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Abstract

The Kouba formula for the complex interpolation of injective tensor prod-

ucts requires all spaces involved to be at least of cotype 2. We show that this

can be weakened when one side of the tensor products is fixed.

1 Introduction

Let (E0, E1) and (F0, F1) be regular compatible couples of Banach spaces. Kouba
in [13] proved the equality

[E0⊗̃εF0, E1⊗̃εF1]θ = [E0, F1]θ⊗̃ε[E0, F1]θ

for all 0 < θ < 1 whenever one of the following holds:

(i) E ′
0, E

′
1, F

′
0, F

′
1 are type 2 spaces;

(ii) E ′
0, E

′
1 are type 2 spaces and F0, F1 are 2-concave Banach function spaces;

(iii) E0, E1, F0, F1 are 2-concave Banach function spaces.

Since the dual of a type 2 space has cotype 2 (see, e.g., [12, 11.10]) and a 2-concave
Banach function also has cotype 2 (see, e.g., [15, 1.f.16]), all spaces involved in the
above have cotype 2. This is also the case in more recent extensions of Kouba’s
result (see, e.g., [7, 8, 9, 10, 11]).
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However, cotype 2 is not necessary: Using the well-known complex interpolation
formula for vector-valued ℓn

∞
’s, one can deduce that the one-sided interpolation

formula
[c0⊗̃εE0, c0⊗̃εE1]θ = c0⊗̃ε[E0, E1]θ

holds for all regular compatible Banach couples (E0, E1), where c0 denotes the space
of all null sequences. In this short note we show that in the above, c0 can be
substituted by a Banach space of cotype q, 2 < q < ∞, whenever (E0, E1) is a
compatible couple of p-concave Banach function spaces, 1 ≤ p < q′.

For 1 ≤ p ≤ ∞, let p′ be defined by 1/p + 1/p′ = 1. We refer to [5, 12, 15]
for all notions and notations needed within Banach space theory, and to [1] for the
basic concepts of interpolation theory of Banach spaces. For a Banach space E, we
write E ′ for its topological dual. E ⊗ε F denotes the injective tensor product of
two Banach spaces E, F , and E⊗̃εF its completion. Cq(E) stands for the cotype q
constant of a Banach space E, 2 ≤ q < ∞, and M(p)(X) for the p-concavity constant
of a Banach function space X, 1 ≤ p < ∞. A compatible couple (E0, E1) of Banach
spaces is called regular if E0 ∩ E1 is dense in both E0 and E1. With [E0, E1]θ for
0 < θ < 1 we denote the complex interpolation space associated to such a couple.
By an n-dimensional lattice En we mean the vector space K

n equipped with some
lattice norm. If En and F n are n-dimensional lattices, we denote by M(En, F n)
the space of all multiplication operators from En to F n, endowed with the norm
induced by L(En, F n). Here, for two Banach spaces E and F we mean L(E, F ) to
be the space of all bounded and linear operators from E to F endowed with the
usual operator norm.

2 The result

The following variant of a factorization theorem due to Maurey and Rosenthal was
shown in [4, 4.2]. Recall that for 1 ≤ p < ∞ the identity map idU on a Banach
space U is called (p, 1)-mixing if every p-summing operator on U is 1-summing. We
then denote by µp,1(U) the (p, 1)-mixing norm of idU . For p = 2, basic examples are
Banach spaces of cotype 2 (see, e.g., [5, 32.2]), and for 1 < p < 2, the identity map
on a Banach space of cotype p′ is (r, 1)-mixing for all r < p. In particular, idℓp

is
(2, 1)-mixing whenever 1 ≤ p ≤ 2, and if 2 < p < ∞, it is (r, 1)-mixing for all r < p′.
Note that by [17, 20.1.17] there exists no infinite-dimensional Banach space U such
that idU is (p, 1)-mixing whenever p > 2.

Proposition 1. For 1 ≤ p < ∞ let U be a Banach space such that the identity map

id : U ′ → U ′ is (p, 1)-mixing. Then there exists a universal constant C > 0 such that

for any p-concave Banach function space X(µ) every bounded operator T : U → X
factorizes as follows:

U
T

//

R !!
DD

DD
DD

DD
D

X(µ)

Lp(µ)
Mg

;;vvvvvvvvv

,

where ‖R‖ ‖Mg‖ ≤ C µp,1(U
′) M(p)(X) ‖T‖ and Mg a positive multiplication opera-

tor.
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Lemma 1. For 1 ≤ p < ∞ let U be a Banach space such that idU ′ is (p, 1)-mixing

and En be an n-dimensional lattice. Then for any couple (En
0 , En

1 ) of n-dimensional

lattices and any exact interpolation functor F , it holds

‖id : L(U, En) →֒ F(L(U, En
0 ),L(U, En

1 ))‖

≤ C µp,1(U
′) M(p)(E

n) ‖M(ℓn
p , E

n) →֒ F(M(ℓn
p , En

0 ), M(ℓn
p , En

1 ))‖,

where C > 0 is a universal constant.

Proof. According to Proposition 1 there exists C > 0 such that for any T ∈ L(U, En)
there are R : U → ℓn

p and λ ∈ K
n such that T = Mλ R and ‖R‖ ‖λ‖M(ℓn

p ,En) ≤
C µp,1(U

′)M(p)(E
n) ‖T‖. Obviously the map Ψ defined by

Ψ(µ) := Mµ R, µ ∈ K
n,

maps the couple (M(ℓn
p , En

0 ), M(ℓn
p , En

0 )) into the couple (L(U, En
0 ),L(U, En

1 )) such
that both restrictions have norm less or equal to ‖R‖. Hence, by the interpolation
property the map

Ψ : M(ℓn
p , E

n) → F(L(U, En
0 ),L(U, En

1 ))

has norm less than or equal to ‖R‖ ‖M(ℓn
p , E

n) →֒ F(M(ℓn
p , E

n
0 ), M(ℓn

p , En
1 ))‖. Thus

we obtain

‖T‖F(L(U,En
0
),L(U,En

1
)) = ‖Mλ R‖F(L(U,En

0
),L(U,En

1
))

≤ ‖R‖ ‖λ‖M(ℓn
p ,En) ‖M(ℓn

p , En) →֒ F(M(ℓn
p , E

n
0 ), M(ℓn

p , En
1 ))‖

≤ C(p, U, En) ‖T‖L(U,En)‖M(ℓn
p , E

n) →֒ F(M(ℓn
p , En

0 ), M(ℓn
p , En

1 ))‖,

where C(p, U, En) := C µp,1(U
′)M(p)(E

n).

Theorem 1. Let 2 < q < ∞ and 1 ≤ p < q′. Then for any compatible couple

(X0(µ), X1(µ)) of p-concave Banach function spaces and any Banach space F of

cotype q, it holds

[F ⊗̃εX0, F ⊗̃εX1]θ = F ⊗̃ε[X0, X1]θ

for all 0 < θ < 1.

Proof. Let U be a finite-dimensional subspace of F . Then by [5, 32.2] there exists
a universal constant C0 > 0 such that

µp,1((U
′)′) = µp,1(U) ≤ C0 Cq(U) ≤ C0 Cq(F ).

Now let En
0 and En

1 be n-dimensional lattices with M(p)(E
n
0 ) = M(p)(E

n
1 ) = 1. Then

by [18, p. 218/219] it is M(p)([E
n
0 , En

1 ]θ) = 1. Furthermore, by [6, 3.5] and [11,
Lemma 4] it holds

M(ℓn
p , [En

0 , En
1 ]θ) = [M(ℓn

p , En
0 ), M(ℓn

p , En
1 )]θ

isometrically, which together with the above lemma gives

‖id : L(U ′, [En
0 , En

1 ]θ) →֒ [L(U ′, En
0 ),L(U ′, En

1 )]θ‖ ≤ C µp,1(F ),

where C > 0 is a universal constant. Equivalently, this means that

‖id : U ⊗ε [En
0 , En

1 ]θ →֒ [U ⊗ε En
0 , U ⊗ε En

1 ]θ‖ ≤ C µp,1(F ).

Now proceed as in [11] to obtain the infinite-dimensional case.
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An application of the following example can be found in [16].

Example 1. Let 2 < q < ∞ and 1 ≤ p0, p1 < q′. Then for 0 < θ < 1

[ℓq⊗̃εℓp0
, ℓq⊗̃εℓp1

]θ = ℓq⊗̃εℓp,

where 1/p = (1 − θ)/p0 + θ/p1.

Proof. It is well-known (see, e.g., [15]) that ℓq has cotype q, and that ℓp0
and ℓp1

are
max(p0, p1)-concave. Furthermore, [ℓp0

, ℓp1
]θ = ℓp (see, e.g., [1]). Thus, the above

theorem applies.

3 Some counterexamples

We conclude with some counterexamples that show that the conditions in the above
cannot be essentially weakened. For this purpose, we need a refinement of [10, Propo-
sition 7.1] – its proof goes along the same lines as in the mentioned article, and we
leave the details to the reader. For 1 ≤ p ≤ s ≤ ∞ and an (s, p)-mixing (respec-
tively, (s, p)-summing) operator T , its (s, p)-mixing (respectively, (s, p)-summing)
norm is denoted by µs,p(T ) (respectively, by πs,p(T )). A couple (E0, E1) is called a
finite-dimensional interpolation couple if Ei = (Kn, ‖ · ‖i), i = 0, 1, for some (finite)
dimension n.

Lemma 2. Let 1 ≤ pi ≤ si ≤ ∞, i = 0, 1, and 0 < θ < 1. Then for sθ and pθ

defined by 1/sθ = (1 − θ)/s0 + θ/s1 and 1/pθ = (1 − θ)/p0 + θ/p1, respectively, two

finite-dimensional interpolation couples (E0, E1), (F0, F1) and each T : (E0, F0) →
(F0, F1), it holds

µsθ,pθ
(T : [E0, E1]θ → [F0, F1]θ)

≤ dθ[p0, p1, E0, E1] µs0,p0
(T : E0 → F0)

1−θµs1,p1
(T : E1 → F1)θ

and

πsθ ,pθ
(T : [E0, E1]θ → [F0, F1]θ)

≤ dθ[p0, p1, E0, E1] πs0,p0
(T : E0 → F0)1−θπs1,p1

(T : E1 → F1)θ,

where

dθ[p0, p1, E0, E1] := ‖id : ℓpθ
⊗ε [E0, E1]θ → [ℓp0

⊗ε E0, ℓp1
⊗ε E1]θ‖.

Example 2. Let 2 < q < ∞ and 1 ≤ p0 < q′ ≤ p1 ≤ 2. Then for all 0 < θ < 1

[ℓq⊗̃εℓp0
, ℓq⊗̃εℓp1

]θ 6= ℓq⊗̃ε[ℓp0
, ℓp1

]θ.

Proof. The idea is to show that dθ[p0, p1, ℓ
n
q , ℓ

n
q ] is unbounded when viewed as a

function in n. We have to treat two cases.
(i) Let p1 = q′. Consider the identity map idn

q : ℓn
q →֒ ℓn

q . By [2] it is known that

µq′,p0
(idn

q ) ≍ (1 + log n)1/q′ .
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Trivially, since any bounded linear operator is (q′, q′)-mixing, we have µq′,q′(id
n
q ) ≍ 1.

Thus, the above lemma applied to s0 = s1 = q′, p0 = p0, p1 = q′ and E0 = E1 =
F0 = F1 = ℓn

q gives

(1 + log n)1/q′ ≍ µq′,pθ
(idn

q ) ≺ dθ[p, q
′, ℓn

q , ℓ
n
q ] µq′,p0

(idn
q )1−θ

≍ dθ[p0, q
′, ℓn

q , ℓ
n
q ] (1 + log n)(1−θ)/q′ ,

where 1/pθ = (1 − θ)/p0 + θ/q′. Hence,

dθ[p0, q
′, ℓn

q , ℓ
n
q ] ≻ (1 + log n)θ/q′ .

(ii) Let p0 < q′ < p1. Then by [17, p. 312] we know that

πp0,p0
(id : ℓn

q →֒ ℓn
∞

) ≍ n1/q′ and πp1,p1
(id : ℓn

q →֒ ℓn
∞

) ≍ n1/p1 .

Thus, the above lemma gives

πpθ,pθ
(id : ℓn

q →֒ ℓn
∞) ≺ dθ[p0, p1, ℓ

n
q , ℓ

n
q ] n(1−θ)/q′+θ/p1,

where 1/pθ = (1 − θ)/p0 + θ/p1. Now if pθ ≤ q′, then again by [17, p. 312] it is

πpθ,pθ
(id : ℓn

q →֒ ℓn
∞

) ≍ n1/q′ .

This gives
dθ[p0, p1, ℓ

n
q , ℓ

n
q ] ≻ nθ(1/q′−1/p1).

If pθ > q′, then
πpθ,pθ

(id : ℓn
q →֒ ℓn

∞) ≍ n1/pθ ,

which gives
dθ[p0, p1, ℓ

n
q , ℓn

q ] ≻ n(1−θ)(1/p0−1/q′).

This gives the claim, since p0 < q′ < p1.

A similar strategy can be used to give the following list of counterexamples in
the spirit of the interpolation formulas contained in the article of Kouba – recall
that equality holds whenever all indices involved are less than or equal to 2. Kouba
himself only provided a very particular counterexample: the case q0 = q1 = 2 and
p0 = 2, p1 = ∞. Le Merdy in [14] actually showed that [ℓ1⊗̃εℓ2, ℓ∞⊗̃εℓ2] 1

2

= S4 (the

latter denoting the 4th Schatten class).

Example 3. Let 1 ≤ q0, q1 < ∞ and 1 ≤ p0 < p1 ≤ ∞ be such that one of the
following holds:

(i) 1 ≤ p0 < 2 < p1 ≤ ∞;

(ii) 1 ≤ q0, q1 ≤ 2 and 2 ≤ p0 < p1 ≤ ∞;

(iii) 2 ≤ q1 ≤ q0 < ∞ and 2 ≤ p0 < p1 ≤ ∞.

Then for all 0 < θ < 1

[ℓq0
⊗̃εℓp0

, ℓq1
⊗̃εℓp1

]θ 6= [ℓq0
, ℓq1

]θ⊗̃ε[ℓp0
, ℓp1

]θ.
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Proof. We consider again finite-dimensional identity maps, this time with range
space ℓn

1 , to show that dθ[q0, q1, ℓ
n
p0

, ℓn
p1

] is not bounded. In the following, pθ and qθ

are defined by 1/pθ = (1 − θ)/p0 + θ/p1 and 1/qθ = (1 − θ)/q0 + θ/q1.
(i) Under the given assumption we know again by [17, p. 312] that

πq0,q0
(id : ℓn

p0
→֒ ℓn

1 ) ≍ n1−1/p0+1/2 and πq1,q1
(id : ℓn

p1
→֒ ℓn

1 ) ≍ n1.

Thus, the above lemma gives

πqθ,qθ
(id : ℓn

pθ
→֒ ℓn

1 ) ≺ dθ[q0, q1, ℓ
n
p0

, ℓn
p1

] n1−(1−θ)/p0+(1−θ)/2.

However, if pθ ≤ 2, then

πqθ,qθ
(id : ℓn

pθ
→֒ ℓn

1) ≍ n1−1/pθ+1/2,

which gives
dθ[q0, q1, ℓ

n
p0

, ℓn
p1

] ≻ θ(1/2 − 1/p1).

If pθ > 2, then
πqθ,qθ

(id : ℓn
pθ

→֒ ℓn
1 ) ≍ n1,

which gives
dθ[q0, q1, ℓ

n
p0

, ℓn
p1

] ≻ (1 − θ)(1/p0 − 1/2).

(ii) Again by [17] we know that

πq1,q1
(id : ℓn

p1
→֒ ℓn

1 ) = πq1
(id : ℓn

p1
→֒ ℓn

1 ) ≍ n1,

and that for r defined by 1/r = 1/q0 − 1/2

πr,q0
(id : ℓn

p0
→֒ ℓn

1 ) ≍ ‖id : ℓn
p0

→֒ ℓn
1‖ ≍ n1−1/p0 .

Thus, the above lemma with rθ defined by 1/rθ = (1 − θ)/r + θ/q1 gives

πrθ,qθ
(id : ℓn

pθ
→֒ ℓn

1 ) ≺ dθ[q0, q1, ℓ
n
p0

, ℓn
p1

] n1−(1−θ)/p0 .

By [3] and after some elementary calculations,

πrθ,qθ
(id : ℓn

pθ
→֒ ℓn

1 ) ≍ n1−(1−θ)/p0+θ(1−θ)(1/p0−1/p1),

which gives
dθ[q0, q1, ℓ

n
p0

, ℓn
p1

] ≻ nθ(1−θ)(1/p0−1/p1).

(iii) We use again that

πq1,q1
(id : ℓn

p1
→֒ ℓn

1 ) = πq(id : ℓn
p1

→֒ ℓn
1) ≍ n1,

and that
π∞,q0

(id : ℓn
p0

→֒ ℓn
1 ) = ‖id : ℓn

p0
→֒ ℓn

1‖ ≍ n1−1/p0 .

Thus, the above lemma gives

πq1/θ,qθ
(id : ℓn

pθ
→֒ ℓn

1 ) ≺ dθ[q0, q1, ℓ
n
p0

, ℓn
p1

] n1−(1−θ)/p0 .

Again by [3]
πq1/θ,qθ

(id : ℓn
pθ

→֒ ℓn
1 ) ≍ n1−(1−θ)/p0+θ(qθ/q1pθ−1/p1),

which gives
dθ[q0, q1, ℓ

n
p0

, ℓn
p1

] ≻ nθ(qθ/q1pθ−1/p1).

The latter is unbounded since qθ ≥ q1 and p1 > pθ.
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Remark 1. 1. Note that our lower estimates for dθ[q0, q1, ℓ
n
p0

, ℓn
p1

] in the above
proof for the case 1 ≤ q0, q1 ≤ 2 and pθ ≤ 2 are asymptotically exact: together
with the corresponding upper estimates given in [13] we obtain, e.g., that

dθ[q0, q1, ℓ
n
1 , ℓ

n
∞] = ‖id : [ℓq0

, ℓq1
]θ ⊗ε [ℓn

1 , ℓ
n
∞]θ → [ℓq0

⊗ε ℓn
1 , ℓq1

⊗ε ℓn
∞]θ‖ ≍ n

θ
2

for all 0 < θ ≤ 1/2.

2. In the above example, (ii) also shows that our one-sided interpolation formula
cannot be generalized to a two-sided one (a logical choice of indices would have
been 2 ≤ q0 < q1 < ∞ and 1 ≤ p0, p1 < q′1).

3. Still left open are the following cases – we conjecture that again the corre-
sponding formulas do not hold, for all 0 < θ < 1:

• 2 < q0 = q1 < ∞ and q′0 ≤ p0 < p1 ≤ 2;

• 2 ≤ q0 < q1 < ∞ and 2 ≤ p0 < p1 ≤ ∞.
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[1] J. Bergh and J. Löfström, Interpolation spaces. Springer-Verlag, Berlin, 1978.

[2] B. Carl and A. Defant, An inequality between the p- and (p, 1)-summing norm

of finite rank operators from C(K)-spaces, Israel J. Math. 74 (1991), 323–335.

[3] B. Carl, B. Maurey and J. Puhl, Grenzordnungen von absolut-(r, p)-
summiernden Operatoren, Math. Nachr. 82 (1978), 205–218.

[4] A. Defant, Variants of the Maurey–Rosenthal Theorem for quasi Köthe function
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