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Abstract
Let f(z, t) be a non-normalized subordination chain and assume that f(·, t)

is K-quasiregular on Bn for t ∈ [0, α]. In this paper we obtain a sufficient con-
dition for f(·, 0) to be extended to a quasiconformal homeomorphism of R2n

onto R2n. Finally we obtain certain applications of this result. One of these
applications can be considered the asymptotical case of the n-dimensional
version of the well known quasiconformal extension result due to Ahlfors and
Becker.

1 Introduction and preliminaries

Let Cn denote the space of n-complex variables z = (z1, . . . , zn) with the Euclidean
inner product 〈·, ·〉 and the Euclidean norm ‖z‖ = 〈z, z〉1/2. Let Bn

r = {z ∈ Cn :
‖z‖ < r} and let Bn = Bn

1 . Also let B
n

be the closed unit ball in Cn. In the case
of one complex variable, B1

r is denoted by Ur and B1
1 by U . Let Rm

= Rm ∪ {∞}
be the one point compactification of Rm. If Ω ⊂ Cn is a domain, let H(Ω) be the
set of holomorphic mappings from Ω into Cn. If f ∈ H(Bn), let Jf (z) = det Df(z)
be the complex jacobian determinant of f at z. Also let L(Cn, Cm) be the space of
continuous linear mappings from Cn into Cm with the standard operator norm

‖A‖ = sup{‖A(z)‖ : ‖z‖ = 1},
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and let In be the identity in L(Cn, Cn). A mapping f ∈ H(Bn) is said to be
normalized if f(0) = 0 and Df(0) = In.

We say that a mapping f ∈ H(Bn) is K-quasiregular, K ≥ 1, if

‖Df(z)‖n ≤ K|Jf (z)|, z ∈ Bn.

In addition, a mapping f ∈ H(Bn) is called quasiregular if f is K-quasiregular for
some K ≥ 1. It is well known that quasiregular holomorphic mappings are locally
biholomorphic.

Definition 1.1. Let Ω and Ω′ be domains in Rm
. A homeomorphism f : Ω → Ω′ is

said to be K-quasiconformal if it is differentiable a.e., ACL (absolutely continuous
on lines) and

‖Df(x)‖m ≤ K| det Df(x)| a.e. x ∈ Ω,

where Df(x) denotes the (real) Jacobian matrix of f , K is a constant and

‖Df(x)‖ = sup{‖Df(x)(a)‖ : ‖a‖ = 1}.

We remark that a K-quasiregular biholomorphic mapping is K2-quasiconformal.
For details about quasiregular and quasiconformal mappings, see [17] and [18].

If f, g ∈ H(Bn), we say that f is subordinate to g (write f ≺ g) if there is
a Schwarz mapping v (i.e. v ∈ H(Bn) and ‖v(z)‖ ≤ ‖z‖, z ∈ Bn) such that
f(z) = g(v(z)), z ∈ Bn.

Definition 1.2. Let α > 0. A mapping f : Bn×[0, α] → Cn is called a subordination
chain if the following conditions are satisfied:

(i) f(0, t) = 0 and f(·, t) ∈ H(Bn) for t ∈ [0, α];

(ii) f(·, s) ≺ f(·, t) for 0 ≤ s ≤ t ≤ α.

Moreover, if f(z, t) is a subordination chain such that f(·, t) is biholomorphic on
Bn for t ∈ [0, α], we say that f(z, t) is a Loewner chain (or a univalent subordination
chain). In this case, the condition (ii) is equivalent to the fact that there is a unique
biholomorphic Schwarz mapping v = v(z, s, t) such that

f(z, s) = f(v(z, s, t), t), z ∈ Bn, 0 ≤ s ≤ t ≤ α.

If f(z, t) is a Loewner chain such that Df(0, t) = etIn, we say that f(z, t) is a
normalized Loewner chain.

An important role in our discussion is played by the following sets:

N =
{
h ∈ H(Bn) : h(0) = 0, Re 〈h(z), z〉 > 0, z ∈ Bn \ {0}

}
,

M =
{
h ∈ N : Dh(0) = In

}
.

We next use the following results due to Hamada and Kohr [12] (cf. [14, Theo-
rems 2.1 and 2.2]):
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Lemma 1.3. Let h = h(z, t) : Bn × [0, α] → Cn satisfy the following conditions:
(i) h(·, t) ∈M for each t ∈ [0, α];
(ii) h(z, ·) is measurable on [0, α] for each z ∈ Bn.
Then for each s ∈ [0, α) and z ∈ Bn, the initial value problem

∂v

∂t
= −h(v, t) a.e. t ∈ [s, α], v(z, s, s) = z, (1.1)

has a unique solution vs,t(z) = v(z, s, t) = es−tz+ · · · such that v(z, s, ·) is absolutely
continuous on [s, α] locally uniformly with respect to z ∈ Bn. Further, for fixed s
and t, vs,t is a biholomorphic Schwarz mapping on Bn.

Lemma 1.4. Let h(z, t) satisfy the assumptions in Lemma 1.3. Also let f = f(z, t) :
Bn × [0, α] → Cn be a mapping such that f(·, t) ∈ H(Bn), f(0, t) = 0, Df(0, t) =
etIn, t ∈ [0, α], and f(z, ·) is absolutely continuous on [0, α] locally uniformly with
respect to z ∈ Bn. Assume that

∂f

∂t
(z, t) = Df(z, t)h(z, t) a.e. t ∈ [0, α], ∀ z ∈ Bn. (1.2)

Then f(z, s) = f(v(z, s, t), t), z ∈ Bn, 0 ≤ s ≤ t ≤ α, where v = v(z, s, t) is the
unique solution of (1.1). Hence f(z, t) is a subordination chain.

Remark 1.5. Let f(z, t) = etz + · · · be a Loewner chain on [0, α]. Then there is
a mapping h = h(z, t) : Bn × [0, α] → Cn which satisfies the conditions (i) and (ii)
in Lemma 1.3 such that the Loewner differential equation (1.2) is satisfied (see [9]
and [8]).

Recently, Hamada and Kohr proved the following useful result ([12]; cf. [11])
which extends to the n-dimensional case a well known result due to Becker and
Pommerenke [2, Satz 3].

Theorem 1.6. Let α > 0 and f = f(z, t) : Bn × [0, α] → Cn be a mapping
such that f(z, ·) is absolutely continuous on [0, α] locally uniformly with respect to
z ∈ Bn, f(·, t) ∈ H(Bn), f(0, t) = 0, and Df(0, t) = etIn for t ∈ [0, α]. Also let
h = h(z, t) : Bn × [0, α] → Cn satisfy the conditions in Lemma 1.3. Assume that
f(z, t) satisfies the differential equation (1.2) and f(·, 0) is continuous and injective
on B

n
. Moreover, assume the following conditions hold:

(i) There exist constants M1 > 0 and k ∈ [0, 1) such that

‖Df(z, t)‖ ≤ M1

(1− ‖z‖)k
, z ∈ Bn, t ∈ [0, α];

(ii) There exists a constant c1 > 0 such that

Re 〈h(z, t), z〉 ≥ c1‖z‖2, z ∈ Bn, t ∈ [0, α];

(iii) There exists a constant c2 > 0 such that

‖h(z, t)‖ ≤ c2, z ∈ Bn, t ∈ [0, α];
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(iv) There exists a constant K > 0 such that

‖Df(z, t)‖n ≤ K| det Df(z, t)|, z ∈ Bn, t ∈ [0, α].

Then there exists a constant τ ∈ (0, α) such that f(·, t) is continuous and injective

on B
n

for t ∈ [0, τ ] and there exists a quasiconformal homeomorphism F ∗ of R2n

onto itself such that F ∗|Bn = f(·, 0).

In this paper we continue the work begun in [12] and obtain a sufficient condition
for a normalized quasiconformal biholomorphic mapping f on Bn, which can be
imbedded as the first element of a non-normalized subordination chain over [0, α],

to be extended to a quasiconformal homeomorphism of R2n
onto itself. We also

obtain certain applications of this result, including the asymptotical case of the n-
dimensional version of the well known quasiconformal extension result due to Ahlfors
and Becker.

2 Main results

We begin this section with the following result (cf. [13, Lemma 2.1]).

Lemma 2.1. Let α > 0 and h = h(z, t) : Bn × [0, α] → Cn satisfy the following
conditions:

(i) h(·, t) ∈ N , Dh(0, t) = c(t)In where c : [0, α] → C is a continuous function
such that Re c(t) > 0, t ∈ [0, α].

(ii) h(z, ·) is measurable on [0, α], for all z ∈ Bn.

Then for each s ∈ [0, α) and z ∈ Bn, the initial value problem

∂v

∂t
= −h(v, t) a.e. t ∈ [s, α], v(z, s, s) = z, (2.1)

has a unique solution v = v(z, s, t) such that v(z, s, ·) is absolutely continuous on
[s, α] locally uniformly with respect to z ∈ Bn. Moreover, for fixed s and t, v(·, s, t)
is a biholomorphic Schwarz mapping and Dv(0, s, t) = (a(s)/a(t))In where a(t) =
exp

∫ t
0 c(τ)dτ .

Proof. Let

γ(t) =
∫ t

0
Re c(τ)dτ and β(t) =

∫ t

0
Im c(τ)dτ.

Also let

z∗ = eiβ(t)z and t∗ = γ(t), z ∈ Bn, t ∈ [0, α].

Then ‖z∗‖ = ‖z‖ and since γ̇(t) ≥ 0 for t ∈ [0, α], it follows that t∗ is a function of
[0, α] onto [0, α∗] where α∗ = γ(α).

Further, let h∗ : Bn × [0, α] → Cn be given by

h∗(z, t∗) =
1

Re c(t)

[
eiβ(t)h(e−iβ(t)z, t)− iIm c(t)z

]
.
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Then h∗(·, t∗) ∈ H(Bn), h∗(0, t∗) = 0 and Dh(0, t∗) = In for t∗ ∈ [0, α∗]. More-
over, since h(z, ·) is measurable on [0, α] for z ∈ Bn, it follows that h∗(z, ·) is also
measurable on [0, α∗]. Also

Re 〈h∗(z, t∗), z〉 =
1

Re c(t)
Re 〈h(e−iβ(t)z, t), e−iβ(t)z〉 > 0, z ∈ Bn \ {0}, t ∈ [0, α].

Hence h∗(·, t∗) ∈ M for t∗ ∈ [0, α∗]. Taking into account Lemma 1.3, we deduce
that the initial value problem

∂v∗

∂t∗
= −h∗(v∗, t∗) a.e. t∗ ∈ [s∗, α∗], v∗(z∗, s∗, s∗) = z∗, (2.2)

has a unique solution v∗ = v∗(z∗, s∗, t∗) = es∗−t∗z∗+ · · · such that for fixed s∗ and t∗,
v∗(·, s∗, t∗) is a biholomorphic Schwarz mapping. Moreover, v∗(z∗, s∗, ·) is absolutely
continuous on [s∗, α∗] locally uniformly with respect to z∗ ∈ Bn. In fact, v∗(z∗, s∗, ·)
is Lipschitz continuous on [s∗, α∗] locally uniformly with respect to z∗ ∈ Bn (cf. [10,
Chapter 8]).

Now, let

v(z, s, t) = e−iβ(t)v∗(eiβ(s)z, γ(s), γ(t)), z ∈ Bn, 0 ≤ s ≤ t ≤ α.

It is not difficult to deduce that v(·, s, t) is a biholomorphic Schwarz mapping and

Dv(0, s, t) = ei(β(s)−β(t))Dv∗(0, γ(s), γ(t)) =
a(s)

a(t)
In.

Since v∗(z∗, s∗, ·) is absolutely continuous on [s∗, α∗] locally uniformly with respect to
z∗ ∈ Bn, it follows that v(z, s, ·) is absolutely continuous on [s, α] locally uniformly
with respect to z ∈ Bn. In fact, v(z, s, ·) is Lipschitz continuous on [s, α] locally
uniformly with respect to z ∈ Bn. Moreover, an elementary computation, based on
(2.2), yields that v = v(z, s, t) is a solution of the initial value problem (2.1). Finally,
using the uniqueness of solution to the initial value problem (2.2), we deduce that
the initial value problem (2.1) has also a unique solution. �

We are now able to prove the main result of this paper, which is a generalization
of [12, Theorem 3.1] to the case of non-normalized subordination chains.

Theorem 2.2. Let c : [0, α] → C be a continuous function such that min
t∈[0,α]

Re c(t) >

0 and let h(z, t) satisfy the assumptions of Lemma 2.1. Also let f(z, t) = a(t)z + · · ·
be a mapping such that f(·, t) ∈ H(Bn), f(0, t) = 0, Df(0, t) = a(t)In, where
a(t) = exp

∫ t
0 c(τ)dτ , and f(z, ·) is absolutely continuous on [0, α] locally uniformly

with respect to z ∈ Bn. Suppose that f(z, t) satisfies the differential equation

∂f

∂t
(z, t) = Df(z, t)h(z, t) a.e. t ∈ [0, α], ∀ z ∈ Bn. (2.3)

Moreover, assume that f(·, 0) is continuous and injective on B
n
. Also assume that

the following conditions hold:
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(i) There exist some constants M > 0 and k ∈ [0, 1) such that

‖Df(z, t)‖ ≤ M |a(t)|
(1− ‖z‖)k

, z ∈ Bn, t ∈ [0, α];

(ii) There exists a constant c1 > 0 such that

Re 〈h(z, t), z〉 ≥ c1‖z‖2, z ∈ Bn, t ∈ [0, α];

(iii) There exists a constant c2 > 0 such that

‖h(z, t)‖ ≤ c2, z ∈ Bn, t ∈ [0, α];

(iv) There exists a constant K > 0 such that f(·, t) is K-quasiregular for each
t ∈ [0, α].

Then there exists a constant τ ∈ (0, α) such that f(·, t) is continuous and injective

on B
n

for t ∈ [0, τ ], and there exists a quasiconformal homeomorphism F of R2n

onto itself such that F |Bn = f(·, 0).

Proof. As in the proof of Lemma 2.1, let

γ(t) =
∫ t

0
Re c(λ)dλ and β(t) =

∫ t

0
Im c(λ)dλ.

Also let t∗ = γ(t), t ∈ [0, α],

f ∗(z, t∗) = f(e−iβ(t)z, t), z ∈ Bn, t ∈ [0, α],

and

h∗(z, t∗) =
1

Re c(t)

[
eiβ(t)h(e−iβ(t)z, t)− iIm c(t)z

]
.

Since f(·, t) ∈ H(Bn), f(0, t) = 0, Df(0, t) = a(t)In, t ∈ [0, α], it is easy to see
that f ∗(·, t∗) ∈ H(Bn), f ∗(0, t∗) = 0 and

Df ∗(0, t∗) = e−iβ(t)a(t)In = et∗In, t∗ ∈ [0, α∗],

where α∗ = γ(α). Also, since f(z, ·) is absolutely continuous on [0, α] locally uni-
formly with respect to z ∈ Bn and β is of class C1 on [0, α], it is clear that f ∗(z, ·)
is also absolutely continuous on [0, α∗] locally uniformly with respect to z ∈ Bn.
Moreover, f ∗(·, 0) is continuous and injective on B

n
, since f(·, 0) is continuous and

injective on B
n
. In view of the condition (i) in the hypothesis, we deduce that

‖Df ∗(z, t∗)‖ = ‖Df(e−iβ(t)z, t)‖ ≤ M |a(t)|
(1− ‖e−iβ(t)z‖)k

=
Met∗

(1− ‖z‖)k
,

for all z ∈ Bn and t∗ ∈ [0, α∗]. Hence f ∗(z, t∗) satisfies the assumption (i) in Theorem
1.6.

On the other hand, taking into account the condition (ii), we deduce that

Re 〈h∗(z, t∗), z〉 =
1

Re c(t)
Re 〈h(e−iβ(t)z, t), e−iβ(t)z〉 ≥ c1‖z‖2

Re c(t)
, (2.4)
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for all z ∈ Bn and t∗ ∈ [0, α∗].
Since ‖h(z, t)‖ ≤ c2 for z ∈ Bn and t ∈ [0, α], it follows in view of Schwarz’s

lemma that

‖Dh(0, t)‖ ≤ c2, t ∈ [0, α],

and thus |c(t)| ≤ c2, t ∈ [0, α]. Hence, from (2.4) we obtain that

Re 〈h∗(z, t∗), z〉 ≥ c1

c2

‖z‖2, z ∈ Bn, t∗ ∈ [0, α∗].

Further, since

‖h∗(z, t∗)‖ ≤ 1

Re c(t)
[‖h(e−iβ(t)z, t)‖+ |Im c(t)|‖z‖],

we deduce from the condition (iii) and the above inequality that

‖h∗(z, t∗)‖ ≤ 2c2

Re c(t)
≤ 2c2

min
t∈[0,α]

Re c(t)
, z ∈ Bn, t∗ ∈ [0, α∗].

Therefore, we have proved that the mapping h∗(z, t∗) satisfies the conditions (ii)
and (iii) in Theorem 1.6.

Finally, since f(·, t) is K-quasiregular for t ∈ [0, α], we deduce that

‖Df ∗(z, t∗)‖n = ‖Df(e−iβ(t)z, t)‖n ≤ K| det Df(e−iβ(t)z, t)|
= K| det Df ∗(z, t∗)|, z ∈ Bn, t ∈ [0, α∗],

and hence f ∗(z, t∗) is K-quasiregular too on Bn for t∗ ∈ [0, α∗].
Consequently, taking into account Theorem 1.6, there is a constant τ ∗ ∈ (0, α∗)

such that f ∗(z, t∗) is continuous and injective on B
n

for t∗ ∈ [0, τ ∗], and there is a

quasiconformal extension F ∗ of R2n
onto itself such that f ∗(z, 0) = F ∗(z) for z ∈ Bn.

Since γ is a homeomorphism of [0, α] onto [0, α∗], there is a unique τ ∈ (0, α) such
that γ(τ) = τ ∗, and hence f(z, t) = f ∗(eiβ(t)z, γ(t)) is continuous and injective on B

n

for t ∈ [0, τ ]. Finally, since f(z, 0) = f ∗(z, 0), z ∈ B
n
, it follows that f(·, 0) extends

to a quasiconformal homeomorphism F of R2n
onto itself such that F |Bn = f(·, 0),

as desired. This completes the proof. �

Remark 2.3. If there is a mapping E(z, t) : Bn × [0, α] → L(Cn, Cn) which is
holomorphic in z and such that E(0, t) = 0 and ‖E(z, t)‖ ≤ c < 1 for z ∈ Bn,
t ∈ [0, α], then the mapping h(z, t) given by

h(z, t) = [In − E(z, t)]−1[In + E(z, t)](z), z ∈ Bn, t ∈ [0, α],

satisfies the conditions (ii) and (iii) in Theorem 2.2.

Proof. Indeed, it is clear that

‖h(z, t)‖ ≤ 1 + c

1− c
, z ∈ Bn, t ∈ [0, α].
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On the other hand, since

h(z, t)− z = E(z, t)(h(z, t) + z), z ∈ Bn, t ∈ [0, α],

we deduce that

‖h(z, t)− z‖ ≤ c‖h(z, t) + z‖, z ∈ Bn, t ∈ [0, α],

and by an elementary computation in the above relation, we obtain that

Re 〈h(z, t), z〉 ≥ ‖z‖2 1− c‖z‖
1 + c‖z‖

≥ ‖z‖2 1− c

1 + c
, z ∈ Bn, t ∈ [0, α].

�

3 Applications

In this section we obtain certain applications of Theorem 2.2. The first result may
be considered the asymptotical case of the n-dimensional version of Ahlfors’ and
Becker’s quasiconformal extension result [2] (see also [1]) (cf. [6]).

Theorem 3.1. Let k ∈ [0, 1), c ∈ C, |c| ≤ k, and let f : B
n → Cn be a normal-

ized quasiregular holomorphic mapping on Bn and continuous and injective on B
n
.

Assume there exists r ∈ (0, 1) such that

‖(1− ‖z‖2)[Df(z)]−1D2f(z)(z, ·) + c‖z‖2In‖ ≤ k, r ≤ ‖z‖ < 1. (3.1)

Then f can be extended to a quasiconformal homeomorphism of R2n
onto itself.

Proof. We prove that the mapping

f(z, t) = f(ze−t) +
1

1 + c
(et − e−t)Df(ze−t)(z)

satisfies the conditions of Theorem 2.2 on Bn × [0, α] where α = − ln r.
Indeed, f(·, t) ∈ H(Bn), f(0, t) = 0, Df(0, t) = a(t)In, t ∈ [0, α], where

a(t) =
et(1 + ce−2t)

1 + c
= exp

∫ t

0
c(τ)dτ

and c(t) = (1 − ce−2t)/(1 + ce−2t). Then Re c(t) ≥ (1 − |c|)/(1 + |c|) for t ∈ [0, α],
and hence min

t∈[0,α]
Re c(t) > 0. Also f(z, ·) ∈ C1([0, α]) for z ∈ Bn. Next, let

E(z, t) = −ce−2tIn − (1− e−2t)[Df(ze−t)]−1D2f(ze−t)(ze−t, ·), z ∈ Bn, t ∈ [0, α].

Then ‖E(z, 0)‖ = |c| ≤ k for z ∈ Bn. Further, using the maximum modulus
theorem for holomorphic mappings into complex Banach spaces and the condition
(3.1), we deduce that

‖E(z, t)‖ ≤ max
‖w‖=1

‖E(w, t)‖ ≤ k, z ∈ Bn, t ∈ (0, α].
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Therefore,

‖E(z, t)‖ ≤ k, z ∈ Bn, t ∈ [0, α]. (3.2)

Straightforward computations yield that

∂f

∂t
(z, t) = Df(z, t)h(z, t), t ∈ [0, α], z ∈ Bn,

where

h(z, t) = [In − E(z, t)]−1[In + E(z, t)](z).

Then h(·, t) ∈ H(Bn), h(0, t) = 0 and Dh(0, t) = c(t)In for t ∈ [0, α]. Also h(z, ·) is
measurable on [0, α] for z ∈ Bn. In view of (3.2), we deduce that the conditions (ii)
and (iii) in Theorem 2.2 are satisfied by Remark 2.3.

On the other hand, taking into account the relation (3.1), we have

(1− ‖z‖2)‖[Df(z)]−1D2f(z)(z, ·)‖ ≤ k + |c| ≤ 2k, r ≤ ‖z‖ < 1. (3.3)

Then, using the above inequality and an argument similar to that in the proof of
[12, Theorem 4.1] (cf. [15, Theorem 2.1]), we deduce that there exists some absolute
constant M > 0 such that

‖Df(z, t)‖ ≤ M |a(t)|
(1− ‖z‖)k

, z ∈ Bn, t ∈ [0, α]. (3.4)

Indeed, fix w ∈ ∂Bn and let g(ζ) = det A(ζ) where A(ζ) = Df(ζw), |ζ| < 1. Since
g(|ζ|) is uniformly bounded on the disc Ur, there is a constant C1 > 0 such that

|g(|ζ|)| ≤ C1

(1− |ζ|)nk
, |ζ| < r. (3.5)

On the other hand, in view of the relation (3.3), we obtain by an argument similar
to that in the proof of [15, Theorem 2.1],∣∣∣∣∣ζ d

dζ
log g(ζ)

∣∣∣∣∣ ≤ 2nk

1− |ζ|2
, r ≤ |ζ| < 1.

Then

| log g(|ζ|)| ≤
∫ |ζ|

r

2nk

(1− τ 2)τ
dτ + C2 ≤

∫ |ζ|

r

nk

1− τ
dτ + C3 = −nk log(1− |ζ|) + C4,

where C4 is a constant which does not depend on w ∈ ∂Bn. Consequently, we
deduce that

|g(|ζ|)| ≤ eC4

(1− |ζ|)nk
, r ≤ |ζ| < 1. (3.6)

Combining the relations (3.5) and (3.6), we obtain that

|g(|ζ|)| ≤ O

(
1

(1− |ζ|)nk

)
, |ζ| < 1.



662 P. Curt – G. Kohr

Setting w = z/‖z‖ and ζ = ‖z‖ in the above inequality, we deduce that there is a
constant K > 0 such that

| det Df(z)| ≤ K

(1− ‖z‖)nk
, z ∈ Bn.

On the other hand, since f is quasiregular on Bn, there is a constant L1 ≥ 1 such
that

‖Df(z)‖n ≤ L1| det Df(z)|, z ∈ Bn,

and hence

‖Df(z)‖ ≤ L2

(1− ‖z‖)k
, z ∈ Bn,

for some constant L2 > 0. Further, since

Df(z, t) =
et

1 + c
Df(ze−t)[In − E(z, t)], z ∈ Bn, t ∈ [0, α],

we deduce that

‖Df(z, t)‖ ≤ etL2(1 + k)

|1 + c|(1− ‖ze−t‖)k
≤ L2(1 + k)et

|1 + c|(1− ‖z‖)k

=
L2(1 + k)|a(t)|

(1− ‖z‖)k
· 1

|1 + ce−2t|
≤ M |a(t)|

(1− ‖z‖)k

for some constant M > 0. Hence the relation (3.4) holds, as claimed.
Finally, we deduce that f(z, t) is L̃-quasiregular for some L̃ ≥ 1. Indeed,

‖Df(z, t)‖n ≤ ent

|1 + c|n
‖Df(ze−t)‖n‖In − E(z, t)‖n

≤ ent

|1 + c|n
L1| det Df(ze−t)|(1 + k)n

=
L1(1 + k)n| det Df(z, t)|

| det[In − E(z, t)]|
≤
(

1 + k

1− k

)n

L1| det Df(z, t)|,

for all z ∈ Bn and t ∈ [0, α]. Hence f(·, t) is L̃-quasiregular on Bn for t ∈ [0, α],

where L̃ = L1

(
1 + k

1− k

)n

.

Therefore f(z, t) satisfies the assumptions of Theorem 2.2, and thus f = f(·, 0)

extends to a quasiconformal homeomorphism of R2n
onto R2n

, as desired. This
completes the proof. �

We remark that if c = 0 in Theorem 3.1, we obtain [12, Theorem 4.1] that is the
asymptotical case of [15, Theorem 2.1]. In the case n = 1, this result was obtained
by Becker and Pommerenke [2, Satz4]. We have

Corollary 3.2. Let f : B
n → Cn be a normalized quasiregular holomorphic mapping

on Bn and continuous and injective on B
n
. Assume that

lim sup
‖z‖→1−0

‖(1− ‖z‖2)[Df(z)]−1D2f(z)(z, ·)‖ < 1.

Then f can be extended to a quasiconformal homeomorphism of R2n
onto itself.
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Using arguments similar to those in the proof of Theorem 3.1, we obtain the
following result.

Theorem 3.3. Let f : B
n → Cn be a normalized quasiregular holomorphic mapping

on Bn and continuous and injective on B
n
. Also let α ≥ 2. Assume there exist

some constants r, k with r ∈ (0, 1) and
α

2
− 1 ≤ k < 2− α

2
such that

∥∥∥∥(1− ‖z‖α)[Df(z)]−1D2f(z)(z, ·) +
(
1− α

2

)
In

∥∥∥∥ ≤ k, r ≤ ‖z‖ < 1.

Then f can be extended to a quasiconformal homeomorphism of R2n
onto itself.

Proof. To prove this result, it suffices to consider the mapping f(z, t) : Bn× [0, λ] →
Cn given by

f(z, t) = f(ze−t) + (e(α−1)t − e−t)Df(ze−t)(z),

where λ = − ln r, and to apply arguments similar to those in the proof of Theorem
3.1. We leave the details for the reader. �

More generally, we obtain the following result (cf. [12]; compare with [11], [7]
and [16]). Note that if G(z) = Df(z) for z ∈ Bn, Theorem 3.4 reduces to Theorem
3.3. In this case the condition (iii) reduces to the fact that f is quasiregular on Bn.
Also if G(z) = Df(z) for z ∈ Bn, and α = 2, then Theorem 3.4 reduces to Corollary
3.2.

Theorem 3.4. Let f : B
n → Cn be a normalized holomorphic mapping on Bn and

let G(z) be a nonsingular n× n matrix, holomorphic as a function of z ∈ Bn, such
that G(0) = In. Also let α ≥ 2. Assume f is continuous and injective on B

n
. Also

assume there exist some constants r, k with r ∈ (0, 1) and
α

2
− 1 ≤ k < 2− α

2
such

that the following conditions hold:

(i)
∥∥∥∥[G(z)]−1Df(z)− α

2
In

∥∥∥∥ ≤ k for z ∈ Bn;

(ii)∥∥∥∥‖z‖α[[G(z)]−1Df(z)− In] + (1− ‖z‖α)[G(z)]−1DG(z)(z, ·) +
(
1− α

2

)
In

∥∥∥∥ ≤ k

for r ≤ ‖z‖ < 1;
(iii) There exists a constant K ≥ 1 such that ‖G(z)‖n ≤ K| det G(z)| for z ∈ Bn.
Then f is quasiregular on Bn and can be extended to a quasiconformal homeo-

morphism of R2n
onto itself.

Proof. Let λ = − ln r and

f(z, t) = f(ze−t) + (e(α−1)t − e−t)G(ze−t)(z), z ∈ Bn, t ∈ [0, λ].

Next we apply arguments similar to those in the proof of Theorem 3.1, to deduce
that f(z, t) satisfies the conditions in Theorem 2.2 on Bn × [0, λ].
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Indeed, f(·, t) ∈ H(Bn), f(0, t) = 0, Df(0, t) = a(t)In, t ∈ [0, λ], where a(t) =
e(α−1)t = exp

∫ t
0 c(τ)dτ and c(t) = α− 1. Let

E(z, t) =− 2

α
e(α−1)t

[
[G(ze−t)]−1Df(ze−t)− In

]
− 2

α
(1− e−αt)[G(ze−t)]−1DG(ze−t)(ze−t, ·) + In

(
1− 2

α

)
,

for all z ∈ Bn and t ∈ [0, λ]. Then

‖E(z, 0)‖ =
2

α

∥∥∥∥[G(z)]−1Df(z)− α

2
In

∥∥∥∥ ≤ 2

α
k < 1, z ∈ Bn,

by the condition (i). Next, fix t ∈ (0, λ]. In view of the maximum modulus theorem
for holomorphic mappings into complex Banach spaces, we obtain that

‖E(z, t)‖ ≤ max
‖w‖=1

‖E(w, t)‖ =

2

α
max
‖w‖=1

∥∥∥∥‖we−t‖α
[
[G(we−t)]−1Df(we−t)− In

]
+

+(1− ‖we−t‖α)[G(we−t)]−1DG(we−t)(we−t, ·) + In

(
1− α

2

)∥∥∥∥, z ∈ Bn.

Hence, we deduce from the condition (ii) that

‖E(z, t)‖ ≤ 2

α
k < 1, z ∈ Bn.

Therefore

‖E(z, t)‖ ≤ 2

α
k, z ∈ Bn, t ∈ [0, λ],

and hence In − E(z, t) is an invertible linear operator and

Df(z, t) =
α

2
e(α−1)tG(ze−t)[In − E(z, t)], z ∈ Bn, t ∈ [0, λ]. (3.7)

Straightforward computations yield that

∂f

∂t
(z, t) = Df(z, t)h(z, t), ∀t ∈ [0, λ], z ∈ Bn,

where
h(z, t) = [In − E(z, t]−1[In + E(z, t)](z).

Then h(z, t) satisfies the assumptions of Lemma 2.1 by the same argument as in the
proof of Theorem 3.1.

On the other hand, taking into account the conditions (i) and (ii) in the hypoth-
esis, we deduce that

(1− ‖z‖α)‖[G(z)]−1DG(z)(z, ·)‖

≤ k +
∣∣∣∣1− α

2

∣∣∣∣+ ‖z‖α
[∥∥∥∥[G(z)]−1Df(z)− α

2
In

∥∥∥∥+
∣∣∣∣1− α

2

∣∣∣∣]
≤
(
k +

∣∣∣∣1− α

2

∣∣∣∣)(1 + ‖z‖α) < 2c, r ≤ ‖z‖ < 1,
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where c = k + (α/2− 1) < 1. Since α ≥ 2, we deduce from the above relation that

(1− ‖z‖2)‖[G(z)]−1DG(z)(z, ·)‖ ≤ 2c, r ≤ ‖z‖ < 1.

Next, it suffices to use arguments similar to those in the proof of Theorem 3.1 (see
also the proof of [11, Theorem 4.1]), to deduce that there exists a constant M > 0
such that

| det G(z)| ≤ M

(1− ‖z‖)nc
, z ∈ Bn.

Taking into account the condition (iii) and the above relation, we deduce that there
exists a constant L > 0 such that

‖G(z)‖ ≤ L

(1− ‖z‖)c
, z ∈ Bn.

Moreover, using the relation (3.7) and the above inequality, we deduce that

‖Df(z, t)‖ ≤ α

2
e(α−1)t

(
1 +

2

α
k
)

L

(1− ‖z‖)c
=

L∗a(t)

(1− ‖z‖)c
, z ∈ Bn, t ∈ [0, λ].

Therefore, the mapping f(z, t) satisfies the condition (i) in Theorem 2.2.
Further, in view of (3.7) and the condition (iii) in the hypothesis, we obtain that

‖Df(z, t)‖n ≤
(

α

2

)n

en(α−1)t‖G(ze−t)‖n(1 + ‖E(z, t)‖)n

≤
(

α

2

)n

en(α−1)tK| det G(ze−t)|
(
1 +

2

α
k
)n

=
K
(
1 +

2

α
k
)n

| det Df(z, t)|

| det[In − E(z, t)]|
≤
(

1 + k1

1− k1

)n

K| det Df(z, t)|,

for all z ∈ Bn and t ∈ [0, λ], where k1 = 2k/α. Hence f(·, t) is K̃-quasiregular on

Bn for t ∈ [0, λ], where K̃ = K
(

1 + k1

1− k1

)n

.

Finally, it suffices to use arguments similar to those in the proof of Theorem
3.1, to deduce that f(z, t) satisfies all assumptions of Theorem 2.2. Consequently,
f = f(·, 0) is quasiregular on Bn and can be extended to a quasiconformal homeo-

morphism of R2n
onto itself, as desired. �

In particular, from Theorem 3.4 we obtain the following consequence, which
generalizes [12, Theorem 4.3] (compare with [3]).

Corollary 3.5. Let f : B
n → Cn be a normalized holomorphic mapping on Bn,

which is continuous and injective on B
n
. Also let α ≥ 2 and a : Bn → C be a

holomorphic function such that a(z) 6= 0, z ∈ Bn, and a(0) = 1. Assume there exist

some constants r, k with r ∈ (0, 1) and
α

2
− 1 ≤ k < 2 − α

2
such that the following

conditions hold: ∥∥∥∥[a(z)]−1Df(z)− α

2
In

∥∥∥∥ ≤ k, z ∈ Bn;
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and∥∥∥∥‖z‖α{[a(z)]−1Df(z)−In}+(1−‖z‖α)[a(z)]−1da

dz
(z)z+

(
1−α

2

)
In

∥∥∥∥ ≤ k, r ≤ ‖z‖ < 1.

Then f is quasiregular on Bn and can be extended to a quasiconformal homeomor-

phism of R2n
onto itself.
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