). It is easy to see that codim B, the codimension of B in C∗(D3),
is equal to M − card (Y \ D) − card D1 − card D2, so we just need to prove that
codim B =

∑
x∈X\A [card (D3 ∩ h−1 ({x}))− 1].

It is clear that codim B = codim R(T ′), where T ′ : C∗(X \ A) → C∗(D3) is
defined, for each f ∈ C∗(X \ A), as the restriction to D3 of the function Tf . It is
also easy to see that T ′ is injective. Of course, we know that (T ′f)(y) = a(y)f(h(y))
for every f ∈ C∗(X \ A) and every y ∈ D3, where a = T ′ξX\A. Notice that by
Proposition 3.9 we can assume without loss of generality that a ≡ 1.

By (3), assuming h defined from D3 to X\A, there are just a few points x ∈ X\A
which satisfy card h−1({x}) > 1. We keep the notation above and suppose that these
points are x1, . . . , xk, and that h−1({xi}) = Gi ⊂ D3, for i = 1, . . . , k. As above,
using the clopen sets U j

i , we see that
∑

x∈X\A [card (h−1 ({x}))− 1] ≤ codim B.

Let us finally prove the other inequality,

codim B ≤
∑

x∈X\A

[
card

(
h−1 ({x})

)
− 1

]
.

We will see that the equivalence classes of the maps ξUj
i

(i ≥ 2) form a basis of

C∗(D3)/R(T ′). It is easy to see that is is enough to prove that if g ∈ C∗(D3)
satisfies to be constant on each subset Gj, j = 1, . . . , k, then g ∈ R(T ′).

Suppose then that g ∈ C∗(D3) satisfies g(Gj) = γj, for j = 1, . . . , k, and let
gR : D3/R → K be such that g = gR ◦ q, where q : D3 → D3/R is the quotient map
associated to R. We have that gR belongs to C∗(D3/R) ([4, Proposition 2.4.2]). By
(4), we have that there exists f ∈ C∗(X \ A) such that gR = f ◦ hR. It is now easy
to see that g = f ◦ h = T ′f , as we wanted to see.
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