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Abstract

Let Ω and Π be two simply connected domains in the complex plane C

which are not equal to the whole plane C. We are concerned with the set
A(Ω,Π) of functions f : Ω → Π holomorphic on Ω and we prove estimates
for |f (n)(z)|, f ∈ A(Ω,Π), z ∈ Ω, of the following type. Let λΩ(z) and λΠ(w)
denote the density of the Poincaré metric of Ω at z and of Π at w, respectively.
Then for any pair (Ω,Π) where Ω is convex, f ∈ A(Ω,Π), z ∈ Ω, and n ≥ 2
the inequality

|f (n)(z)|

n!
≤ (n + 1)2n−2 (λΩ(z))n

λΠ(f(z))

is valid.
For functions f ∈ A(Ω,Π), which are injective on Ω, the validity of above
inequality was conjectured by Chua in 1996.

The most famous result in geometric function theory during the last century was the
proof of the Bieberbach conjecture in [6] for the class S of functions f holomorphic
and injective in the unit disc ∆ that are normalized by f(0) = f ′(0) − 1 = 0. This
proof assures that for n ∈ N and f ∈ S the sharp inequality
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holds. Long before this event, Landau proved in 1925 that the inequality
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(1 − |z|)n+2
, z ∈ ∆, (1)
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is equivalent with the validity of the Bieberbach conjecture (see [11]). One may
consider (1) as the estimate of a local Taylor coefficient of f ∈ S. A result in the
same direction was the proof of Jakubowski that the Bieberbach conjecture implies
the inequality
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≤
(n + |z|)(1 + |z|)n−2

(1 − |z|2)n−1 , z ∈ ∆, (2)

for f holomorphic and injective in ∆ and n ≥ 2 (see [10]). Possibly, the fact that

λ∆(z) =
1

1 − |z|2

represents the density of the Poincaré metric in the unit disc, motivated Yamashita
and Chua to consider functions f holomorphic and injective on hyperbolic domains
Ω (compare for instance [19], [20], and [7]). In this case the density λΩ is defined as
follows. Let z ∈ Ω be fixed and ΦΩ,z be the conformal map of ∆ onto Ω normalized
by taking ΦΩ,z(0) = z and Φ′

Ω,z(0) > 0. Then

λΩ(z) :=
1

Φ′

Ω,z(0)
.

As we are interested here only in the case that Ω is convex, we will not cite the
numerous results of the above articles in full generality. According to those papers,
the following theorem is valid.

Theorem A. Let Ω be a convex domain, not equal to the whole plane C and let f
be holomorphic and injective on Ω. Then for z ∈ Ω and n = 2, 3, 4 the inequalities
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≤ (n + 1) 2n−2 (λΩ(z))n−1 (3)

are valid.

Taking the limit z → 1, z ∈ (0, 1), in (2) for the Koebe function shows that the
constant (n + 1)2n−2 on the right side of (3) can not be replaced by a smaller one.
In [7], Chua published the following conjecture.

Chua’s conjecture. Let Ω be a convex domain, not equal to the whole plane C and

let f be holomorphic and injective on Ω. Then for any z ∈ Ω and any n ≥ 2 the

inequality (3) holds true.

In the sequel, we will prove a theorem that contains the validity of this conjecture
as a special case of punishing factors.
For the explanation of this abbreviation let Ω and Π be two simply connected do-
mains in the complex plane C which are not equal to the whole plane C and

A(Ω, Π) = {f : Ω → Π | f holomorphic}.

Furthermore, let λΩ(z), z ∈ Ω, and λΠ(w), w ∈ Π, denote the density of the Poincaré
metric at z ∈ Ω and w ∈ Π, respectively. In a series of papers (compare in special
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[1], [2], and [5]) the authors of the present article considered inequalities of the
Schwarz-Pick type
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∣

∣f (n)(z)
∣

∣

∣

n!
≤ Cn(Ω, Π)

(λΩ(z))n

λΠ(f(z))
, z ∈ Ω,

where f ∈ A(Ω, Π) and Cn(Ω, Π) represents the smallest number possible at that
place that is not dependent on f and z ∈ Ω.

After a colloquium talk of the second author on the results of [1] - [3], Ch. Pom-
merenke ([14]) suggested looking at this definition in the following way. The quotient
(λΩ(z))n/λΠ(f(z)) reflects the influence of the positions of the points z and f(z) in
Ω and Π on the nth derivative f (n)(z), whereas the quantities Cn(Ω, Π) are factors
punishing bad behaviour of Ω or Π at the boundary.
In [5], we proved that for Ω convex, Π linearly accessible, and n ≥ 2 the inequality

Cn(Ω, Π) ≤ (n + 1)2n−2 (4)

is valid. The equation

|f ′(z)| =
λΩ(z)

λΠ(f(z))
z ∈ Ω

holds for functions f injective on Ω. Hence, the inequality (4) implies the validity of
Chua’s conjecture for f that map Ω conformally onto a linearly accessible domain
Π. But, in fact more is true.

Theorem. Let Ω be convex, not equal to the whole plane C, and Π simply connected,

not equal to the whole plane C. Let further n ≥ 2. Then the inequality (4) is valid.

Proof. Let z0 ∈ Ω, ΦΩ,z0
be defined as above and ΦΠ,f(z0) analogously. To prove our

assertion we use a representation for f (n)(z0) from [1] and [2]. For f ∈ A(Ω, Π), z0 ∈
Ω, we consider the functions

s(ζ) := (ΦΩ,z0
(ζ) − z0)λΩ(z0), ζ ∈ ∆,

and
t(ζ) :=

(

ΦΠ,f(z0)(ζ) − f(z0)
)

λΠ(f(z0)), ζ ∈ ∆.

The function s belongs to the class K of functions univalent in ∆ that map ∆ onto
a convex domain and are normalized in the origin as usual, whereas t belongs to the
class S.
The fact that f(Ω) is a subset of Π may be expressed in terms of the function

u(ζ) := (f(ΦΩ,z0
(ζ)) − f(z0))λΠ(f(z0)), ζ ∈ ∆.

The above inclusion is equivalent to the fact that u(ζ) is subordinate to t(ζ). This
will be denoted by the abbreviation u ≺ t and means that there exists a holomorphic
function v : ∆ → ∆ such that

u(ζ) = t(ζv(ζ)), ζ ∈ ∆.
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Using the Taylor expansions

u(ζ) =
∞
∑

k=1

akλΠ(f(z0))ζ
k

and
(

s−1(w)
)k

=
∞
∑

n=k

An,k(z0)w
n,

where s−1(w) denotes the function inverse to s(ζ), we get as in [1] and [2]

f (n)(z0)

n!
=

n
∑

k=1

ak An,k(z0) (λΩ(z0))
n . (5)

Now it is evident that for the proof of (4) via (5) it is sufficient to prove the following
proposition, which may deserve some interest of its own.

Proposition 1. Let

g1(z) =
∞
∑

n=1

cnz
n ≺ g(z),

where g ∈ S and let F be the inverse function to an arbitrary function g2 ∈ K. If

the powers F k, k ∈ N, have the Taylor expansions

(F (w))k =
∞
∑

n=k

An,kw
n

in a neighbourhood of the origin, then the inequality
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ckAn,k
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∣

≤ (n + 1)2n−2 (6)

is valid for any n ≥ 2.

Concerning the inverse function of a convex function, we proceed as in [4] and [5],
where we proved inequalities analogous to (6).
For m ∈ N, we consider the Taylor expansions

(

z

g2(z)

)m

=
∞
∑

ν=0

aν,mzν .

Then the Schur-Jabotinsky theorem (compare for example [9], Theorem
1.9.a), which may be considered as a special case of the Bürmann-Lagrange theorem,
implies that for 1 ≤ k ≤ n the identities

An,k =
k

n
an−k,n

are valid. Hence, we have to prove that
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≤ (n + 1)2n−2. (7)
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To that end we use that for a convex function g2 one of the well-known Marx-
Strohhäcker inequalities (see [12] and [17]), namely

Re

(

g2(z)

z

)

>
1

2
, z ∈ ∆, (8)

holds. The formula (8) is equivalent to the existence of a bounded holomorphic
function ω : ∆ → ∆ such that

g2(z)

z
=

1

1 + zω(z)
, z ∈ ∆.

The tool for the proof of (7) is the resulting representation

(

z

g2(z)

)n

= (1 + zω(z))n = 1 +
n
∑

σ=1

(

n
σ

)

zσ(ω(z))σ, z ∈ ∆.

If we define

(ω(z))σ =
∞
∑

j=0

dj,σz
j , z ∈ ∆,

we get the following formula for the sum appearing in (7)

n−1
∑

l=0

n − l

n
cn−l al,n = cn +

n−1
∑

σ=1

1

n

(

n
σ

)

n−1
∑

j=σ

(n − j)cn−jdj−σ,σ. (9)

For the proof of (7) via (9) we use that the functions ωσ map the disc ∆ into ∆,
too. Therefore, we may replace the coefficients dj−σ,σ by the coefficients dj−σ of a
unimodular bounded function when we estimate the modulus of the inner sum in
(9). We will prove that
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j=σ

(n − j)cn−jdj−σ,σ

∣
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∣

∣

≤ (n − σ)2.

This is a consequence of the following proposition with p = n− σ. This proposition
may be interpreted as a slight generalization of the generalized Bieberbach conjecture
or Rogosinski conjecture (see for instance [13]). The validity of this conjecture was
proved by de Branges, too. It asssures that for functions g1 subordinated to a
function g ∈ S and n ≥ 2 the assertion
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(n)
1 (0)

n!
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holds true.

Proposition 2. Let

ω̃(z) =
∞
∑

τ=0

dτz
τ
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be holomorphic in the unit disc and such that ω̃(∆) ⊂ ∆ and let g1 be as in Propo-

sition 1. Then for p ∈ N the inequality

∣

∣

∣

∣

∣

∣

p−1
∑

τ=0

(p − τ) cp−τdτ

∣

∣

∣

∣

∣

∣

≤ p2 (10)

is valid.

Before we go into the proof of this proposition, we remark that the Rogosinski
conjecture is the special case ω̃(z) ≡ 1 of (10). Hence, it seems not to be surprising
that the proposition 2 is a consequence of a very deep theorem concerning schlicht
functions due to Sheil-Small (see [16]). When this was published in 1973, it was
not known whether the Robertson conjecture (see [15]) is true. Therefore, in the
original version of this theorem, Sheil-Small could show the assertion only for those
natural numbers for which the Robertson conjecture was proved. Since we owe the
proof of this conjecture to de Branges, too, we may use the following theorem. It
follows immediately from Lemma 4.2 in [16], the considerations (4.10) in [16], and
the validity of the Robertson conjecture.

Theorem B. Let the expansions

F (z) =
∞
∑

ν=0

Bνz
ν and G(z) =

∞
∑

ν=0

Dνz
ν

be valid in a neighbourhood of the origin. Then the Hadamard product of F and G
is defined by

(F ∗ G)(z) =
∞
∑

ν=0

BνDνz
ν .

If g1 is subordinated to a function g ∈ S and P is a polynomial of degree ≤ p, then

for z ∈ ∆ the inequality

|(P ∗ g1)(z)| ≤ p max{|P (z)| , |z| = 1} (11)

is valid.

To prove (10) with the help of (11) we consider the polynomial

P (z) =
p−1
∑

τ=0

dτ (p − τ)zp−τ .

Because of the identity

(P ∗ g1)(1) =
p−1
∑

τ=0

(p − τ) cp−τdτ

it is sufficient for the proof of (10) to show that

∣

∣

∣P
(

e−iθ
)∣

∣

∣ ≤ p, θ ∈ [0, 2π].
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Since the family of functions ω̃, where ω̃ is chosen as in the proposition 2, is
invariant against rotations of the unit disc, it remains to prove the inequality
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(p − τ)dτ
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∣

∣

≤ p.

This inequality is known since long as Fejér’s inequality. Proofs can be found in [8]
and [18]. This concludes the proof of Proposition 2.

After these preparations it is not difficult to prove (7). Using the triangle inequality
together with (9) and Proposition 2, we get

∣

∣

∣

∣

∣

n−1
∑

l=0

n − l

n
cn−l al,n

∣

∣

∣

∣

∣

≤ |cn| +
n−1
∑

σ=1

(

n
σ

)

(n − σ)2

n
≤

n
∑

σ=1

(

n
σ

)

σ2

n
= (n + 1)2n−2.

This proves Proposition 1 and therefore, according to the above, the proof of our
theorem follows immediately.

Remarks.

(1) In [5], we have presented some examples showing that equality in (4) is attained
for special choices of Ω and Π.
(2) Further, we are indebted to the referee for the following comment:
Chua’s conjecture follows immediately from our Proposition 1 and formula (12) in
[7], p.68.
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