On certain (LB)-spaces

Manuel Valdivia^{*}

To my friend Jean Schmets on his 65th anniversary

Abstract

Let (X_n) be a sequence of infinite-dimensional Banach spaces. For E being the space $\bigoplus_{n=1}^{\infty} X_n$, the following equivalences are shown: 1. $E' [\mu(E', E)]$ is B-complete. 2. Every separated quotient of $E' [\mu(E', E)]$ is complete. 3. Every separated quotient of E satisfies Mackey's weak condition. 4. X_n is quasi-reflexive, $n \in \mathbb{N}$.

1 Introduction and notation

The linear spaces that we shall use here are assumed to be defined over the field \mathbb{K} of real or complex numbers, and the topologies on them will all be Hausdorff. As usual, \mathbb{N} represents the set of positive integers. If $\langle E, F \rangle$ is a dual pair, then $\sigma(E, F)$, $\mu(E, F)$ and $\beta(E, F)$ denote the weak, Mackey and strong topologies on E, respectively. We shall write $\langle \cdot, \cdot \rangle$ for the bilinear functional associated to $\langle E, F \rangle$. Let E be a locally convex space and let τ be its topology, if A is a subset of E then $A[\tau]$ means the set A endowed with the topology induced by τ, \overline{A} is the closure of A and A° is the polar set of A in the topological dual E' of E. E'' is the topological dual of $E'[\beta(E', E)]$. By $\rho(E, E')$ we denote the topology on E of the uniform convergence over each absolutely convex compact subset of $E'[\beta(E', E)]$. We identify E, in the usual fashion, with a linear subspace of E''. If B is a subset of E, by \tilde{B} we mean the closure of B in $E''[\sigma(E'', E')]$. A linear functional u on E is said to be bounded if it is bounded on every bounded subset of E.

Let A be a bounded absolutely convex subset of the locally convex space E. Then E_A denotes the linear span of A endowed with the norm defined by the gauge of A.

Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 565-575

^{*}Supported in part by MTM2005-08210

¹⁹⁹¹ Mathematics Subject Classification : Primary 46 A 13, Secondary 46 A 04.

The space E is said to be locally complete if E_A is complete for every bounded closed absolutely convex subset A of E; if E is sequentially complete, and, in particular, when it is complete, then it is locally complete. We say the E satisfies Mackey's weak condition if for an arbitrary sequence (x_n) in E which converges to the origin, there is a bounded closed absolutely convex subset A of E such that $x_n \in A$, $n \in \mathbb{N}$, and (x_n) converges to the origin in E_A for the weak topology.

Following Ptak [6], (see also [2, p. 299]), a locally convex space E is B-complete if every subspace F of E' is $\sigma(E', E)$ -closed when $F \cap A$ is $\sigma(E', E)$ -closed in Afor each equicontinuous subset A of E. If E is B-complete, then every separated quotient of E is complete.

We shall say that a Banach space X is quasi-reflexive if it has finite codimension in its bidual X". In [3], R. C. James gives an example of a quasi-reflexive Banach space that is not reflexive.

A locally convex space E is said to be an (LB)-space if it is the inductive limit of a sequence of Banach spaces, or, equivalently, if it is the separated quotient of the topological direct sum of a sequence of Banach spaces. The first example of an (LB)-space which is not complete is due to Köthe (see [5, pp. 434-435]). In [8] we give the following result: a) Let (X_n) be a sequence of infinite-dimensional Banach spaces. If $E := \bigoplus_{n=1}^{\infty} X_n$, then the following are equivalent: 1. E is B-complete. 2. Every separated quotient of E is complete. 3. X_n is quasi-reflexive, $n \in \mathbb{N}$.

In Section 2 of this paper, we obtain a theorem containing an analogous result to that of a) replacing E by $E'[\mu(E', E)]$.

Let (x_n) be a sequence in a linear space. We say that (y_n) is a block-convex sequence of (x_n) if there are positive integers

$$1 = n_1 < n_2 < \dots < n_j < \dots$$

and, for each $j \in \mathbb{N}$, there is $a_{jr} \geq 0$, $r = n_j, n_j + 1, \dots, n_{j+1} - 1$, such that

$$\sum_{r=n_j}^{n_{j+1}-1} \alpha_{jr} = 1, \quad y_j = \sum_{r=n_j}^{n_{j+1}-1} \alpha_{jr} x_r.$$

We shall say that a Schauder basis (x_n) in a Fréchet space E has property P if there is a continuous seminorm p on E such that

$$\inf\{p(x_n) : n \in \mathbb{N}\} > 0$$

and the set $\{x_1+x_2+\ldots+x_n : n \in \mathbb{N}\}$ is bounded in *E*. Property *P* was introduced by I. Singer in [7] for Banach spaces.

Let E be a locally convex space. A family \mathcal{A} of absolutely convex closed and bounded subsets of E is said to be saturated when the following conditions are satisfied:

- 1. $\cup \{A : A \in \mathcal{A}\} = E.$
- 2. Every finite union of elements of \mathcal{A} is contained in an element of \mathcal{A} .
- 3. Given any $A \in \mathcal{A}$ and $k \in \mathbb{K}$, there is an element B in \mathcal{A} such that $kA \subset B$.

Hence $\{A^{\circ} : A \in \mathcal{A}\}$ is a fundamental system of zero neighborhoods in E' for a locally convex topology that we shall denote by $\tau_{\mathcal{A}}$

Proposition 1. Let E be a locally convex space. Let \mathcal{A} be a saturated family of absolutely convex closed bounded subsets of E. If T is an absolutely convex subset of E such that, for each $A \in \mathcal{A}$, $T \cap A$ is a neighborhood of the origin in $A [\sigma(E, E')]$, then T° is a precompact subset of $E' [\tau_{\mathcal{A}}]$.

Proof. By G we denote the subspace of E'' given by

$$G = \bigcup \{ \tilde{A} : A \in \mathcal{A} \}.$$

By S we represent the closure of T in $G[\sigma(G, E')]$. We fix $A \in \mathcal{A}$. We find an absolutely convex compact subset M of $E'[\sigma(E', E)]$ whose linear hull has finite dimension and, if P is the polar set of M in E, then

$$P \cap A \subset T \cap A \subset S \cap \tilde{A}. \tag{1}$$

The convex hull D of $A^{\circ} \cup M$ is $\sigma(E', E)$ -closed and so D is the polar set of $P \cap A$ in E'. Then the polar set of D in G coincides with the closure F of $P \cap A$ in G [$\sigma(G, E')$] and, after (1), we have that F is contained in $S \cap \tilde{A}$. On the other hand, F coincides with the polar set of $A^{\circ} \cup M$ in G and so, if Q is the polar set of M in G, having in mind that P is $\sigma(G, E')$ -dense in Q, it follows that

$$F = Q \cap \tilde{A} \subset S \cap \tilde{A}$$

Clearly, $Q \cap \tilde{A}$ is a neighborhood of the origin in $\tilde{A}[\sigma(G, E')]$ and thus $S \cap \tilde{A}$ is a neighborhood of the origin in $\tilde{A}[\sigma(G, E')]$.

If B is an arbitrary subset of E', we write B° to denote the polar set of B in G. We consider now the locally convex space $E'[\tau_{\mathcal{A}}]$. It is clear that we may identify the topological dual of this space with G, with $\{\tilde{A} : A \in \mathcal{A}\}$ being a fundamental system of equicontinuous subsets. Let \mathcal{B} stand for the family of all absolutely convex closed and bounded subsets of $E'[\tau_{\mathcal{A}}]$ such that $B^{\circ} \cap \tilde{A}$ is a zero neighborhood in $\tilde{A}[\sigma(G, E')]$ for every $B \in \mathcal{B}$ and every $A \in \mathcal{A}$. It is no hard job to see that \mathcal{B} is saturated. Let $\tau_{\mathcal{B}}$ be the topology on G given by the uniform convergence over every element of \mathcal{B} . We fix now $A \in \mathcal{A}$ and take in \tilde{A} a net

$$\{x_j : j \in J, \geq\}\tag{2}$$

such that it $\sigma(G, E')$ -converges to x. We then find an element A_1 in \mathcal{A} such that $2A \subset A_1$. Then the net

$$\{x_j - x : j \in J, \geq\}$$

$$(3)$$

is in \tilde{A}_1 and $\sigma(G, E')$ -converges to the origin. Consequently, the net (3) $\tau_{\mathcal{B}}$ -converges to the origin and so the net in (2) $\tau_{\mathcal{B}}$ -converges to x. It then follows that $\tau_{\mathcal{B}}$ and $\sigma(G, E')$ coincide in \tilde{A} . Therefore, the elements of \mathcal{B} are $\tau_{\mathcal{A}}$ -precompact (see [4, 8. Proposition, p. 180]). We then deduce that the polar set of S in E', which coincides with T° , is $\tau_{\mathcal{A}}$ -precompact.

Let E be a locally convex space. We say that a subset A of E is a Banach disk if it is absolutely convex, bounded and E_A is a Banach space.

Let us consider now a dual pair $\langle F, G \rangle$. Let \mathcal{A} be the family of all absolutely convex closed and bounded subsets of $F[\sigma(F,G)]$ such that $A \in \mathcal{A}$ if and only if there is a Banach disk B in $F[\sigma(F,G)]$ such that $A \subset B$ and A is weakly compact in E_B . Clearly, \mathcal{A} is a saturated family. We represent by $\delta(G, F)$ the topology on G of the uniform convergence over every element of \mathcal{A} .

2 Mackey's weak condition in (LB)-spaces

Theorem 1. Let (X_n) be a sequence of Banach spaces of infinite dimension. If X_1 is not quasi-reflexive, then there is a separated quotient H of $\bigoplus_{n=1}^{\infty} X_n$ such that it does not satisfy Mackey's weak condition.

Before giving the proof of this theorem, we shall construct H as it is done in [8] and we shall establish some previous propositions. Hence, proceeding as in [8], we find in X_1 an increasing sequence of separable closed subspaces (F_n) such that

$$X_1 \neq X_1 + \tilde{F}_1, \quad X_1 + \tilde{F}_n \neq X_1 + \tilde{F}_{n+1}, \quad n \in \mathbb{N}.$$

Let E be the closed linear hull of $\bigcup_{n=1}^{\infty} F_n$ in X_1 . As usual, we identify E'' with \tilde{E} . Let $E_n := X_{n+1}$, $n \in \mathbb{N}$. We take

$$x_1 \in F_1, \quad x_1 \notin E, \quad x_{n+1} \in F_{n+1}, \quad x_{n+1} \notin E + F_n, \quad n \in \mathbb{N}.$$

We write Z for the linear hull of $E \cup \{x_n : n \in \mathbb{N}\}$. Let B be the closed unit ball of E. We put B_n for the closed unit ball of E_n , $n \in \mathbb{N}$. It follows that $B^{\circ}[\sigma(E', Z)]$ is metrizable and separable. By T_m we denote the subspace of E' orthogonal to F_m . In $(B^{\circ} \cap T_m)[\sigma(E', Z)]$ we choose a dense subset $\{u_{mn} : n \in \mathbb{N}\}$. We then define a mapping h from E into $\ell^{\infty}(\mathbb{N} \times \mathbb{N})$ by setting

$$h(z) = (\langle z, u_{mn} \rangle)_{m,n \in \mathbb{N}}, \quad z \in E.$$

For each $j \in \mathbb{N}$, we find ([9, Lemma 1]) a one-to-one continuous linear mapping φ_j from $\ell^{\infty}[\mu(\ell^{\infty}, \ell^1)]$ into E_j . Let

$$\Phi_j: \ \ell^\infty(\mathbb{N} \times \mathbb{N}) \longrightarrow E_j$$

be such that

$$\Phi_j((a_{mn})) = \varphi_j((a_{jn})), \quad (a_{mn}) \in \ell^\infty(\mathbb{N} \times \mathbb{N}).$$

We now define

$$\zeta: E \times \bigoplus_{n=1}^{\infty} E_n \longrightarrow \prod_{n=1}^{\infty} E_n$$

as

$$\zeta((z, (z_1, z_2, ..., z_n, ...))) = ((\Phi_1 \circ h)(z) + z_1, (\Phi_2 \circ h)(z) + z_2, ..., (\Phi_n \circ h)(z) + z_n, ...),$$
$$z \in E, \quad (z_1, z_2, ..., z_n ...) \in \bigoplus_{n=1}^{\infty} E_n.$$

Obviously, ζ is continuous. We write

$$H := (E \times \bigoplus_{n=1}^{\infty} E_n) / \zeta^{-1}(0).$$

Proposition 2. [8]. H is an (LB)-space which is not locally complete.

In the sequel, we shall consider, in the usual manner, E, $\bigoplus_{n=1}^{r} E_n$, $r \in \mathbb{N}$, and $\bigoplus_{n=1}^{\infty} E_n$ as subspaces of $E \times \bigoplus_{n=1}^{\infty} E_n$. We take a closed absolutely convex neighborhood of the origin U in $\prod_{n=1}^{\infty} E_n$. We then put

$$T := E \cap \zeta^{-1}(U).$$

It is plain that, for each $m \in \mathbb{N}$,

$$\zeta_{|mB}$$
 : $(mB) [\sigma(E, E')] \longrightarrow \prod_{n=1}^{\infty} E_n$

is continuous and thus the barrel T of E meets (mB) $[\sigma(E, E')]$ in a neighborhood of the origin. We apply now Proposition 1 for

$$\mathcal{A} := \{ mB : m \in \mathbb{N} \}$$

to obtain that the polar set of T in $E'[\beta(E', E)]$ is compact. Consequently,

$$\zeta: E[\rho(E, E')] \times \bigoplus_{n=1}^{\infty} E_n \longrightarrow \prod_{n=1}^{\infty} E_n$$

is continuous. Let τ be the locally convex topology on H such that

$$H [\tau] = (E[\rho(E, E')] \times \bigoplus_{n=1}^{\infty} E_n) / \zeta^{-1}(0).$$

Clearly, τ is compatible with the duality $\langle H, H' \rangle$. If we set $F := \bigcup_{n=1}^{\infty} F_n$, it follows that $\zeta^{-1}(0)$ is contained in $F \times \bigoplus_{n=1}^{\infty} E_n$. If λ denotes the restriction of ζ to $F \times \bigoplus_{n=1}^{\infty} E_n$ and S is the topology induced in $\bigoplus_{n=1}^{\infty} E_n$ by the topology of $\prod_{n=1}^{\infty} E_n$, we then have

$$\lambda : F [\rho(E, E')] \times \bigoplus_{n=1}^{\infty} E_n \longrightarrow (\bigoplus_{n=1}^{\infty} E_n)[\mathcal{S}]$$

is continuous and onto. If η is the canonical mapping from $E \times \bigoplus_{n=1}^{\infty} E_n$ onto $(E \times \bigoplus_{n=1}^{\infty} E_n)/\zeta^{-1}(0)$, we denote by G the subspace of $H[\tau]$ given by the image under η of $F \times \bigoplus_{n=1}^{\infty} E_n$.

Given an arbitrary x in G, we find y in $F \times \bigoplus_{n=1}^{\infty} E_n$ such that $\eta(y) = x$, and we put $\varphi(x) = \lambda(y)$. Then

$$\varphi : G \longrightarrow (\bigoplus_{n=1}^{\infty} E_n)[\mathcal{S}]$$

is linear continuous one-to-one and onto. For an arbitrary element z of $\bigoplus_{n=1}^{\infty} E_n$, we fix the vector $0 \in E$ and write $\alpha(z) := \eta((0, z))$. Then

$$\alpha : \bigoplus_{n=1}^{\infty} E_n \longrightarrow G$$

is linear continuous one-to-one and onto. It is immediate to see that $\varphi \circ \alpha$ is the canonical injection from $\bigoplus_{n=1}^{\infty} E_n$ into $(\bigoplus_{n=1}^{\infty} E_n)[\mathcal{S}]$. We set

$$L := \eta(E), \ L_r := \eta(\bigoplus_{n=1}^r E_n), \ D := \eta(B), \ D_r := \eta(\bigoplus_{n=1}^r B_n), \ A_r := D + D_r, \ r \in \mathbb{N}.$$

Let M stand for the closure of D in $H[\tau]$.

Proposition 3. In $H[\tau]$, L_r is a subspace isomorphic to $\bigoplus_{n=1}^r E_n$.

Proof. It is an immediate consequence of the fact that $\varphi \circ \alpha_{|\bigoplus_{n=1}^{r} E_n}$ is a topological isomorphism from $\bigoplus_{n=1}^{r} E_n$ onto $(\bigoplus_{n=1}^{r} E_n)[\mathcal{S}]$.

Proposition 4. $D[\tau]$ is a precompact topological space.

Proof. Let $\{x_i : i \in I, \geq\}$ be a net in D. We take y_i in B such that $\eta(y_i) = x_i$, $i \in I$. Since $B[\rho(E, E')]$ is precompact, we find a Cauchy subnet $\{z_j : j \in J, \succeq\}$ of $\{y_i : i \in I, \geq\}$. Then, $\{\eta(z_j) : j \in J, \succeq\}$ is a Cauchy subnet of $\{x_i : i \in I, \geq\}$ in $D[\tau]$.

Proposition 5. In $H[\tau]$, $M + L_r$ and $M + D_r$ are closed subsets.

Proof. Let x be a point in the closure of $M + L_r$ in $H[\tau]$. We take a net $\{x_i : i \in I, \geq\}$ in $M + L_r$ converging to x. We then write

$$x_i = y_i + z_i, \quad y_i \in M, \quad z_i \in L_r, \quad i \in I.$$

Since M is precompact, there is a subnet of $\{z_i = x_i - y_i : i \in I, \geq\}$ which is Cauchy and, since L_r is complete, it follows that $\{z_i : i \in I, \geq\}$ has an adherent point $z \in L_r$. Then, $\{y_i : i \in I, \geq\}$ has x - z as adherent point and, consequently, x = (x - z) + zbelongs to $M + L_r$. The same proof works for $M + D_r$, just replacing L_r by D_r .

Proposition 6. If A is bounded in H, then there is $r \in \mathbb{N}$ such that A is contained in $r(M + D_r)$.

Proof. It is immediate that H is the inductive limit of the sequence of Banach spaces (H_{A_n}) . Therefore, if U_n is the polar set of nA_n in H', it follows that

$$\{U_n : n \in \mathbb{N}\}$$

is a fundamental system of zero neighborhoods in H' for a metrizable locally convex topology \mathcal{V} . Let K_n be the closure of nA_n in H. We then have that

$$\mathcal{K} := \{ K_n : n \in \mathbb{N} \}.$$

is a saturated family of absolutely convex closed and bounded subsets of H such that \mathcal{V} coincides in H' with the topology of the uniform convergence over the elements of \mathcal{K} . Let u be an element in the completion of $H'[\mathcal{V}]$. After Grothendieck's completion theorem ([5, p. 270]), $u^{-1}(0) \cap K_n$ is closed in $H, n \in \mathbb{N}$, and thus the restriction of u to H_{A_n} is continuous, hence we have that u belongs to H'. Consequently, $H'[\mathcal{V}]$ is a Fréchet space. If A° is the polar set of A in H', it follows that A° is a barrel in $H'[\mathcal{V}]$ and so it is a neighborhood of the origin, from where we deduce that there is a positive integer r such that A is contained in K_r . Now, since $r(M + D_r)$ is closed and contains rA_r , we have that A is contained in $r(M + D_r)$.

Proposition 7. For each $r \in \mathbb{N}$, $M + D_r$ is not a Banach disk.

Proof. After Proposition 1, there is a subset A of H which is absolutely convex closed and bounded and is not a Banach disk. Applying the former proposition we obtain $s \in \mathbb{N}$ such that A is contained in $s(M + D_s)$, hence we have that $M + D_s$ is not a Banach disk and so, having in mind that D_s is a Banach disk, it follows that M is not a Banach disk. Finally, given $r \in \mathbb{N}$, if $M + D_r$ was a Banach disk, since M is closed in H_{M+D_r} , we would have that M would then be a Banach disk, which is a contradiction.

Proof of Theorem 1. Let us assume that H satisfies Mackey's weak condition. Since

$$\{r(M+D_r) : r \in \mathbb{N}\}$$

is a fundamental system of bounded sets in H, we apply ([10, (10), p.161]) to obtain $s \in \mathbb{N}$ such that the weak topology of H and the weak topology of H_{M+D_s} coincide in M. Let ψ be the canonical injection of the Banach space $H_{A_s} := H_{D+D_s}$ into H_{M+D_s} . It follows that D is dense in M for the weak topology of H_{M+D_s} . Then $D+D_s$ is dense in $M+D_s$ in the normed space H_{M+D_s} and so ψ is almost open. We then apply ([2, p.296]) to obtain that ψ is a topological isomorphism from H_{D+D_s} onto H_{M+D_s} . Hence H_{M+D_s} is a Banach space, which is a contradiction.

We shall need later the following result that we proved in [12]: b) Let E be a separable Fréchet space. Let (u_n) be a sequence in $E' [\sigma(E', E)]$ converging to the origin. If (u_n) does not converge to the origin in Mackey's weak sense, then there is a block-convex sequence (w_n) of (u_n) such that it satisfies the following properties: 1 (w_n) is $\sigma(E', E)$ basic

```
1. (w_n) is \sigma(E', E)-basic.
```

that

2. If F is the $\sigma(E', E)$ -closed linear hull of $\{w_n : n \in \mathbb{N}\}$ and F^{\perp} is

the

subspace of E orthogonal to F, then the sequence (x_n) of E/F^{\perp}

such

$$\langle x_n, w_n \rangle = 1, \quad \langle x_n, w_m \rangle = 0, \quad m \neq n, \ m, n \in \mathbb{N},$$

is a Schauder basis with property P in E/F^{\perp} .

Lemma 1. Let E be a Fréchet space. Let (u_n) be a sequence in E' $[\sigma(E', E)]$ which converges to the origin. If (u_n) does not converge in Mackey's weak sense, then there is a block-convex sequence (w_n) of (u_n) such that, if F is the subspace of E' $[\sigma(E', E)]$ given by the closed linear hull of $\{w_n : n \in \mathbb{N}\}$, then there is a bounded linear functional x on F such that $\langle x, w_n \rangle = 1$, $n \in \mathbb{N}$.

Proof. We take in $E'[\sigma(E', E)]$ a fundamental system of absolutely convex compact subsets

$$A_1 \subset A_2 \subset \ldots \subset A_n \subset \ldots$$

so that $u_n \in A_1$, $n \in \mathbb{N}$. By $\|\cdot\|_n$ we denote the norm in E'_{A_n} . Let A_n° be the polar set of A_n in E. We write H for the linear hull of $\{u_n : n \in \mathbb{N}\}$. In E'_{A_m} we take

a dense subset $\{u_{mn} : n \in \mathbb{N}\}$ of H. For every $m, n, r \in \mathbb{N}$, we choose in A_m° an element x_{mnr} such that

$$|\langle x_{mnr}, u_{mn} \rangle| > || u_{mn} ||_m - \frac{1}{r}.$$

We denote by G the closed linear span of

$$\{x_{mnr} : m, n, r \in \mathbb{N}\}$$

in E. Let G^{\perp} be the subspace of E' orthogonal to G and let φ be the canonical mapping from E' onto E'/G^{\perp} . We identify, in the usual manner, E'/G^{\perp} with the topological dual of G. It follows that $\varphi(A_n)$, $n \in \mathbb{N}$, is a fundamental system of compact absolutely convex subsets of (E'/G^{\perp}) $[\sigma(E'/G^{\perp}, G)]$. It is immediate that $(\varphi(u_n))$ converges to the origin in (E'/G^{\perp}) $[\sigma(E'/G^{\perp}, G)]$. For an arbitrary $n \in \mathbb{N}$, we show that φ is an isometry from the normed subspace H of E'_{A_m} onto the normed subspace $\varphi(H)$ of $(E'/G^{\perp})_{\varphi(A_m)}$. We put $|\cdot|_m$ to denote the norm of this Banach space. If $u \in H$, we clearly have that $|\varphi(u)|_m \leq ||u||_m$. Given $r \in \mathbb{N}$, we find an element u_{mn} in H such that

$$\| u - u_{mn} \|_m < \frac{1}{r}$$

Then,

$$\begin{aligned} |\varphi(u)|_{m} &= \sup\{|\langle z,\varphi(u)\rangle|: z \in A_{m}^{\circ} \cap G\} \\ &= \sup\{|\langle z,u\rangle|: z \in A_{m}^{\circ} \cap G\} \geq |\langle x_{mnr},u\rangle| \\ &\geq |\langle x_{mnr},u_{mn}\rangle| - |\langle x_{mnr},u-u_{mn}\rangle| \\ &\geq ||u_{mn}||_{m} - \frac{1}{r} - ||u-u_{mn}||_{m} \geq ||u_{mn}||_{m} - \frac{2}{r} \\ &\geq ||u||_{m} - ||u_{mn}-u||_{m} - \frac{2}{r} \geq ||u||_{m} - \frac{3}{r}. \end{aligned}$$

Consequently, $\| u \|_{m} = | \varphi(u) |_{m}$. We deduce from here that $(\varphi(u_{n}))$ does not converge to the origin in Mackey's weak sense in $(E'/G^{\perp}) [\sigma(E'/G^{\perp}, G)]$. We then apply result b) to obtain a block-convex sequence (w_{n}) of (u_{n}) such that $(\varphi(w_{n}))$ is basic in $(E'/G^{\perp}) [\sigma(E'/G^{\perp}, G)]$ and, if L represents the closed linear hull in this space of $\{\varphi(w_{n}) : n \in \mathbb{N}\}$ and L^{\perp} is the subspace of G orthogonal to L, then the sequence (z_{n}) of G/L^{\perp} such that

$$\langle z_n, \varphi(w_n) \rangle = 1, \quad \langle z_m, \varphi(w_n) \rangle = 0, \quad m \neq n, \quad m, n \in \mathbb{N},$$

is a Schauder basis with property P of G/L^{\perp} . Thus, the sequence $(z_1 + z_2 + ... + z_n)_{n=1}^{\infty}$ is bounded in this space. Let y be an adherent point of this sequence in $(G/L^{\perp})''$ $[\sigma((G/L^{\perp})'', L)]$. It follows that y is a bounded linear functional in $L [\sigma(L, G/L^{\perp})]$. Let F be the subspace of $E' [\sigma(E', E)]$ given by the closed linear hull of $\{w_n : n \in \mathbb{N}\}$. Let x be the linear functional on F such that

$$\langle x, u \rangle = \langle y, \varphi(u) \rangle, \quad u \in F.$$

Clearly, x is bounded in F. On the other hand,

$$\langle x, w_n \rangle = \langle y, \varphi(w_n) \rangle = \lim_m \langle z_1 + z_2 + \dots + z_m, \varphi(w_n) \rangle = 1.$$

Lemma 2. Let E be an (LB)-space. If E does not satisfy Mackey's weak condition, then there is a separated quotient of $E' [\delta(E', E)]$ which is not complete.

Proof. We take a sequence (x_n) in E converging to the origin and not doing so in Mackey's weak sense. Let

$$A_1 \subset A_2 \subset \ldots \subset A_n \subset \ldots$$

a fundamental system of Banach disks in E. Then, $E' [\beta(E', E)]$ is a Fréchet space and $A_n^{\circ}, n \in \mathbb{N}$, is a fundamental system of zero-neighborhoods in this space. Clearly, E is a subspace of $E'' [\beta(E'', E')]$ and so (x_n) is a sequence in $E'' [\sigma(E'', E')]$ that converges to the origin and does not converge in Mackey's weak sense. Applying the former lemma we obtain a block-convex sequence (y_n) of (x_n) such that, if F is the subspace of $E'' [\sigma(E'', E')]$ given by the closed linear hull of $\{y_n : n \in \mathbb{N}\}$, then there is a bounded linear functional u on F such that

$$\langle y_n, u \rangle = 1, \quad n \in \mathbb{N}.$$
 (4)

We write V for $F \cap E$ with the topology induced by that of E. It follows that $A_n \cap V$, $n \in \mathbb{N}$, is a fundamental system of Banach disks in V. We see next that $V' [\delta(V', V)]$ is not complete. Let v be the restriction of u to V. Given $n \in \mathbb{N}$, we take in $A_n \cap V$ an absolutely convex subset D weakly compact in $V_{A_n \cap V}$. Since v is bounded in V, we have that $v^{-1}(0) \cap D$ is $\sigma(V, V')$ -closed and, applying Grothendieck's completeness theorem, we have that v belongs to the completion of $V' [\delta(V', V)]$. Clearly, (y_n) converges to the origin in V and, in light of (4), v does not belong to V'. Finally, if V^{\perp} is the subspace of E' orthogonal to V, it means no difficulty to show that $E' [\delta(E', E)]/V^{\perp}$ is isomorphic to $V' [\delta(V', V)]$ and the result now follows.

Theorem 2. Let E be the direct topological sum of a sequence (X_n) of infinitedimensional Banach spaces. The following conditions are then equivalent:

- 1. $E' [\mu(E', E)]$ is B-complete.
- 2. Every separated quotient of E' [$\mu(E', E)$] is complete.
- 3. Every separated quotient of E satisfies Mackey's weak condition.
- 4. X_n is quasi-reflexive, $n \in \mathbb{N}$.

Proof. It is plain that $1 \Rightarrow 2$. We show now that $2 \Rightarrow 3$. Let us assume that condition 3 does not hold. We find a closed subspace L of E such that E/L does not satisfy Mackey's weak condition. Let L^{\perp} be the subspace of E' orthogonal to L. We apply Lemma 2 to obtain a closed subspace M of L^{\perp} $[\sigma(L^{\perp}, E/L)]$ so that $L^{\perp} [\delta(L^{\perp}, E/L)]/M$ is not complete. Let τ be the restriction of $\mu(E', E)$ to L^{\perp} . It is immediate that τ is coarser than $\delta(L^{\perp}, E/L)$ and, since both topologies are compatible with the duality $\langle E/L, L^{\perp} \rangle$, it follows that $L^{\perp}[\tau]/M$ is not complete. Hence, $E [\mu(E', E)]/M$ is not complete either. $3 \Rightarrow 4$. It is an immediate consequence of Theorem 1. $4 \Rightarrow 1$. Let F be a subspace of E such that every absolutely convex weakly compact subset of E meets F in a closed set. We consider $E_n := X_1 + X_2 + \ldots + X_n$ as a subspace of E, $n \in \mathbb{N}$. Then, $F_n := F \cap E_n$ is closed in E. We set $n_1 := 1$. Proceeding inductively, let us assume that, for a positive integer j, we have found the positive integer n_j . Since E_{n_j} has finite codimension in \tilde{E}_{n_j} , there is an integer $n_{j+1} > n_j$ such that

$$\widetilde{F}_n \cap \widetilde{E}_{n_j} = \widetilde{F}_{n_{j+1}} \cap \widetilde{E}_{n_j}, \quad n \in \mathbb{N}, \quad n \ge n_{j+1}.$$

We see now that $H := \bigcup_{n=1}^{\infty} \tilde{F}_n$ is $\sigma(E'', E')$ -closed, making use for this purpose of Krein-Smulian's theorem (see [2, p.246]) applied to the Fréchet space E' [$\beta(E', E)$]. Let A be an absolutely convex compact subset of E'' [$\sigma(E'', E')$]. We find a positive integer r such that A is contained in \tilde{E}_r . Then, $A \cap H = A \cap \tilde{F}_{n_{r+1}}$ is $\sigma(E'', E')$ -closed. Consequently, H is $\sigma(E'', E')$ -closed and so $F = H \cap E$ is closed in E.

<u>Note</u>. It is said in [1] that a Fréchet space E is totally reflexive when every separated quotient of E is reflexive and then the following problem is posed ([1, probl. 9]): Let E_1 and E_2 be totally reflexive Fréchet spaces. Is the product $E_1 \times E_2$ also totally reflexive? We proved in [11] that a Fréchet space is totally reflexive if and only if it is isomorphic to a closed subspace of a countable product of reflexive Banach spaces. This property is thus adequate to give a positive answer to Grothendieck's question. Lemma 1 can be used to obtain our characterization of the totally reflexive Fréchet spaces in the following way: Let E be a totally reflexive Fréchet space and let Fbe a closed subspace of E' [$\beta(E', E)$]. If F^{\perp} is the subspace of E orthogonal to F, then E/F^{\perp} is reflexive and thus every bounded linear functional u on F extends to to a continuous linear functional on $E'[\beta(E', E)]$. Hence, after Lemma 1, every sequence that converges to the origin in $E'[\beta(E', E)]$ converges also in the weak sense of Mackey. Then, given an absolutely convex compact subset A of E' [$\sigma(E', E)$], there is a subset B in E' $[\sigma(E', E)]$, absolutely convex and compact, such that A is contained in B and it is weakly compact in E'_B . (see [10, (10), p.161]). Proceeding now as in [11] we obtain that $E'[\beta(E', E)]$ is the inductive limit of a sequence of reflexive Banach spaces and so E is isomorphic to a closed subspace of a countable product of reflexive Banach spaces.

References

- GROTHENDIECK, A.: Sur les espaces (F) et (DF), Summa Brasil. Math. 3, 57-123 (1954).
- [2] HORVÁTH, J.: Topological Vector Spaces and Distributions I, Reading, Massachussets, Palo Alto-London: Addison-Wesley Publishing Co. 1966.
- [3] JAMES, R. C.: Bases and reflexivity of Banach spaces, Ann. Math. 52, 518-527 (1950).
- [4] JARCHOW, H.: Locally Convex Spaces. Stuttgart: Teubner 1981.
- [5] KÖTHE, G.: Topological Vector Spaces I. Berlin-Heidelberg-New York: Springer 1969.
- [6] PTÁK, V.: Completeness and the open mapping theorem, Bull. Soc. Math. Fr.86, 41-74 (1958).
- [7] SINGER, I.: Basic sequences and reflexivity of Banach spaces, Studia Math. 21, 351-369 (1962).

- [8] VALDIVIA, M.: Countable direct sums of Banach spaces, Math. Nachr. 141, 73-79 (1989).
- [9] VALDIVIA, M.: On B_r -completeness, Ann. Inst. Fourier 25, 235-248 (1975).
- [10] VALDIVIA, M.: Topics in Locally Convex Spaces, North Holland, Amsterdam, 1982.
- [11] VALDIVIA, M.: A characterization of totally reflexive Fréchet spaces, Math. Z. 200, 327-346 (1989).
- [12] VALDIVIA, M.: Basic sequences in the dual of a Fréchet space, Math. Nachr. 231, 169-185 (2001).

Departamento de Análisis Matemático Universidad de Valencia Dr. Moliner, 50 46100 Burjasot (Valencia) Spain