Non-isomorphism of some algebras of holomorphic functions

M. Nawrocki*

Abstract

Suppose that \mathcal{X} is a family of spaces of holomorphic functions such that each $X = X(D) \in \mathcal{X}$ can be defined on a domain D belonging to some class \mathcal{D} of domains. Then for any two concrete domains D_1 and $D_2 \in \mathcal{D}$ and $X \in \mathcal{X}$ one can ask the following natural question if corresponding spaces $X(D_1)$ and $X(D_2)$ are isomorphic as topological vector spaces. Similarly, for a fixed $D \in \mathcal{D}$ and two different spaces $X_1, X_2 \in \mathcal{X}$ one can consider the existence of an isomorphism between $X_1(D)$ and $X_2(D)$. We answer these questions when \mathcal{X} consists of Hardy $N_*^p(D)$, maximal Hardy $MN_*^p(D)$, Bergman $\mathbb{N}^p(D)$, and Lumer's Hardy $LN_*^p(D)$ algebras, $p \geq 1$, and $\mathcal{D} = \{\mathbb{B}_n, \mathbb{U}^n, n \in \mathbb{N}\}$ is the family of the unit balls and the unit polydiscs in C^n .

1 Introduction

In the paper we use standard notation like in [R]. Moreover, we assume that $D = \mathbb{B}_{n_1} \times \ldots \times \mathbb{B}_{n_k}$ is the product of k open unit balls \mathbb{B}_{n_j} in \mathbb{C}^{n_j} , $j = 1, \ldots, k$. In particular, if k = n and $n_1 = \ldots n_k = 1$ than D is the unit polydisk in \mathbb{C}^n .

For each j, σ_j is the rotation-invariant probability Borel measure on the unit sphere \mathbb{S}_{n_j} in \mathbb{C}^{n_j} . Moreover, let $S = \mathbb{S}_{n_1} \times \ldots \times \mathbb{S}_{n_k}$ and let $\sigma = \sigma_1 \otimes \ldots \otimes \sigma_k$ be the corresponding product measure on S.

Let us first recall definitions of spaces which are the subject of our consideration.

Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 539-544

^{*}This research was supported in part by Komitet Badań Naukowych (State Committee for Scientific Research), Poland, grant no. P03A 02225

¹⁹⁹¹ Mathematics Subject Classification : Primary 32A22, 32A35, 46A06; Secondary 32A05, 46A12.

Key words and phrases : Nevanlinna class, Smirnov class, Hardy algebra, Bergman algebra, Fréchet envelope, nuclear power series spaces.

The Hardy algebra $N^p_*(D)$, $p \ge 1$, is defined as the space of all holomorphic functions f on $D = \mathbb{B}_{n_1} \times \ldots \times \mathbb{B}_{n_k}$ such that

$$||f|| = \sup_{(r_i)\in(0,1)^k} \left(\int_S \log^p(1+|f(r_1\zeta_1,\ldots,r_k\zeta_k)|) \, d\sigma(\zeta_1,\ldots,\zeta_k) \right)^{1/p} < \infty.$$

For $p \geq 1$ the maximal Hardy algebra $MN^p_*(D)$ consists of all holomorphic functions on D such that

$$||f||^p = \int_S \log^p(1 + Mf(\zeta)) \, d\sigma(\zeta) < \infty$$

where

$$Mf(\zeta) = \sup_{0 < r < 1} |f(r\zeta)| \text{ for } \zeta \in S$$

is the maximal radial function of f. Contrary to the case of the classical Hardy space $H^p(D)$, which coincides with the corresponding space defined by the maximal function, $MN^p_*(D)$ is a proper subspace of $N^p_*(D)$.

Let A_i be the normalized Lebesgue measure on \mathbb{B}_{n_i} and $A = A_1 \otimes \ldots \otimes A_k$ be the product measure on D. For $p \geq 1$, we define the *Bergman algebra* $\mathcal{N}^p(D)$ as the space of all holomorphic functions in D such that

$$||f||^p = \int_D \log^p(1+|f(z)|) dA(z) < \infty.$$

We recall that a holomorphic function f on D belongs to the Lumer's Hardy algebra $LN^p(D)$ if $\log^p(1 + |f|) \leq u$ for some pluriharmonic function u on D. It is known that $LN^p(D)$ endowed with the metric d(f,g) = ||f - g||, where

 $||f||^p = \inf\{u(0) : u \text{ pluriharmonic, } \log^p(1+|f|) \le u\}$

is a topological group. For multi-dimensional domains D the space of polynomials P(D) is not dense in $LN^p(D)$. We denote $LN_0^p(D)$ the closure of P(D) in $LN^p(D)$. The group topology on $LN_0^p(D)$ is linear.

Let us recall, that if D is the unit disc in \mathbb{C} , then $LN_0^p(D)$ coincides with the standard Hardy algebra $N_*^p(D)$. For more information on Lumer-Hardy spaces see [R, N2, N3].

All the spaces $N_*^p(D)$, $MN_*^p(D)$, $\mathcal{N}^p(D)$, $LN_0^p(D)$, $p \ge 1$, equipped with the topology induced by the corresponding metric d(f,g) = ||f-g|| are complete topological vector spaces (F-spaces). In the present note we are showing that these spaces are not isomorphic to each other.

Theorem. (a) Let $D \in \{\mathbb{B}_n, \mathbb{U}^n, n \in \mathbb{N}\}$. Moreover, let $X^p(D)$ be one of the spaces $N^p_*(D)$, $MN^p_*(D)$, $\mathcal{N}^p(D)$, and $LN^p_0(D)$, $p \geq 1$, and $X^q(D)$ the corresponding space defined by the parameter $q \geq 1, q \neq p$. Then $X^p(D)$ is not isomorphic to $X^q(D)$.

(b) Let $D \in \{\mathbb{B}_n, \mathbb{U}^n, n \in \mathbb{N}\}$ and $p \ge 1$. Then the spaces $N^p_*(D)$, $\mathcal{N}^p(D)$, and $LN^p_0(D)$ are pair-wisely non-isomorphic.

(c) Let $\mathcal{D}_n = \{\mathbb{B}_n, \mathbb{U}^n\}, n \in \mathbb{N}, D_n \in \mathcal{D}_n, D_m \in \mathcal{D}_m$. Moreover, let $X(D_n)$ be one of the spaces $N^p_*(D_n), MN^p_*(D_n), \mathcal{N}^p(D_m), LN^p_0(D_m)$, and $X(D_m)$ the corresponding space defined on the domain $D_m, m \in \mathbb{N}, m \neq n$. Then $X(D_m)$ is not isomorphic to $X(D_n)$.

(d) Let $X(\mathbb{B}_n)$ be one of the spaces N^p_* , MN^p_* , \mathcal{N}^p , n > 1, defined on the unit ball \mathbb{B}_n , and $X(\mathbb{U}^n)$ the corresponding space defined on the unit polydisc \mathbb{U}^n . Then $X(\mathbb{B}_m)$ is not isomorphic to $X(\mathbb{U}^n)$.

2 Proof of Theorem

All the spaces $N^p_*(D)$, $MN^p_*(D)$, $\mathcal{N}^p(D)$, $LN^p_0(D)$, $p \ge 1$, are not locally convex. However, the corresponding locally convex structures of these spaces play a crucial role in the study of their isomorphisms.

Let us recall that if $X = (X, \tau)$ is an F-space whose topological dual X' separates the points of X, then its *Fréchet envelope* \widehat{X} is defined to be the completion of the space (X, τ^c) , where τ^c is the strongest locally convex topology on X which is weaker than τ . If \mathcal{U} is a base of neighborhoods of zero for τ , then the family $\{coU : U \in \mathcal{U}\}$ of convex hulls is a base of neighborhoods of zero for τ^c . This immediately implies the following lemma:

Lemma 1. If two F-spaces X_j , j = 1, 2, are isomorphic, then their Fréchet envelopes \widehat{X}_j , j = 1, 2, are also isomorphic.

It turns out that the Fréchet envelopes of the spaces $N^p_*(D)$, $MN^p_*(D)$, $\mathcal{N}^p(D)$, $LN^p_0(D)$, $p \geq 1$, can be identify with appropriate weighted space of holomorphic functions.

Let $(s) = (s_1, \ldots, s_k)$ be a fixed sequence of positive numbers. For each holomorphic function f on $D = \mathbb{B}_{n_1} \times \ldots \times \mathbb{B}_{n_k}$ and $m \in \mathbb{N}$ we define

$$||f||_m = \sup_{(z_i)\in D} |f(z_1,\ldots,z_k)| \exp\left(-\prod_{i=1}^k (1-|z_i|)^{-s_j}/m\right).$$

The weighted space $F_{(s)}(D)$ consists of all holomorphic functions f on D such that $|| f ||_m < \infty$ for each $m \in \mathbb{N}$. If for a fixed number s > 0 and $m \in \mathbb{N}$ we define

$$||f||_m = \sup_{(z_i)\in D} |f(z_1,\ldots,z_k)| \exp\left(-\left(1-\max_{i=1,\ldots,k}|z_i|\right)^{-s}/m\right),$$

then we get another weighted space $LF_s(D)$ of holomorphic functions on D.

Lemma 2. Let $D = \mathbb{B}_{n_1} \times \ldots \times \mathbb{B}_{n_k}$.

(a) The Fréchet envelopes of $N^p_*(D)$ and $MN^p_*(D)$ are isomorphic to $F_{(s)}(D)$ where $s = (s_j), s_j = n_j/p, j = 1, ..., k$ (cf. [N5, Theorem 5.1, Theorem 6.2]).

(b) The Fréchet envelope of $\mathcal{N}^p(D)$ is isomorphic to $F_{(s)}(D)$ where $s = (s_j)$, $s_j = (n_j + 1)/p, j = 1, \ldots, k$ (cf. [N5, Theorem 7.1]).

(c) The Fréchet envelope of $LN_0^p(D)$ is isomorphic to $LF_s(D)$ where s = 1/p (cf. [N5, Theorem 9.1]).

The above lemma suggests that one can try to distinguish F-spaces by looking for a topological vector invariant in the class of Fréchet spaces. In our case the Λ -nuclearity type is the suitable one.

Let E be a Fréchet space and let \mathcal{U} be a base of neighbourhoods of zero in E. For every $U, V \in \mathcal{U}, U \supseteq V$, and $j \in \mathbb{N}$, the *j*-th Kolmogorov diameter of V with respect to U is defined by

$$\delta_j(V,U) = \inf\{\delta(V,U,F) : F \text{ is a linear subspace of } E, \dim F \le j\},\$$

where $\delta(V, U, F) = \inf\{\delta > 0 : V \subseteq \delta U + F\}.$

Let us suppose that $\rho = \{\rho_j\}$ is a given non-decreasing sequence of positive numbers. Then a Fréchet space E is said to be $\Lambda_1(\rho)$ -nuclear if for every $U \in \mathcal{U}$ there are $V \in \mathcal{U}$ and R > 1 such that $\lim_j R^{\rho_j} \delta_j(V, U) = 0$.

The power series space $\Lambda_1(\rho)$ consisting of all complex sequences $x = \{x_j\}$ such that

$$|x||_m = \sup_j |x_j| \exp(-\rho_j/m) < \infty$$
 for all $m \in \mathbb{N}$

is a standard Fréchet space which is $\Lambda_1(\rho)$ -nuclear. It is well known that a power series space $\Lambda_1(\rho')$ is $\Lambda_1(\rho)$ -nuclear if and only if $\sup_j \rho'_j / \rho_j < \infty$ (see [RO, Proposition 3.4]).

Lemma 3. Let $p > 0, n \in \mathbb{N}$.

(a) $F_{n/p}(\mathbb{B}_n)$ is isomorphic to the power series space $\Lambda_1(j^{1/(p+n)})$.

(b) $F_{(s)}(\mathbb{U}^n)$, where $s = (s_j), s_j = 1/p, j = 1, \ldots, n$, is $\Lambda_1(j^c)$ -nuclear for each c < 1/(p+n) but is not $\Lambda_1(j^{1/(p+n)})$ -nuclear if n > 1.

(c) The spaces $LF_{1/p}(\mathbb{B}_n)$, $LF_{1/p}(\mathbb{U}^n)$ are isomorphic to the power series space $\Lambda_1(j^{1/(np+n)})$.

Proof. (a). The weighted space $F_{n/p}(\mathbb{B}_n)$ is isomorphic to the nuclear power series space (Köthe space) consisting of all sequences $x = \{x(\alpha)\} : \alpha \in \mathbb{Z}_+^n\}$ such that

$$\| x \|_{m} = \sup_{\alpha} |x(\alpha)| \exp(-|\alpha|^{n/(p+n)}/m) < \infty$$

for each $m \in \mathbb{N}$ (see [N4, Corollary 1]). If we rearrange \mathbb{Z}_{+}^{n} in a sequence $(\rho_{j}) = (\rho_{j(\alpha)})$ such that $\rho_{j(\alpha)} \leq \rho_{j(\alpha')}$ if $|\alpha| \leq |\alpha'|$, then $\rho_{j} \sim j^{1/n}$ (cf. [RO, p. 362]). Thus $F_{n/p}(\mathbb{B}_{n})$ is isomorphic to $\Lambda_{1}(j^{1/(p+n)})$.

(b). This assertion follows from [N4, Corrolary 3, Theorem 3] and from (a).

(c) By [N5, Theorem 8.1] the spaces $LF_{1/p}(\mathbb{B}_n)$, $LF_{1/p}(\mathbb{U}^n)$ are isomorphic to the Köthe space consisting of all sequences $x = \{x(\alpha)\} : \alpha \in \mathbb{Z}_+^n\}$ such that

$$\| x \|_m = \sup_{\alpha} |x(\alpha)| \exp(-|\alpha|^{1/(p+1)}/m) < \infty$$

for each $m \in \mathbb{N}$. However, this space is isomorphic to $\Lambda_1(j^{1/(np+n)})$ (cf. (a)).

Lemma 4. (a) $N_*^p(\mathbb{B}_n)$ is isomorphic to $\Lambda_1(j^c)$ where c = 1/(p+n). (b) $\widehat{N_*^p(\mathbb{U}^n)}$ is not $\Lambda_1(j^{1/(p+n)})$ -nuclear if n > 1, but it is $\Lambda_1(j^c)$ -nuclear for any c < 1/(p+n). (c) $\widehat{\mathcal{N}_*^p(\mathbb{B}_n)}$ is isomorphic to $\Lambda_1(j^c)$, where $c = 1/(\frac{np}{n+1}+n)$. (d) $\widehat{\mathcal{N}_*^p(\mathbb{U}^n)}$ is not $\Lambda_1(j^{1/(\frac{p}{2}+n)})$ -nuclear if n > 1, but it is $\Lambda_1(j^c)$ -nuclear for any $c < 1/(\frac{p}{2}+n)$. (e) $\widehat{LN_0^p(\mathbb{B}_n)}$ and $\widehat{LN_0^p(\mathbb{U}^n)}$ are isomorphic to $\Lambda_1(j^{1/(np+n)})$.

Proof. (a), (b) and (e) immediately follow from Lemma 2 and Lemma 3. For the proof of (c) it is enough to apply Lemma 2 (b) and observe that $\widehat{\mathcal{N}^{p}_{*}(\mathbb{B}_{n})} = F_{((n+1)/p)}(\mathbb{B}_{n}) = F_{(n/q)}(\mathbb{B}_{n})$, where q = np/(n+1). Now, (c) is a consequence of Lemma 3 (a). The assertion (d) follows from Lemma 2 (b) and Lemma 3 (b), since $\widehat{\mathcal{N}^{p}_{*}(\mathbb{U}^{n})} = F_{(2/p,\dots,2/p)}(\mathbb{U}^{n}) = F_{(1/q,\dots,1/q)}(\mathbb{B}_{n})$, where q = p/2.

Now the proof of the Theorem follows from Lemma 1 and Lemma 4.

Remark: Since the Fréchet envelopes of $N^p_*(D)$ and $MN^p_*(D)$ coincide, in Theorem (b) one can replace $N^p_*(D)$ by $MN^p_*(D)$.

Open problems: 1. Is $N^p_*(D)$ isomorphic to $MN^p_*(D)$?

The answer is not known even in the one dimensional case, i.e. if D is the unit disk in the plane.

2. Is $LN_0^p(\mathbb{B}_n)$ isomorphic to $LN_0^p(\mathbb{U}^n)$ if n > 1?

Bibliography

- [HJ] A. Haldimann, H. Jarchow, Nevanlinna Algebras, Studia Math. 147 (2001), 211-235;
- [KPR] N.J. Kalton, N.T. Peck, and J.W.Roberts, *F-spaces sampler*, London Math. Soc. Lecture Notes. **89** (1984);
- [JMWX] H. Jarchow, V. Montesinos, K. J. Wirths, J. Xiao, Duality for some laree spaces of analytic functions, Proc. Edinb. Math. Soc. 44 (2001), 571–583;
- [N1] M. Nawrocki, The non-isomorphism of the Smirnov Classes of different balls and polydiscs, Bull. Soc. Math. Belg. 41 (3, ser. B) (1989), 307-315;
- [N2] M. Nawrocki, Gleason-type decompositions for $H^{\infty}(\mathbb{B}_n)$ and Lumer's ardy algebra of the ball, Annales Acadeniae Scientiarum Fennicae **16 (2)** (1991), 311–322;
- [N3] M. Nawrocki, Linear topological properties of the Lumer-Smirnov class of the polydisc, Studia Math. 102 (1) (1992), 87–102;
- [N4] M. Nawrocki, Köthe sequence space representations of some weighted algebras of holomorphic functions, in Functional Analysis, Proceedings of the First International Workshop held at Trier University, Germany, W. De Gruyter Berlin - New York, 1996;

[N5]	M. Nawrocki, Locally convex structure of some algebras of holomorphic
	functions of several variables, Math. Nachr 246-247 (2002), 170–187;

- [RO] Rolewicz, S., Metric linear spaces., PWN-Polish Scientific Publishers, Warszawa; D. Reidel Publishing Company, Dordrecht-Boston-Lancaster, 1984.;
- [R] W. Rudin, Function Theory in the Unit Ball of \mathbb{C}^n , Springer-Verlag, New York, Heidelberg, Berlin, 1980;
- [S] J. H. Shapiro, Mackey topologies, reproducing kernels, and diagonal maps on Hardy and Bergman spaces, Duke Math. J. 43 (1976), 187–202;

Faculty of Mathematics and Informatics, A. Mickiewicz University, ul. Umultowska 87, Poznań, Poland email: nawrocki@math.amu.edu.pl