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Abstract

A number of ways of relaxing the stratification constraint for the axioms of
Quine’s NF are reviewed. It is shown how most of them result in inconsistency

Introduction

NF is a odd system, but it is not odd in the way people think. The oddness lies
not in the apparently purely syntactic nature of the insight that underlies it, for
that insight is less perverse and less syntactic than one might suppose. NF is not
so much oddly conceived as oddly fragile. It is very striking that every known
weakening of it results in a system with a relatively simple consistency proof, and
on the other hand almost any weakening of the syntactic chains that Keep Chaos
At Bay is swiftly punished with inconsistency. (This is not to say that there are no
natural strengthenings of NF that appear to be consistent: there are. The point is
that these strengthenings do not arise from any relaxation of syntactic constraints
in the comprehension scheme.) If stratification works at all—and it might—then it
is very finely balanced on a knife edge.

Mathematicians on their first exposure to NF often spontaneously wonder if it
might be safe to take some risks with the syntactic constraint they see exploited in
NF, perhaps because—it being less natural at first blush than it becomes on mature
aquaintance—one is initially more inclined to question its value as a source of axioms
than one is to question the value of the cumulative hierarchy as such a source.

The authors of this little survey thought that it might be useful to collect in one
place the various liberties that people have from time thought about taking with the
syntactic restraints that seem to keep NF safe. Most of them have been shown to
fail, and although most of these failures can be made to happen fairly quickly if one
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knows how to overload the machinery, beginners—even mature beginners—cannot
be expected to find these counterexamples swiftly. Accordingly there is merit to be
gained—and time and effort to be saved—by collecting them all into one place.

Thanks are to Randall Holmes and Anuj Dawar for contributions and explana-
tions.

Definitions and Summary

We discuss the obvious relaxations of the rules, and discuss in some detail a well-
motivated and attractive but ultimately doomed idea of the second author that there
might somehow be a kind of inhomogeneous equality relation.

One aperçu we will be making repeated use of is the fact that no set theory can
survive having the collection of all genuine (seen-from-outside) wellorderings as a
set. In ZF style theories all such “universal” collections are easily shown to be proper
classes anyway, so there is no particular significance to the class of genuine wellorder-
ings above and beyond the class of common-or-garden wellorderings. However in NF

the class of common-or-garden wellorderings is a set; indeed in NF the extension of
any stratified predicate is a set, so any relaxation of the syntactic constraints that
would enable us to give a stratified definition of genuine wellordering will be fatal.
It is striking how many of these proofs turn on this one feature. Perhaps this hides
a moral. If it does, then it is a moral that was first pointed in 1940 by Rosser, who
noticed that if one relaxes the device of stratification in NF-with-classes to allow
bound class variables to appear in stratified formulæ in set existence axioms then
the collection of genuine wellorderings is a set.

Before we embark on the details a word is in order on the proof sketches to be
found in the body of the paper. We are considering a programme of incorporating
stratification into logics which extend ordinary first-order logic and claiming that
this gives rise to inconsistency. Clearly proofs of some sort have to be provided:
one cannot just say “this enables one to define genuine wellorderings and thus prove
the Burali-Forti paradox”. However, not all of these logics have satisfactory proof
systems available in which one could provide rigorous proof objects. The compromise
we have reached, in order not to try the readers’ or our own patience unduly, is to
provide proof sketches which should blossom into proper proofs when placed in the
context of a proper proof system. In some cases we have felt obliged to supply more
than one proof to allay suspicions.

The usual definition of ‘stratified’ is developed as follows.

Let φ be a formula on the language L : (∈,=) of set theory. A stratification of
φ is a map s from the set of variables of φ to the integers such that if x and y are
two variables of φ and x = y is a subformula of φ, then s(x) = s(y) and if x ∈ y
is a subformula of φ, then s(x) + 1 = s(y). A formula φ is stratified if there is a
stratification of φ. If φ is a formula and if there is a map s such as before but defined
only on the bound variables of φ, the formula is said to be weakly stratified. We
still call such an s a stratification but we precise that it is defined on the bound
variables of φ.

An axiom of comprehension is an axiom saying that for all tuples ~x and any
weakly stratified φ the collection {y : φ(y, ~x)} is a set.
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1 An apercu of Holmes

Tn is the natural number |{{y} : y ∈ x}|,where x ∈ n, with the effect that if σ is a
stratification then σ(‘Tn’) = σ(‘n’) + 1. The result is that ‘n = Tn’ is unstratified
and the assertion ‘(∀n ∈ IN)(n = Tn)’ cannot be proved by induction and would
have to be added if we use to exploit it. This is Rosser’s Axiom of Counting. NF +
the Axiom of Counting is NFC

Randall Holmes has remarked to us that although one usually thinks of the
Axiom of Counting as a flagrantly unstratified—albeit natural—assertion, one can
in fact relax the definition of ‘stratified’ in such a way that it becomes stratified, with
the effect that if one expresses NF as before—extensionality plus weakly stratified
comprehension—one obtains precisely NFC. The idea is as follows. In any formula φ
a natural number variable is a bound variable, ‘x’ say, whose binding quantifier
is restricted to the Natural Numbers: ∀x ∈ IN or ∃x ∈ IN. If φ can be turned into
a stratified formula by prefixing ‘T ’s to some occurrences of some of the number
variables in φ then a stratification of φ in the new relaxed sense is a stratification
defined on the bound variables of φ other than the natural number variables.

Thus although the axiom of counting does not arise from a relaxation of the
stratification discipline it can be (mis)represented as arising in that way. Holmes
makes the point that the same move can be used to assert that any other definable
set is strongly cantorian.

2 The Burali-Forti Paradox in the First Edition of Quine’s ML

In [4] Quine thought to extend NF the way ZF is extended to obtain NGB, namely by
addition of proper classes. In the ZF case this is a useful manœuvre, since it enables
one to replace an infinite axiom scheme (replacement) by finitely many axioms of
class existence and the single axiom “The image of a set in a function is a class”.

In NF there is no infinite scheme waiting to be finitised in this way (the set
existence scheme of NF is finitisable even without the use of classes) but there is no
harm in adding classes: none, that is, if we add them properly. In the first edition
of [4] the set existence scheme of NF is modified to allow bound class variables into
instances of the comprehension scheme, but the stratification constraint remains.
This means that as well as being able to define common-or-garden wellorders (as
usual) as total orders all of whose subsets have least members, one is also able to
define wellorderings-seen-from-outside as total orders all of whose subclasses have
least members. With hindsight, one is surprised at how long it took for people
to realise what had gone wrong. It is at least in part by reflection on this little
episode that the authors were led to the conclusion that the parallel dangers in
other relaxations of the stratification discipline might be as initially mysterious as
that one was, and that by spelling them out we might be doing a service.

3 Cumulative stratification

Suppose we were to require of a stratification only that if there is a subformula
‘x ∈ y’ then the type of ‘y’ must be greater than that of ‘x’, and doesn’t have to be
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greater by precisely one? Then

(∃y2)(∀z0)((z0 ∈ x1 ←→ z0 ∈ y2) ∧ x1 6∈ y2)

is stratified in this new weak sense, but says x 6∈ x. This would give us Russell’s
paradox.

4 Typing mod n

In the theory of Types Ambn is the scheme that says that types repeat themselves
every n applications of power set. The ambiguity scheme is just Amb1. We know
that when m|n then Ambn ⊆ Ambm. Now the usual apparatus with type shifting
automorphisms and general model-theoretic nonsense will accept a model of Ambn

and return a “circular” model of type theory. One in which, for every natural number
k, type k + n is just the same as type k. Now what holds in such models, if there
are any? AC fails, as we know that Ambn refutes choice, but there is no reason to
suppose that this theory is inconsistent—if we are careful.

One might think that this is a model for a kind of typed set theory where the
types are integers mod n. That is to say every variable has a type subscript that is
an integer mod n and whenever ‘xi ∈ yj’ occurs in a formula then j = i + 1 (mod
n). The axioms are are extensionality and comprehension for well-typed formulæ.

However, if this were the case, one would be able to form, at any type k, the set
Ak = {yk : ¬(∃xk+1, xk+2 . . . xk−1)(yk ∈ xk+1 ∈ . . . xk−1 ∈ yk)}, namely the set of
things at level k that do not belong to an n-cycle. This of course gives us a version of
the standard (if obscure) n-ary version of Russell’s paradox. The feature peculiar to
this typed setting is that Ak has to exist at each type k. Then we reason as follows:
Ak cannot belong to an n-cycle, for if it did, one of its members would belong to
an n-cycle, which they don’t. So, for all k, Ak ∈ Ak+1. So the Ak form an n-cycle.
Contradiction.

This is not to say that there is no consistent typed set theory of this kind. What
it means is that the notion of typing it uses is more restrictive than the one we have
just considered, and is the same as the notion of typing in negative type theory.

If we think about the case k = 1 then it becomes obvious: every set-theoretic
formula is well-typed if our types are allowed to be integers mod 1!

5 Infinitary languages

5.1 Lω1,ω1

There is a stratified Lω1,ω1
formula

(∀x0 . . .∀xn . . .)(¬(
∧

n∈IN

xn+1 ∈ xn))

that says that x0 is wellfounded. If the collection of wellfounded sets is a set
then we have Mirimanoff’s paradox.



Relaxing stratification 251

5.1.1 Formulæ of Lω1,ω1
which use only finitely many types

In this language we can still define genuine wellorderings.

(∀x0 . . .∀xn . . .)(¬(
∧

n∈IN

xn+1 < xn))

5.2 Lω1ω

Consider {T nΩ : n ∈ IN}. This collection has a stratified definition in Lω1ω. But
then it is a set of ordinals with no least member.

5.2.1 Formulæ of Lω1,ω which use only finitely many types

The first thing to notice is that the previous section’s example, {T nΩ : n ∈ IN},
cannot be used in this case, since it uses infinitely many types. At this stage we
know of no proof that this liberalisation results in an inconsistency. However it does
give us a strong system.

The alert reader might expect that in Lω1,ω one might be able to exploit the
infinite family of approximants of [1] to branching quantifier formulæ and obtain
thereby any contradiction obtaining by exploiting the branching-quantifier language.
However, the contradictions obtained thereby all rely on our being able to define
genuine wellorderings. Since there doesn’t seem to be any way of exploiting the
set-theoretic machinery here available, one returns to the fact that wellordering
cannot be defined in Lω1,ω and that therefore one should not expect this relaxation
to fail—at least not on those grounds alone.

We will prove that the models of NF + comprehension for stratified formulæ
of the language Lω1,ω using only finitely many types are exactly the models for
which the set IN (the internal natural numbers) and P(IN) (the powerset of the
natural numbers) are the real external ones. We assume the following comprehension
scheme: For any formula ϕ of the language Lω1,ω, using only finitely many types,
we say that:

(∀a1 . . . ∀an)(∃u)(∀t) (t ∈ u←→ ϕ)

where the free variables of ϕ are among a1, . . . , an. Notice that we consider only a
finite number of a1, . . . , an; without this requirement, it would be easy to show that
{Ω, TΩ . . . T nΩ . . .} can be defined with two types and infinitely many parameters.
It is easy to prove that the condition is necessary; we will prove that the condition
is sufficient. The idea will be to give a truth definition for formulæ of fixed types
and to use this truth definition to express arbitrary formulæ of the language Lω1,ω

as finite usual formulæ. We will need our hypothesis in order to represent formulæ
of Lω1,ω that use only finitely many types inside the theory.

Let n and t1, . . . , tn+1 be fixed concrete natural numbers. In our proof, we will use
the notion of an n-ary-function f(x1, . . . , xn), for which the formula f(x1, . . . xn) = y
is stratified by a function s such that s(x1) = t1, . . . , s(xn) = tn and s(y) = tn+1. It
is clear that such functions can be defined in NF.

Using the fact that the set of natural numbers and the powerset of the set of
natural numbers are the real ones, one can represent a formula ϕ by an element pϕq
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of our model. Let n, t1, . . . , tn be fixed natural numbers, We will consider an (n+1)-
ary-function Tt1,...,tn , for which the formula Tt1,...,tn(p, a1, . . . , an) = y is stratified by
a function s for which s(p) = 0, s(a1) = t1, . . . , s(an) = tn and having the following
property. For a formula ϕ(a1, . . . , an), whose free variables are among a1, . . . , an and
stratified by a function s such that s(a1) = t1, . . . , s(an) = tn, the following holds:

Tt1,...,tn(pϕq, a1, . . . , an) = 1 iff ϕ(a1, . . . , an)

Notice that the formula ϕ may have fewer than n free variables since it is always
possible to add dummy variables. The function Tt1,...,tn is defined by induction in
the usual way. Clearly Tt1,...,tn is defined by a finite stratified formula. The only
thing that we have to check is that this definition is stratified: this is why we have
had to fix t1, . . . , tn.

With these functions Tt1,...,tn, it is possible to show that our model satisfies the
comprehension scheme for formulæ of Lω1,ω, by replacing each formula by a finite
formula. Indeed, consider a formula ϕ whose free variables are among a1, . . . , an and
stratified by a function s with s(a1) = t1, . . . , s(an) = tn; we have

(∀a1 . . .∀an)(∃u)(∀t) (t ∈ u←→ ϕ)

iff

(∀a1 . . .∀an)(∃u)(∀t) (t ∈ u←→ Tt1,...,tn(pϕq, a1, . . . , an) = 1)

6 Branching quantifiers

Allowing the incorporation of branching quantifiers into stratified formulæ will lead
to Burali-Forti. The proof is hard. In fact—given the cute and easily established
fact which we are about to show—it is surprisingly hard.

It is standard that the following formula says that A and B are the same size
(

∀x ∈ A ∃y ∈ B
∀y′ ∈ B ∃x′ ∈ A

)

(y = y′ ←→ x = x′) (1)

Let us write this as A ∼ B. Its significance for us is that we have immediately
that A ∼ ι“A (the set of singletons of A). Surely, one thinks, a proof that every
set is cantorian should be just round the corner, and with it a proof of Cantor’s
paradox.

Sadly it seems not. The idea is good, but one has to try this machinery with
ordinals not cardinals. After all, if we are in a countable model, then all infinite sets
of the model are the same size seen from outside. But not all wellorderings are the
same length!

If 〈A,≤A〉 is a totally ordered set then

(

∀n ∈ IN ∃x ∈ A
∀m ∈ IN ∃y ∈ A

)

(n < m←→ y <A x) (2)

is a stratified formula which says that <A has a descending ω-sequence (seen
from outside). Indeed, we easily see that, in formula 2, we have y = x if we choose
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n = m (for if n = m, x 6< y and y 6< x). From this we infer that there is an external
function x 7→ xn from N to A such that xm < xn whenever n < m.

Henceforth let 〈A,≤A〉 be an internal wellordering. We will show that it is a
genuine (external) wellordering as well.











∀n ∈ IN ∃x ∈ A
∀m ∈ IN ∃y ∈ A
∀n′ ∈ IN ∃x′ ∈ A
∀m′ ∈ IN ∃y′ ∈ A











∧











(n < m←→ y <A x)
(n′ < m′ ←→ y′ <A x

′)
(m+ 1 = m′ → y′ = y)

(3)

Expression (3) has a quantifier prefix of four rows. Rows three and four say that
there is a descending ω-chain, and that it is the tail of the descending ω-chain given
by rows one and two. Clearly (3) follows from (2)

Now let us assume that 〈A,≤A〉 was an internal wellordering but not an external
wellordering, and let a be the <A-minimal element of A such that

(

∀n ∈ IN ∃x ∈ A|a
∀m ∈ IN ∃y ∈ A|a

)

(n < m←→ y <A x) (4)

where A|a is {u ∈ A : u ≤ a}. Such an a exists because (4) is stratified. But
then we have











∀n ∈ IN ∃x ∈ A|a
∀m ∈ IN ∃y ∈ A|a
∀n′ ∈ IN ∃x′ ∈ A|a
∀m′ ∈ IN ∃y′ ∈ A|a











∧











(n < m←→ y <A x)
(n′ < m′ ←→ y′ <A x′)
(m+ 1 = m′ → y′ = y)

(5)

If we now instantiate ‘n’ to 1 in (5) we see that x must be a, by minimality of
a. But then rows three and four of the quantifier prefix tell us there is a descending
ω-chain consisting entirely of things below a, contradicting minimality of a.

6.1 Another proof

We will first prove that if 〈A,≤A〉 and 〈B,≤B〉 are two (internal) well-orderings
then there can be at most one external isomorphism between them. Our point of
departure is formula 6 which says there is an external isomorphism between 〈A,≤A〉
and 〈B,≤B〉.

(

∀x ∈ A ∃y ∈ B
∀y′ ∈ B ∃x′ ∈ A

)

(x ≤A x′ ←→ y ≤B y′) (6)

This gives rise to











∀x1 ∈ A. ∃y1 ∈ B
∀y′1 ∈ B. ∃x

′

1 ∈ A
∀x2 ∈ A. ∃y2 ∈ B
∀y′2 ∈ B. ∃x

′

2 ∈ A











∧











(x1 ≤A x′1 ↔ y1 ≤B y′1)
(x2 ≤A x′2 ↔ y2 ≤B y′2)
(x1 = x2 = u→ y1 6= y2)

(7)

(7) is a stratified formula, with ‘u’ free, that says that there are two external
isomorphisms between 〈A,≤A〉 and 〈B,≤B〉 that differ on u. Since it is stratified,
and 〈A,≤A〉 is a wellordering, the set of u in A satisfying (7) will have a least
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member. Notice that without loss of generality we could have replaced the last line
by by ‘x1 = x2 = u→ (y1 <B y2)’.

The next formula needs some explanation! Like (7) it is a stratified formula, with
‘u’ free, and it says that there are two external isomorphisms between 〈A,≤A〉 and
〈B,≤B〉 that differ on u, but agree below u. The reader will notice that lines four
to eight of the quantifier prefix are duplicates of lines one-to-four of the prefix (and
lines three-and-four of the matrix analogously duplicate lines one-and-two). The
duplicated lines are copied bodily from formula (7), and the duplicated variables are
upper-case copies of the lower-case originals. This duplication is necessary because
the branching-quantifier language affords us no variables (as it might be ‘F ’ and
‘G’) to range over the second order objects captured by the branching quantifiers
which would enable us to say ‘F = G’. We have to say—twice—that there are two
external isomorphisms, and by writing down equations between the old variables
and their duplicates we say that the two isomorphisms announced second are the
same as the two isomorphisms announced first (this is what lines five and six are
doing). Finally we use the first announcements to say that the two isomorphisms
differ at u and use the second to say that they agree below u.































∀x1 ∈ A. ∃y1 ∈ B
∀y′1 ∈ B. ∃x

′

1 ∈ A
∀x2 ∈ A. ∃y2 ∈ B
∀y′2 ∈ B. ∃x

′

2 ∈ A
∀X1 ∈ A. ∃Y1 ∈ B
∀Y ′

1 ∈ B. ∃X
′

1 ∈ A
∀X2 ∈ A. ∃Y2 ∈ B
∀Y ′

2 ∈ B. ∃X
′

2 ∈ A































∧



























































(x1 ≤A x′1 ↔ y1 ≤B y′1)
(x2 ≤A x′2 ↔ y2 ≤B y′2)
(X1 ≤A X ′

1 ↔ Y1 ≤B Y ′

1)
(X2 ≤A X ′

2 ↔ Y2 ≤B Y ′

2)
(x1 = X1 ↔ y1 = Y1)
(x2 = X2 ↔ y2 = Y2)
(x1 = x2 = u→ (y1 <B y2)
(X1 = X2 <A u→ Y1 = Y2)

(8)

Let us instantiate ‘u’ for the lower-case variables in (8) ranging over members of
A. This gives































∃y1 ∈ B
∀y′1 ∈ B. ∃x

′

1 ∈ A
∃y2 ∈ B
∀y′2 ∈ B. ∃x

′

2 ∈ A
∀X1 ∈ A. ∃Y1 ∈ B
∀Y ′

1 ∈ B. ∃X
′

1 ∈ A
∀X2 ∈ A. ∃Y2 ∈ B
∀Y ′

2 ∈ B. ∃X
′

2 ∈ A































∧



























































(u ≤A x′1 ↔ y1 ≤B y′1)
(u ≤A x′2 ↔ y2 ≤B y′2)
(X1 ≤A X ′

1 ↔ Y1 ≤B Y ′

1)
(X2 ≤A X ′

2 ↔ Y2 ≤B Y ′

2)
(u = X1 ↔ y1 = Y1)
(u = X2 ↔ y2 = Y2)
(u = u = u→ (y1 <B y2)
(X1 = X2 <A u→ Y1 = Y2)

(9)

This simplifies to































∃y1 ∈ B
∀y′1 ∈ B. ∃x

′

1 ∈ A
∃y2 ∈ B
∀y′2 ∈ B. ∃x

′

2 ∈ A
∀X1 ∈ A. ∃Y1 ∈ B
∀Y ′

1 ∈ B. ∃X
′

1 ∈ A
∀X2 ∈ A. ∃Y2 ∈ B
∀Y ′

2 ∈ B. ∃X
′

2 ∈ A































∧



























































(u ≤A x′1 ↔ y1 ≤B y′1)
(u ≤A x′2 ↔ y2 ≤B y′2)
(X1 ≤A X ′

1 ↔ Y1 ≤B Y ′

1)
(X2 ≤A X ′

2 ↔ Y2 ≤B Y ′

2)
(u = X1 ↔ y1 = Y1)
(u = X2 ↔ y2 = Y2)
(y1 <B y2)
(X1 = X2 <A u→ Y1 = Y2)

(10)
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We notice that in the first four lines of this last formula the ≤A and ≤B can be
replaced by =. Using this we deduce:































∃y1 ∈ B
∀y′1 ∈ B. ∃x

′

1 ∈ A
∃y2 ∈ B
∀y′2 ∈ B. ∃x

′

2 ∈ A
∀X1 ∈ A. ∃Y1 ∈ B
∀Y ′

1 ∈ B. ∃X
′

1 ∈ A
∀X2 ∈ A. ∃Y2 ∈ B
∀Y ′

2 ∈ B. ∃X
′

2 ∈ A































∧



































































(u ≤A x′1 ↔ y1 ≤B y′1)
(u ≤A x′2 ↔ y2 ≤B y′2)
(X1 ≤A X ′

1 ↔ Y1 ≤B Y ′

1)
(X2 ≤A X ′

2 ↔ Y2 ≤B Y ′

2)
(u = X1 ↔ y1 = Y1)
(u = X2 ↔ y2 = Y2)
(y1 <B y2)
(X1 = X2 <A u→ Y1 = Y2)
(Y ′

2 = y2 ↔ X ′

2 = u)

(11)

Let us fix an X2 ∈ A and take X1 = X2. We see that if X2 ≤A u then Y2 6= y1. If
X2 ≥A u then Y2 ≥B y2 >B y1. This shows that formula (11) implies that Y2 6= y1,
contradicting the fact that we have isomorphisms.

We have now established that if there is an external isomorphism between 〈A,≤A〉
and 〈B,≤B〉 then there is precisely one. Therefore the following formula, which
says that F is the union of all graphs of external isomorphisms between 〈A,≤A〉
and 〈B,≤B〉, says that F is the graph of the unique external isomorphism between
〈A,≤A〉 and 〈B,≤B〉. Since the formula is stratified, F actually exists.

F =

{

〈u, v〉

∣

∣

∣

∣

∣

(

∀x ∈ A ∃y ∈ B
∀y′ ∈ B. ∃x′ ∈ A

)

(x ≤A x′ ↔ y ≤B y′) ∧ (u = x→ y = v)

}

(12)
So we can conclude that if there is an external isomorphism between 〈A,≤A〉

and 〈B,≤B〉 then its graph is a set. But the ordinals are externally isomorphic to
the ordinals below Ω, and cannot be internally isomorphic.

7 Least-fixed point Logics 1

Fixed-point logics can be seen historically as arising from an attempt to prove a
completeness theorem. In an ideal world the following ought to be true: We are
thinking about finite structures only (otherwise the concepts of polynomial and ex-
ponential time make no sense). It ought to be the case that first-order = polytime
and second-order = exptime. However, this doesn’t work, at least not straightfor-
wardly. One can tell in polynomial time whether or not a graph is connected, but
there is no first-order expression φ such that a finite graph is connected iff it is a
model of φ. There is a polytime algorithm for testing whether or not a group is
simple, even though being a simple group is emphatically not a first-order property.
The counterexamples to the identification of polytime with first-order all seem to
be of the one flavour: polytime things that are not first-order rather than the other
way round. This suggests that in order to get the missing completeness theorem we
need a more expressive first-order syntax. One way of getting more formulæ is to
go to fixed point logic.

1see Dawar-Gurevich [2]
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In this logic one can obtain the effect of a predicate modifier of transitive closure

of a binary relation in a manner that is in a clear sense first-order, so the logic
is genuinely richer than ordinary predicate calculus. However if we add ∈ to the
language (which we will have to if we are to do NF) we can also characterise the unary
predicateWF (x) (meaning that x is well-founded) by saying it is the least fixed point
for the function taking the predicate W (x) to the predicate (∀y ∈ x)(W (y)). That
is to say one defines WF (z) to be lfpW,x[∀y ∈ x.W (y)](z)

The “lfp” syntax is as follows. ‘W ’ is a second-order variable, ranging over
predicates. If W (y) is a predicate, so too is ∀y ∈ x.W (y). lfpW,x[∀y ∈ x.W (y)](z) is
the least fixed point for the operation taking the first predicate to the second. This
is obviously inconsistent, since the collection of wellfounded sets cannot be a set.

This particular application of lfp-logic is inhomogeneous, in that the free variables
in the two formulæ ‘W (u)’ and ‘(∀y ∈ x)(W (x))’ are at different types, and that is
evidently the root of the trouble.

If we restrict use of this syntax to cases where the free variables are of the
same type we find that the least fixed points can be shown to exist in NF anyway.
This is because in those circumstances we are considering a monotone homogeneous
operation F taking sets to sets and this must have a fixed point by the Tarski-
Knaster theorem, provable in NF.

The fixed point logic we have just considered has a weaker version. Add to first-
order logic a predicate modifier of transitive closure. If we add to a language
containing a stratified but inhomogeneous predicate (such as ∈) we have to decide
how to assign types to formulæ containing the transitive closure. How are we to
type ‘x ∈∗ y’? The obvious solution is to allow it to be stratified as long as x is
given a lower type than y. But if we do this, it becomes possible to say in a stratified
way that x is a transitive set. This implies that the collection of transitive sets is
a set, contradicting an old result of Forster [3]. A predicate modifier of transitive
closure of homogeneous predicates is definable in NF anyway.

8 Inhomogeneous equality

In the course of preparing a paper on permutations methods in NF (still in prepara-
tion) the authors toyed at one point with the idea of adding to the language of NF
countably many binary relations: =n, one for each integer number n (where n can
be positive or negative), which would behave like equality relations and for which
‘x =n y’ is stratified with ‘y’ n types higher than ‘x’ for n ≥ 0 or ‘x’ −n types higher
than ‘y’ for n ≤ 0. The motivation can be seen from the chapter on permutation
methods in [3].

The motivation comes from topologies on permutation models. Let us fix a model
V of NF. It is natural to say that for any formula (maybe stratified) φ(a1, . . . , an)
and for any parameters (a1, . . . , an), the following set is open

{σ : V σ |= φ(a1, . . . , an)}

If we consider only stratified φ, we have just, by a lemma of Henson (see [3]:

{σ : V σ |= φ(a1, . . . , an)} = {σ : V |= φ(Hk1
(σ, a1), . . . , Hkn

(σ, akn
))}
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where the ki (i = 1, . . . n) are the levels of stratification of a1, . . . , an in φ. Here (and
in our forthcoming paper on permutation methods in NF) we write Hk(σ, x) where
in [3] (and Henson’s original paper) we would have written σk(x).

In order to study this topology in more depth, it would be interesting to know
whether or not, given (a1, . . . , an), (b1, . . . , bn) and k1, . . . , kn, there is a permutation
σ with:

Hk1
(σ, a1) = b1 ∧ · · · ∧Hkn

(σ, an) = bn

If k1 = · · · = kn (which corresponds to the case where all ai have the same level
of stratification in φ) this is easy: there will be such a permutation iff the tuples
a1, . . . , an and b1, . . . , bn satisfy the same equalities, in the sense that ai = aj iff
bi = bj .

Moreover this last fact can be expressed by a stratified formula. In the general
case where the ki are not all equal, the answer would be true if a1, . . . , an and
b1, . . . , bn satisfies the same “equality relations” but where “aki

= akj
” is stratified

where aki
is of level ki and akj

is of level kj. At this point, we thought that all will
be all right just by adding some supplementary “inhomogeneous equality relations”
to NF and to put suitable axioms on these.

Let us describe more precisely these “equality relations”:
The language is (∈,=n), (one symbol =n for each concrete integer number n).

We will work here in the first order theory without equality. Consider the following
sheme:

1. “Extensionality”: (∀xy)(x =n y ↔ (∀z ∈ x)(∃w ∈ y)(z =n w) ∧
(∀z ∈ y)(∃w ∈ x)(w =n z))

2. “Substitution scheme”: From x =n y and φ(y, z1 . . . zk) infer
(∃w1 . . . wk)(w1 =n z1 . . . wk =n zk ∧ φ(x, w1 . . . wn))

We add the comprehension scheme for stratified formulas:

3. Comprehension scheme: If φ(x, y1, . . . , yn) is stratified then

(∀y1, . . . , ∀yn) ∃u ∀t t ∈ u ⇐⇒ φ(t, y1, . . . , yn)

The idea is that =0 should play the rôle of the “real” equality. Notice however
that the axioms we have considered for =0 are much weaker than the usual axioms
for the equality relation: for example, prima facie there appears to be no way to
infer x =0 x.

It would have been natural to add some more axioms for these equality relations
in order to ensure that they look more like genuine equality. Here we have retained
only the minimal axioms needed to derive the paradox.

Consider the formula φ(y):

(∃y′)( y′ =1 y ∧ y
′ /∈ y)

and consider the formula ψ(x) with one free variable x which is

∀y. y ∈ x↔ φ(y)
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the formula ∃y′ y′ =1 y ∧ y
′ /∈ y being stratified the comprehension scheme say that

there is at least one x with ψ(x). Pick such an x and call it R. We have:

∃R′ R′ =1 R (13)

To prove (13) take a formula with two free variables φ(x, y) such that φ(x, y)
is true for any value of x and y (for example take x =0 y ∨ x 6=0 y). Take a
set z satisfying ∀x. x ∈ z → ⊥ and call this set ∅. We have φ(∅, R). By the
extensionality axiom for =1, we have ∅ =1 ∅ and the substitution scheme tells us
now that ∃R′. R′ =1 R such that φ(∅, R′) which shows (13).

Now we derive Russell’s paradox: suppose that R ∈ R, from the definition of R
we infer ∃R′ R′ =1 R ∧ R

′ /∈ R. This implies ¬φ(R′) (by the definition of R). By
the substitution scheme we have ¬φ(R) and this means R /∈ R (by the definition of
R).

Conversely, suppose that we have R /∈ R. So (∀R′. R′ =1 R → R′ ∈ R). Take
R′ with R′ =1 R which exists by (13). As R′ ∈ R, we have φ(R′) and also φ(R) by
the substitution scheme and thus R ∈ R.
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