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Abstract
In this paper we investigate the p-adic validity of the classical Dieudonné-

Schwartz Theorem proved in [5] and of its main improvements given in the
archimedean literature (see e.g. [12], [13], [14], [15] and [19]). We show that
the situation differs substantially from the real or complex one.

Introduction

The classical Dieudonné-Schwartz Theorem reads:

“Every strict LF-space is regular”

([5], Proposition 4). This result is still valid in the p-adic context (Corollary 3.3).
Since 1949 lots of extensions and improvements of the above theorem, with or

without the condition of strictness, have been obtained (see e.g. [12], Theorem
2.12.2, [13], [14], [15] and [19]).

In this paper we study these results in the p-adic case, where the situation turns
out to be quite different. We prove that, under some assumptions, their p-adic
versions remain true. We also provide examples showing, on the one hand that if
those assumptions are removed then the results fail, and on other hand that the
converses of the implications appearing in the positive results are not true, even in
very particular cases.

The classes of inductive sequences constructed in the last section are the source
of most of our counterexamples, which either do not have a classical counterpart or
if they have one it has a typically archimedean character.
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1 Preliminaries

Throughout this paper K = (K, | . |) is a non-archimedean non-trivially valued field
that is complete with respect to the metric induced by the valuation | . |.

Unless explicitly stated otherwise, all vector spaces and locally convex spaces we
will consider in this paper are over K.

For fundamentals on normed and locally convex spaces we refer to [21] and [22]
respectively.

Let E be a vector space. For a subset A of E we denote by [A] its linear hull.
A is absolutely convex if 0 ∈ A and x, y ∈ A, λ, µ ∈ K, max(|λ| , |µ|) ≤ 1 implies
λ x+µ y ∈ A. For an absolutely convex set A ⊂ E we define Ae := A if the valuation
of K is discrete, Ae :=

⋂{λ A : λ ∈ K, |λ| > 1} otherwise. A is called edged if
A = Ae.

Let E = (E, τ) be a locally convex space. By UE we mean the family of all
(clopen) absolutely convex zero neighbourhoods in E. For a subset A of E we

denote by A
E

the closure of A in E. A is called compactoid if for every U ∈ UE

there is a finite set B in E such that A ⊂ U + aco B, where aco B is the absolutely
convex hull of B, that is, the smallest absolutely convex set containing B. If F is
another locally convex space, a linear map T : E→F is called compact if there is
a V ∈ UE for which T (V ) is a compactoid in F . Also, E is called nuclear if for
every continuous seminorm p on E there is a continuous seminorm q on E, q ≥ p,
such that the natural map Eq→Ep is compact, where Ep and Eq are the canonical
normed spaces associated to p and q respectively.

By E ′ we denote the dual of E i.e. the vector space of all continuous linear
functionals E→K. The weak topology σ(E, E ′) is the locally convex topology
on E generated by the family of seminorms {|f | : f ∈ E ′}. Let Z be a subspace
of E, endow Z with the induced topology τ |Z. We say that Z has the Hahn-
Banach Extension Property (HBEP) in E if every f ∈ Z ′ has a continuous
linear extension to the whole space.

A continuous seminorm p on E is called polar if p = sup{|f | : f ∈ E ′, |f | ≤
p}. E is called polar if its topology is generated by a family of polar seminorms;
strongly polar if every continuous seminorm p on E with p(E) ⊂ |K| is polar
(where |K| is the closure in R of {|λ| : λ ∈ K}). E is called of countable type
if for every continuous seminorm p on E the associated normed space Ep is of
countable type (recall that a normed space is said to be of countable type if it is
the closed linear hull of a countable set). If K is spherically complete, every locally
convex space is strongly polar. For any K, strongly polar spaces are polar and
spaces of countable type are strongly polar. Also, every nuclear space, in particular
(E, σ(E, E ′)), is of countable type. One verifies that each subspace of a strongly
polar space (resp. each finite dimensional subspace of a polar space) has the HBEP.
But for non-spherically complete fields the HBEP may fails, even there exist normed
spaces with trivial dual. For details we refer to [21] and [22].

A very interesting class of locally convex spaces, to which is devoted the present
paper, is formed by the locally convex inductive limits. We point out the central role
that they play in the definition of a p-adic Laplace and Fourier Transform given in
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[9] and [10] respectively and in the index theory of p-adic differential equations (see
e.g. [1], [2], [3], [4] and [20]). The last of these references shows also the influence
of inductive limits in the study of the p-adic Monsky-Washnitzer cohomology.

An inductive sequence is an increasing sequence E1 ⊂ E2 ⊂ . . . of subspaces
of a vector space E such that E =

⋃
n En and where, for each n, En is provided

with a locally convex topology τn in such a way that each inclusion En→En+1 is
continuous. The inductive limit of the sequence (En)n is the space E endowed
with the strongest locally convex topology τind for which all the inclusions En→E
are continuous.

If the steps En are normed (resp. Banach, metrizable, Fréchet) spaces then (En)n

is called an LN (resp. LB, LM, LF)-space. As usual, a Fréchet space is a metrizable
complete locally convex space.

From now on in this paper (En)n is an inductive sequence of locally convex spaces
(En, τn) with inductive limit (E, τind).

For each n, let σn be the weak topology on En. Following [8],

Definition 1.1 We say that (En)n is
(i) strict if τn+1|En = τn for each n,
(ii) weakly strict if σn+1|En = σn for each n, or equivalently (apply [8], Lemma

1.4.5,(i)), if:

for all n, every fn ∈ E ′
n has an extension fn ∈ E ′

n+1. (1)

In some special cases there are relations between strictness and weak strictness.

Proposition 1.2 ([8], Theorem 1.4.7)
(i) If each En has the HBEP in En+1 (e.g. when all the En are strongly polar)

then strictness implies weak strictness.
(ii) If all the En are metrizable and polar then weak strictness implies strictness.

But in general strictness and weak strictness are independent properties (see [8],
Examples 1.4.10 and 1.4.12).

Now, following [11],

Definition 1.3 We say that (En)n satisfies
(C1) if En is closed in En+1 for each n,
(C2) if En is closed in E for each n,

(C3) if for each n there exists a k(n) ∈ N such that En
E ⊂ En+k(n),

(C4) if, for all n, every closed absolutely convex subset of En is closed in En+1

(or equivalently if, for all n, every closed absolutely convex subset of En is closed in
E).

(C5) if, for all n, every closed absolutely convex and edged subset of En is closed
in En+1 (or equivalently if, for all n, every closed absolutely convex and edged subset
of En is closed in E).
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Proposition 1.4 ([11], Propositions 3.2, 3.9) (C4) =⇒ (C5) =⇒ (C2) =⇒ (C1),(C3).

Also, the converses of the above implications are not true, and (C1) and (C3)
are independent properties, see [11].

Remark 1.5 Looking at 1.1 and 1.3 the reader could ask what happens if in the
definitions of the strictness and of the closedness properties (C1), (C4) and (C5) we
replace the index n + 1 by n + k(n) for some k(n) ∈ N (as we did for (C3)). But
one can easily see that this does not make any difference.

On the other hand, the replacement in the definition of (C3) of the index n+k(n)
by n+1 leads to a stronger (and different see [11], Remark 3.15) closedness property.
We do not treat this extra closedness property here because is does not have any
interesting contribution to the purpose of the paper.

The following regularity properties will be crucial in the sequel.

Definition 1.6 We say that (En)n is
(i) regular if for every bounded subset D of E there is an n such that D ⊂ En

and is bounded in En,
(ii) α-regular if for every bounded subset D of E there is an n such that D ⊂ En.

Remark 1.7 Clearly, regular =⇒ α-regular. But the converse is not true, see
Example 2.3 and Remark 2.6.

We finish these Preliminaries with examples of sequence spaces, which will be
used through the paper.

Let B = (bn
k)k,n be an infinite matrix consisting of strictly positive real numbers

such that bn
k ≤ bn+1

k for all k, n. For each n ∈ N,

c0(N, 1/bn) := {(λk)k ∈ KN : lim
k
|λk| /bn

k = 0},

is a Banach space of countable type under the norm (λk)k 7→ supk |λk| /bn
k . The

monotonicity condition we imposed on the matrix B implies that (c0(N, 1/bn))n is
an inductive sequence. Its inductive limit, the so called Köthe dual space, is
usually denoted by Λ0(B).

Further, for each j,

c0(N, bj) := {(λk)k ∈ KN : lim
k
|λk| bj

k = 0},

is a Banach space of countable type under the norm pj defined by

pj((λk)k) := sup
k
|λk| bj

k, (λk)k ∈ c0(N, bj). (2)

We consider on the so-called Köthe space Λ0(B) :=
⋂

j c0(N, bj) the normal topol-
ogy, n0,∞, which is the one defined by the family of norms {pj : j ∈ N}. Then
(Λ0(B), n0,∞) is a Fréchet space of countable type.

When bn
k = nk, Λ0(B) is the space of germs of analytic functions at zero, and

Λ0(B) is the space of entire functions on K. For more details on Λ0(B) and Λ0(B),
see Section 3.2 of [8].
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2 The p-adic Dieudonn é-Schwartz Theorem without strictness

In Proposition 3.4 we will prove that for an LF-space any of the closedness properties
(C1)-(C5) implies regularity. In general we can say the following.

Proposition 2.1

(i) (C3) =⇒ α-regular.

(ii) If all the En are polar, (C5) =⇒ regular.

Proof. The proof of (i) is a simple adaptation of the classical one given in [13],
Theorem 1.

(ii) Suppose all the En are polar and (En)n satisfies (C5), so also (C3) by Propo-
sition 1.4. Now let D ⊂ E be a bounded subset of E. Since (En)n is α-regular by
(i), there exists an n such that D ⊂ En, and clearly D is τind|En-bounded. Also,
(C5) implies that (En, τn) and (En, τind|En) have the same closed hyperplanes. So
(En, τn)′ = (En, τind|En)′ ([11], Proposition 1.1). Hence D is weakly bounded in En

and by polarity and Theorem 7.5 of [22] we finally obtain that D is τn-bounded.
Thus, (En)n is regular.

Remark 2.2 In Examples 3.8 we will see that the converses of Proposition 2.1 are
not true.

Next we show that if in Proposition 2.1 we consider a weaker closedness property
or a stronger regularity one then there exist LM-spaces with steps of countable
type for which the implications fail, even when they satisfy an extra regularity like
property. At the same time, in Example 2.3 and Remark 2.6 we construct α-regular
inductive sequences that are not regular, as we have already promised in Remark
1.7.

Example 2.3 There exist non-regular inductive sequences (En)n of metrizable spaces
of countable type that satisfy (C2) (hence are α-regular, Proposition 2.1,(i)), and also
satisfy the following property:

(R) For all n and every bounded subset D of En there exists an m ≥ n such that

D
E ⊂ Em and is bounded in Em.

Proof. Let (En)n be the inductive sequence of 4.1.1. Suppose the matrix B
satisfies

for every j there exists j′ > j such that limk bj
k/b

j′

k = 0. (3)

Let Z be an infinite dimensional pj0-closed subspace of Λ0(B). By τ -closedness of
Z and Theorem 4.1,(v) we obtain that (En)n satisfies (C2).

That (En)n is not regular follows from Corollary 4.4. In fact, we have τ |Z 6= τ ′|Z
because, by Proposition 3.5 of [7], (Z, τ ′|Z) is nuclear and, however, (Z, τ |Z) is an
infinite dimensional normed space, which cannot be nuclear.

Finally, in order to prove property (R) for this (En)n we first see that

for all C ⊂ Λ0(B) that is τ ′-bounded, C
X

is τ ′-bounded. (4)
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To this end, let C ⊂ Λ0(B) be τ ′-bounded. Then C is τ ′-compactoid, because
(Λ0(B), τ ′) is nuclear. Hence there exists a (µk)k ∈ Λ0(B) such that

C ⊂ C ′ := {(λk)k ∈ Λ0(B) : |λk| ≤ |µk| for all k}

([16], Proposition 2.1). Since all the coordinate maps on Λ0(B) are pj0-continuous

(=τ -continuous), the set C ′ is τ -closed, so it contains C
X

. Also, C ′ is τ ′-bounded,

hence so is C
X

.
Apart from (4), it is clear that by τ -closedness of Z,

for all C ⊂ Z that is τ ′-bounded, C
X ⊂ Z. (5)

Next we use (4) and (5) to get property (R). Let n ∈ N and let D ⊂ En be

τn-bounded. We prove that D
E

is contained and bounded in En (so property (R)
holds for m = n). In fact, continuity of the projections πi : E→X implies

πi(D
E
) ⊂ πi(D)

X
for all i. (6)

Therefore, since each πi(D) (and hence its τ -closure) is τ -bounded, we have that

πi(D
E
) is also τ -bounded.

Now let i > n. Then πi(D) is τ ′-bounded (and contained in Z when i > n + 1).

So, by (4)−(6), πi(D
E
) is τ ′-bounded (and contained in Z when i > n + 1).

Thus, as

D
E ⊂ π1(D

E
)× . . .× πn+1(D

E
)×

∏
i>n+1

πi(D
E
),

and as the set after the inclusion is contained and bounded in En, we have the same

for D
E
.

Remark 2.4 Clearly regularity implies property (R) considered in Example 2.3.
For LN-spaces spaces, and with the same proof as in [15], Theorem 2, one has that
regularity and (R) are equivalent properties. But this is not the case for LM-spaces,
as we have just seen. There exist even LM-spaces having property (R) and that are
not α-regular, as we prove in the following example, which also shows that (i) of
Proposition 2.1 is not true for (C1).

Example 2.5 There exist inductive sequences of metrizable spaces of countable type
that satisfy (C1) and property (R), but are not α-regular.

Proof. Let (En)n be the inductive sequence of 4.1.1. Suppose the matrix B
satisfies (3) i.e. (Λ0(B), n0,∞) is nuclear ([7], Proposition 3.5). Let Z be a subspace of
Λ0(B) that is n0,∞-closed but not pj0-closed (Such Z exists, otherwise by Proposition
1.1 of [11], (Λ0(B), n0,∞)′ = (Λ0(B), pj0)

′, which would imply that pj0 and n0,∞ have
the same bounded sets, [22], Theorem 7.5. Hence n0,∞ would be defined by the
norm pj0 ([17], Lemma 4.2): a contradiction because (Λ0(B), n0,∞) is nuclear and
infinite dimensional, so it cannot be normable).

Since Z is τ ′-closed but not τ -closed it follows respectively from Theorem 4.1,(iv)
and Proposition 4.3 that (En)n satisfies (C1) but it is not α-regular.
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Finally, looking at the proof of the last part of Example 2.3 we see that property
(R) follows as soon as we prove that (5) holds for this (En)n.

To this end, let C ⊂ Z be τ ′-bounded (= n0,∞-bounded), we may assume that
C is absolutely convex. Since Y := (Λ0(B), n0,∞) is a nuclear Fréchet space we

have that A := C
Y

is absolutely convex, metrizable, compactoid and complete in
Y . By [25], Proposition 9.1 we obtain that τ |A = τ ′|A. Hence A is τ -complete, so
τ -closed. Also, C ⊂ A ⊂ Z (the last inclusion because Z is τ ′-closed). Therefore,

by τ -closedness of A, C
X ⊂ Z.

Remark 2.6 α-regularity and (R) are independent properties. Indeed, this is a
consequence of Example 2.5 and the fact that there exist inductive sequences of
metrizable spaces of countable type that satisfy (C2) (hence are α-regular, Proposition
2.1,(i)), but do dot satisfy (R).

To find such an inductive sequence, let (En)n be as in 4.1.2, where Z is a ‖ . ‖-
closed subspace of F for which the restriction of f to Z, f |Z, is not ‖ . ‖-continuous
(hence by [11], Proposition 1.1, Ker f |Z := {x ∈ Z : f(x) = 0} is ‖ . ‖-dense in Z).

From τ -closedness of Z and Theorem 4.1,(v) we have that (En)n satisfies (C2).
Now suppose that (R) holds for (En)n; we derive a contradiction. Let BZ :=

{x ∈ Z : ‖x‖ ≤ 1}. The set C := BZ ∩ Ker f |Z is τ ′-bounded in Z. Hence CN

is bounded in E1 and, by property (R), there is an m such that CNE ⊂ Em and is
bounded in Em. Applying (8) of the proof of Theorem 4.1 we obtain that AN ∩ E

is a bounded subset of Em (where A := C
X

). If πm+1 is the m + 1-th projection on

Em, then πm+1(A
N ∩E) = A is bounded in Y i.e. C

X
is τ ′-bounded. But this is an

impossibility. In fact, ‖ . ‖-density of Ker f |Z leads to BZ ⊂ C
X

, so τ ′-boundedness

of C
X

would imply that BZ is τ ′-bounded i.e. that τ |Z and τ ′|Z have the same
bounded sets. So these normed topologies on Z coincide, a contradiction because
f |Z is τ ′-continuous but not τ -continuous.

Remark 2.7 Compare the examples of this section with the classical ones given in
[14], in which the steps are not even metrizable.
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3 The p-adic Dieudonn é-Schwartz Theorem with strictness

Theorem 3.1 (p-adic Dieudonné-Schwartz Theorem for strict inductive limits)
(i) Strict + (C3) =⇒ regular.
(ii) Strict + (C1) =⇒ (C4) + regular.

Proof. (i) By Proposition 2.1,(i) we only have to show that “strict + α-regular
=⇒ regular”. This follows directly from [8], Theorem 1.4.7,(i).

(ii) Let (En)n be strict and suppose it satisfies (C1). For n ∈ N, let A ⊂ En be
absolutely convex and closed in En. Strictness implies that A is τn+1|En-closed, and
from (C1) we derive that A is closed in En+1. Hence (C4) holds and so also (C3)
(Proposition 1.4). Now regularity follows from (i).

When we replace “strict” by “weakly strict” the Dieudonné-Schwartz Theorem
can be partially saved.

Theorem 3.2 (p-adic Dieudonné-Schwartz Theorem for weakly strict inductive
limits)

(i) If all the En are polar, then

Weakly strict + (C3) =⇒ regular.

(ii) If all the En are strongly polar, then

Weakly strict + (C1) =⇒ (C5) + regular.

(iii) If either
(iii.a) K is spherically complete,
or
(iii.b) all the En are metrizable and polar,
then

Weakly strict + (C1) =⇒ (C4) + regular.

Proof. (i) This goes as in Theorem 3.1,(i) making use of the facts that by
polarity, weakly bounded sets in En are bounded ([22], Theorem 7.5) and that by
weak strictness, σ|En = σn ([8], Theorem 1.4.(7),(ii)) for all n, where σ is the weak
topology on E.

Before continuing the proof note that in (ii) (resp. (iii)) it suffices to see that
(En)n satisfies (C5) (resp (C4)). In fact, once we have (C5) or (C4) then regularity
follows from (i) and Proposition 1.4. So, let (En)n be weakly strict and satisfy (C1).

(ii) Suppose all the En are strongly polar. For n ∈ N, let A ⊂ En be absolutely
convex edged and closed in En. Since En is strongly polar we have that A is σn-
closed in En ([22], Theorem 4.7). By weak strictness, A is σn+1|En-closed, hence
τn+1|En-closed. From (C1) we obtain that A is closed in En+1. Thus, (En)n satisfies
(C5).

(iii.a) Let K be spherically complete. Then in this case the absolutely convex
sets that are closed coincide with the weakly closed ones ([26], Theorem 2). So the
same reasoning as in (ii) leads now to (C4).

(iii.b) Suppose all the En are metrizable and polar. By Proposition 1.2,(ii) we
have that (En)n is strict. Then (C4) follows from Theorem 3.1,(ii).
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Corollary 3.3
(i) Every strict LF-space is regular.
(ii) Every weakly strict LF-space with polar steps is regular.

Proof. Every strict LF-space satisfies (C1), so (i) is a direct consequence of
Theorem 3.1,(ii). Also, (ii) follows from Theorem 3.2,(iii.b).

For LF-spaces we also have the following (compare Proposition 2.1).

Proposition 3.4 Let (En)n be an LF-space. Then, any of the closedness properties
(C1)−(C5) implies regularity.

Proof. By Proposition 1.4 it suffices to prove the result for (C1) and (C3).
First assume that (En)n satisfies (C1). Applying the Open Mapping Theorem

([18], Corollary 2.74) to each inclusion (En, τn)→(En, τn+1|En) we obtain that (En)n

is strict. By Corollary 3.3,(i) (En)n is regular.
Now suppose that (En)n satisfies (C3). There is a sequence m1 < m2 < . . . in

N such that Fn := En
E ⊂ Emn for all n. Then (Fn, τmn|Fn)n is an LF-space that

satisfies (C2) and has the same inductive limit as the original one (En)n. By the
above (Fn)n is regular, and then so is (En)n.

Remark 3.5 In (i) of Theorems 3.1 and 3.2 we cannot include other closedness
properties (apart from the stated one (C3)). In fact, there exist inductive sequences
(En)n of normed spaces of countable type that are strict and weakly strict and satisfy
(C3) but do not satisfy any of the other closedness properties. An example of such
an inductive sequence is given in Remark 4.2.2 of [11]. Note that the steps of this
(En)n cannot be Banach, because for LB-spaces each of the properties (C1), (C2),
(C4) and (C5) characterizes its strictness ([11], Proposition 4.8).

The example presented here is the p-adic substitute of Example 1 of [13].

In the classical case the implication “Weakly strict + (C1) =⇒ (C4) + regular”
of Theorem 3.2 is always true (see [13], where the authors also proved that weak
strictness, more concretely its characterization of (1), is equivalent to their property
(H8)). In contrast to that, the next examples show that, for p-adic inductive limits
with polar steps, the conclusions of Theorem 3.2,(ii),(iii) may fail when K is not
spherically complete.

Examples 3.6 Suppose K is not spherically complete.
(i) There exist inductive sequences of polar spaces that are weakly strict and

satisfy (C1), but do not satisfy any of the other closedness properties, and are not
α-regular.

(ii) There exist inductive sequences of polar spaces that are weakly strict and
satisfy (C2) (hence are regular, Theorem 3.2,(i)), but do not satisfy (C5).

(iii) There exist inductive sequences of spaces of countable type that are weakly
strict and satisfy (C5) (hence are regular, Theorem 3.2,(i)), but do not satisfy (C4).

Proof. (i) Let F := `∞. There is a closed subspace Z of F that has the HBEP in
F , contains c0, and is not weakly closed in F ([23], Remark after Proposition 1.5).
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Let (En)n be the inductive sequence of 4.1.4 with F and Z as above. By Theorem
4.1 we have that (En)n satisfies all the requirements related to weak strictness and
closedness.

Now we see that (En)n is not α-regular. By Theorem 4.1,(viii) it suffices to find

a bounded set C ⊂ Z for which C
X * Z. For this, take C := {x ∈ Z : ‖x‖ ≤}

and note that, as (F/c0)
′ = {0} ([21], Corollary 4.3), we have that c0 (hence Z) is

weakly dense in F .

(ii) Let (En)n be the inductive sequence of 4.1.4 with F being not strongly polar
and Z a weakly closed subspace of F with the HBEP in F .

By (iii),(v) of Theorem 4.1, (En)n is weakly strict and satisfies (C2). Also, since
F is not strongly polar, there exists an absolutely convex and edged set A in F
that is closed but not weakly closed ([22], Theorem 4.7) i.e. A is τ ′-closed but not
τ -closed in F . Applying (vii) of Theorem 4.1 we deduce that (C5) fails for this
(En)n.

(iii) Let (En)n be the inductive sequence of 4.1.4 with F of countable type and
Z a closed subspace of F . It follows from (iii),(iv) of Theorem 4.1 that (En)n is
weakly strict and satisfies (C1), hence satisfies (C5) by Theorem 3.2,(ii).

However, as F is infinite dimensional its weak topology is not the norm topology
(i.e. τ 6= τ ′). By non-spherical completeness of K there is a τ ′-closed absolutely
convex subset of F that is not τ -closed ([24], Corollary 1.2). It follows from (vi) of
Theorem 4.1 that (C4) does not hold for (En)n.

Remarks 3.7

1. For real or complex inductive limits we also have that “(C4) =⇒ Weakly strict
+ (C1)” (see [13]). The same happens in the non-archimedean case when either K is
spherically complete or all the En are metrizable and strongly polar ([11], Theorem
4.3). However, this is not the case in general (see [11], Counterexample 4.4.4, where
the steps are polar Banach spaces).

This also proves that the converses of (ii) and (iii) of Theorem 3.2 may fail (note
that by Proposition 2.1,(ii), for polar steps we always have (C4) =⇒ regular).

2. The converse of Theorem 3.1,(ii) holds when all the En are metrizable and
strongly polar ([11], Theorem 4.3). But it fails even when K is spherically complete
(see [11], Counterexample 4.4.1, where the steps are spaces of countable type).

The failure of the converses in Proposition 2.1 (already announced in Remark
2.2) and in (i) of Theorems 3.1 and 3.2 is shown by the next two examples.

Examples 3.8
(i) There exist inductive sequences of Banach spaces of countable type that are

regular and do no satisfy any of the strictness and any of the closedness properties.
(ii) There exist inductive sequences of spaces of countable type that are strict,

weakly strict and regular, but do not satisfy any of the closedness properties.

Proof. (i) Let B be a matrix satisfying (3) and for each n, let En := c0(N, 1/bn).
Then (En)n is an inductive sequence of Banach spaces of countable type which is
compact, that is, for each n there exists m ≥ n such that the inclusion En→Em is
compact ([8], Theorem 3.2.18). Hence (En)n is regular ([8], Theorem 3.1.7,(v)). But
it is not strict ([8], Remark 3.1.3.III), so neither weakly strict (Proposition 1.2).
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It remains to prove that (C1) and (C3) fail for (En)n. Suppose this inductive
sequence has any of these two closedness properties; we derive a contradiction. There

exist m1 < m2 < . . . in N such that, for each n, m(n) ≥ n and En
Emn+1 ⊂ Emn (with

mn = n in case (C1) holds). But En
Emn+1 = Emn+1, so Emn+1 = Emn for all n, and

by the Open Mapping Theorem ([18], Corollary 2.74) this equality is topological. In
particular, (Emn)n is strict, a contradiction because it is compact.

(ii) Let I1, I2, . . . be infinite countable sets such that In ⊂ In+1 and In+1 \ In is
infinite for all n. Then Fn := c0(In) is a Banach space of countable type which is
naturally included in c0(In+1); we will identify Fn with its image under the inclusion.
We have that (Fn)n is a strict inductive sequence of Banach spaces, hence regular
by Corollary 3.3,(i). Let (F, τind) be its inductive limit. Let I :=

⋃
n In, ei (i ∈ I)

the canonical unitary vectors of c0(I), and A := {ei : i ∈ I}. For each n, set
En := [A ∪ Fn] and endow En with the restricted topology τind|En. It is easily seen
that (F, τind) is also the inductive limit of (En)n (observe that by strictness of (Fn)n,
the topology on each Fn is τind|Fn, [8], Theorem 1.4.7,(i)). Also, since each Fn is of
countable type then F is of countable type ([8], Proposition 1.1.10,(i)) and hence
so are the En ([22], Proposition 4.12,(i)). Further, it is clear by construction that
(En)n is strict and, by Proposition 1.2,(i), it is weakly strict.

Next we show regularity of (En)n. Let D ⊂ F be τind-bounded. As (Fn)n is
regular there is an n such that D ⊂ Fn and D is bounded in Fn. Now by continuity
of the inclusion Fn→En we deduce that D is contained and bounded in En.

Finally we prove that (En)n does not satisfy any of the closedness properties. By
Proposition 1.4 and the Dieudonné-Schwartz Theorem 3.1,(ii) it suffices to check that

(En)n does not satisfy (C3). For that we first see that, for each n, En
F

= F . Indeed,

if x ∈ F then there is an m such that x ∈ Fm = [ei : i ∈ Im]
Fm ⊂ [ei : i ∈ Im]

F ⊂
[A]

F ⊂ En
F
. Hence x ∈ En

F
. Therefore, if (En)n would satisfy (C3) there would

exist an r such that En = En+1 for each n ≥ r, which is not possible because
En 6= En+1 for all n.

Remarks 3.9

1. Examples 3.8 are the p-adic substitutes of the classical ones given in Examples
2 and 4 of [13], Example of [15] and Counterexample of [19], all of them with a
typically archimedean character.

2. The steps of Example 3.8,(ii) cannot be metrizable. Indeed, for a strict LM-
space we have (C3) ⇐⇒ α-regular ([19], Theorem 2, which also works in the p-adic
case).

The results and examples of Section 2 show that the conclusions of the p-adic
Dieudonné-Schwartz Theorems 3.1 and 3.2 are not true when the (weak) strictness
condition is dropped. The same occurs when the closedness condition is the dropped
one. In fact,

Examples 3.10
(i) There exist inductive sequences of normed spaces of countable type that are

strict and weakly strict, but are not α-regular and do not satisfy any of the closedness
properties.



44 N. De Grande-De Kimpe – C. Perez-Garcia

(ii) There exist inductive sequences of spaces of countable type that are weakly
strict, but are neither strict nor α-regular and do not satisfy any of the closedness
properties.

(iiii) If K is not spherically complete, there exist inductive sequences of polar
metrizable spaces that are strict, but are neither weakly strict nor α-regular and do
not satisfy any of the closedness properties.

Proof. Let c00 be the linear hull of the canonical unitary vectors of c0. Let Bc00

and Bc0 be the closed unit balls in c00 and c0 respectively.

(i) The normed space c0/c00 is infinite dimensional (otherwise, c0 would have
countable dimension, which is not the case because of the Baire Category Theorem,
see e.g. [6], 3.9.3). Hence there is a sequence (yn)n in c0 such that y1 6∈ c00 and
yn+1 6∈ c00 + [y1, . . . , yn] for all n. Now put En := c00 + [y1, . . . , yn] equipped with
the norm induced by c0. Then (En)n is an inductive sequence of normed spaces
of countable type which by construction is strict (equivalently weakly strict, by
Proposition 1.2). To finish the proof of (i) it suffices to see that (En)n is not α-
regular. In fact, by Proposition 1.4 and Theorem 3.1, we then conclude that all the
closedness properties fail for (En)n.

So let us see that (En)n is not α-regular. Let E be its inductive limit, let

D := Bc0 ∩E. As D = Bc00
E

([11], Example 4.1.1), D is bounded in E. But if there
would be an n for which D ⊂ En then E = Em for all m ≥ n, a contradiction. So
D is not contained in any step, and we are done.

(ii) Let (En)n be the inductive sequence of 4.1.4 with F := c0, Z := c00. By
Theorem 4.1 we have that (En)n is weakly strict but not strict and does not satisfy
any of the closedness properties. Now let us prove that (En)n is not α-regular. For

that, C := Bc00 ⊂ Z is a τ -bounded set for which C
X

= Bc0 (note that Bc0 is weakly

closed in c0, [22], Theorem 4.7), so C
X * Z (otherwise, c0 = Z, a contradiction).

From Theorem 4.1,(viii) we deduce that α-regularity fails for (En)n.

(iii) Suppose K is not spherically complete. Let (En)n be the inductive sequence
of 4.1.3 with F := `∞, Z := c00. As Z is not τ ′-closed (hence not τ -closed) and
does not have the HBEP in F ([21], Theorem 4.15), it follows from Theorem 4.1
and Proposition 4.3 that (En)n meets the requirements.

Remark 3.11 By Corollary 3.3 the steps of (i) cannot be Banach. The example of
(i) is the p-adic substitute of the classical one given in [13], Example 3.

Also, applying Proposition 1.2 we obtain that the steps of (ii) cannot be metriz-
able and that the steps of (iii) cannot be strongly polar. In particular, it is not
possible to give an example satisfying the conditions of (iii) when K is spherically
complete.

We finish this section by giving an example that on the one hand shows the
existence of inductive sequences that do not satisfy any of the strictness, closedness
and regularity properties considered in this paper (Example 3.12), and on the other
hand reveals a new contrast with the classical case (Remark 3.13).

Example 3.12 There exist inductive sequences of Banach spaces of countable type
that are not α-regular and do not satisfy any of the strictness and closedness prop-
erties.
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Proof. Let (c0(N, 1
bn ))n be the inductive sequence of Example 3.2.14 of [8]. In the

proof of this example there was constructed a bounded sequence in the inductive
limit which is not localized in any step. Hence this inductive sequence is not α-
regular.

By Corollary 3.3,(i) (c0(N, 1
bn ))n is not strict (equivalently, it is not weakly strict,

Proposition 1.2). Finally, by Proposition 3.4 we have that this inductive sequence
does not satisfy any of the closedness properties.

Remark 3.13 Observe that when K is not spherically complete the spaces c0(N, 1
bn )

of Example 3.12 are reflexive ([21], Corollary 4.18). This fact is in sharp contrast
with the classical case ([15], Theorem 4), where it was proved that any real or
complex LB-space with reflexive steps is regular.

4 Very useful examples of inductive sequences

Inspired by [11], Theorem 5.1, we construct certain classes of inductive sequences
which provide most of the examples needed along the paper.

Theorem 4.1 Let τ, τ ′ be Hausdorff locally convex topologies on a vector space F ,
τ ≤ τ ′, let X := (F, τ), Y := (F, τ ′). Let Z be a subspace of F which we equip with
the topology τ ′|Z. For each n ∈ N, set

En := Xn × Y ×
∏

i>n+1

Z,

where all the product spaces appearing in the definition of En are endowed with the
corresponding product topologies. Then we have the following.

(i) (En)n is an inductive sequence of Hausdorff locally convex spaces. If (E, τind)
is its inductive limit then E ⊂ XN and τπ|E ≤ τind, where τπ is the product topology
on XN. In particular, (E, τind) is Hausdorff.

(ii) (En)n is strict ⇐⇒ τ = τ ′.
(iii) (En)n is weakly strict ⇐⇒ X ′ = Y ′ and Z has the HBEP in Y .
(iv) (En)n satisfies (C1) ⇐⇒ Z is τ ′-closed.
(v) (En)n satisfies (C2) ⇐⇒ (En)n satisfies (C3) ⇐⇒ Z is τ -closed.
(vi) (En)n satisfies (C4) =⇒ Z is τ ′-closed and every τ ′-closed absolutely convex

subset of F is τ -closed.
(vii) (En)n satisfies (C5) =⇒ Z is τ ′-closed and every τ ′-closed absolutely convex

and edged subset of F is τ -closed.
(viii) Z is τ -closed =⇒ (En)n is α-regular =⇒ for all C ⊂ Z that is τ -bounded,

C
X ⊂ Z.

(ix) (En)n is regular ⇐⇒ (En)n is α-regular and every τ -bounded subset of Z is
τ ′-bounded.

Proof. Properties (i)−(iv) and (vi)−(vii) can be proved as their counterparts of
Theorem 5.1 of [11]. Also, Proposition 1.4 takes care of (C2) =⇒ (C3) of (v).

Before continuing we prove (a) and (b) below, which will be used in (v) and
(viii).
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(a) For every zero neighbourhood W in E there exists an r such that for each
n ≥ r there are U1, . . . , Un ∈ UX with

U1 × . . .× Un ×
∏
i>n

Z ⊂ W. (7)

Indeed, we may assume that W is absolutely convex. Since W ∩ E1 is a zero
neighbourhood in E1, there exists an r such that

W ⊃ W ∩ E1 ⊃ V1 × V2 × V3 × . . .× Vr ×
∏
i>r

Z,

where V1 ∈ UX , V2 ∈ UY , V3, . . . , Vr ∈ UZ . Also, for each n ≥ r, W ∩ En is a zero
neighbourhood in En. Hence there exists an s such that

W ⊃ W ∩ En ⊃ U1 × . . .× Un × Un+1 × Un+2 × . . .× Un+s ×
∏

i>n+s

Z,

where U1, . . . , Un ∈ UX , Un+1 ∈ UY , Un+2, . . . , Un+s ∈ UZ . This leads to

U1 × . . .× Un ×
∏
i>n

Z ⊂ (U1 × . . .× Un × {0}N) + ({0}n ×
∏
i>n

Z) ⊂ W + W ⊂ W,

and we arrive at (7).
(b) Let m ∈ N and let A1, A2, . . . be non-empty subsets of F with Ai ⊂ Z for

i > m + 1. Then ∏
i

Ai

E
= (

∏
i

Ai
X

)
⋂

E. (8)

In order to see this, note that the inclusion
∏

i Ai
E ⊂ (

∏
i Ai

X
)
⋂

E follows be-

cause the set (
∏

i Ai
X

)
⋂

E is τπ|E-closed (hence τind-closed, see (i)) and contains∏
i Ai. For the opposite inclusion, let x = (x1, x2, . . .) ∈ (

∏
i Ai

X
)
⋂

E, let W be a
zero neighbourhood in E. Choose r satisfying (7) and let n be such that x ∈ En (so,
xi ∈ Z for i > n+1). We may assume n ≥ r, m. By (7) there are U1, . . . , Un+1 ∈ UX

such that U1 × . . . × Un+1 ×
∏

i>n+1 Z ⊂ W . For each i ∈ {1, . . . , n + 1} there
is an yi ∈ Ai such that xi − yi ∈ Ui; for i > n + 1 take yi ∈ Ai ⊂ Z. Then
y := (y1, . . . , yn+1, yn+2, . . .) ∈

∏
i Ai and x− y ∈ U1 × . . .× Un+1 ×

∏
i>n+1 Z ⊂ W .

Thus, x ∈ ∏
i Ai

E
, and the proof of (b) is finished.

Now let us prove the rest of (v).

First suppose that (En)n satisfies (C3). Then E1
E ⊂ En1 for some n1. So, by

(8), (F 2 ×∏
i>2 Z

X
) ∩ E ⊂ En1 , from which we obtain Z

X ⊂ Z i.e. Z is τ -closed.

Next let Z be τ -closed. Then, again by (8), for each n we have En
E

= (F n+1 ×∏
i>n+1 Z

X
) ∩ E = En, that is, En is closed in E. Hence (En)n satisfies (C2).

Finally we prove (viii) and (ix).

(viii) To get the first implication, let Z be τ -closed. By (v) we have that (En)n

satisfies (C3) and applying Proposition 2.1,(i) we arrive at α-regularity.
For the proof of the second implication, suppose (En)n is α-regular. Let C ⊂ Z

be τ -bounded. First we see that CN is bounded in E. For that, let W be a zero
neighbourhood in E. Let r and U1, . . . , Ur ∈ UX be satisfying (7) for n = r, that is,

U1 × . . .× Ur ×
∏
i>r

Z ⊂ W. (9)



The Dieudonné-Schwartz Theorem for p-adic inductive limits 47

Then, from τ -boundedness of C and (9) it follows easily that CN ⊂ λ W for some

λ ∈ K. Thus, CN is τind-bounded. Then so is (CN)
E
, and by α-regularity there is

an n such that (CN)
E ⊂ En. From (7) we derive that (C

X
)N ∩ En+1 ⊂ En. Hence

C
X ⊂ Z and we finally obtain the desired second implication of (viii).

(ix) First assume that (En)n is regular. Clearly it is α-regular. Let now C ⊂ Z
be τ -bounded. As in (viii) we obtain that CN is bounded in E. By regularity there
is an n such that CN is bounded in En. Then πn+1(C

N) = C is bounded in Y i.e. C
is τ ′-bounded (for each i, πi is the i-th projection).

Conversely, assume that (En)n is α-regular and every τ -bounded subset of Z is
τ ′-bounded. Let D ⊂ E be τind-bounded. Since by (i) τπ|E ≤ τind, we have that D
is τπ|E-bounded. So πi(D) is τ -bounded for all i. Further, by α-regularity D ⊂ En

for some n, so πi(D) ⊂ Z for i > n + 1. It follows from the assumption that these
last sets πi(D) are τ ′-bounded. Thus, D ⊂ ∏

i πi(D) is contained and bounded in
En+1, and (En)n is regular.

Particular cases of Theorem 4.1 The following choices for F , τ and τ ′ are
frequently used through the paper.

4.1.1 F := the Köthe space Λ0(B) associated to an infinite matrix B, τ=: the
topology on F defined by one fixed norm pj0 , as defined in (2) for j = j0, τ ′:= the
normal topology n0,∞.

4.1.2 F := an infinite dimensional normed space of countable type with norm
‖ . ‖, τ := the topology on F defined by ‖ . ‖, τ ′:= the topology on F defined by the
norm ‖ . ‖f : x 7→ max(‖x‖, |f(x)|), where f is a linear functional F→K that is not
‖ . ‖-continuous.

4.1.3 F := an infinite dimensional polar normed space, τ = τ ′:= the norm
topology on F .

4.1.4 F := an infinite dimensional polar normed space, τ := the weak topology
σ(F, F ′) on F , τ ′:= the norm topology on F .

For any of these choices we usually change the subspace Z in the examples given
along the paper, according to the purpose of each of these examples.

Clearly the steps of 4.1.1, 4.1.2 and 4.1.3 are metrizable spaces. Using the
hereditary properties of spaces of countable type and polar spaces ([22], Propositions
4.12 and 5.3 respectively) we obtain that, for any Z, the steps of 4.1.1 and 4.1.2
are always of countable type, and that the steps of 4.1.3 and 4.1.4 are always polar,
being of countable type if and only if F is of countable type.

Remark 4.2 We can give some partial affirmative answers to the validity of the
converses of (vi)−(viii) of Theorem 4.1. With the same proof as in Propositions 5.3
and 5.4 of [11], we have that the converses of (vi) and (vii) are true when either X
and Y are metrizable and polar or K is spherically complete (additionally when Y
is of countable type, in case of (vii)).

Also, with respect to (viii) we can say:
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Proposition 4.3 Let X, Y, Z and (En)n be as in Theorem 4.1. Suppose X is metriz-
able. Then the following are equivalent.

(α) Z is τ -closed.
(β) (En)n is α-regular.

(γ) For all C ⊂ Z that is τ -bounded, C
X ⊂ Z.

Proof. By Theorem 4.1,(viii) we only have to prove (γ)=⇒(α).

Assume (γ) holds. Let x ∈ Z
X

. By τ -metrizability there exists a sequence
x1, x2, . . . in Z such that x = limn xn in X. Then C := {x1, x2, . . .} is a τ -bounded

subset of Z such that x ∈ C
X

. Hence by (γ) we have x ∈ Z i.e. Z is τ -closed.

Corollary 4.4 Let X,Y, Z and (En)n be as in Theorem 4.1. Suppose X and Y are
metrizable. Then

(En)n is regular ⇐⇒ Z is τ -closed and τ |Z = τ ′|Z.

Proof. By Theorem 4.1,(ix) and Proposition 4.3 we have to see that τ |Z = τ ′|Z
if and only if every τ -bounded subset of Z is τ ′-bounded. The “only if” is clear. To
prove the “if”, suppose that τ |Z and τ ′|Z have the same bounded sets. Then by
Lemma 4.2 of [17] these metrizable topologies coincide, and we are done.

Remark 4.5 Let m ∈ N. In Remark 3.15 and Section 5 of [11] we proved that if
τ, τ ′ and X, Y, Z are as in Theorem 4.1 and for each n we set

En := Xn × Y × Zm × {0}N (10)

(as above all the product spaces are endowed with the corresponding product topolo-
gies), then properties (i)−(iv) and (vi)−(vii) of Theorem 4.1 are true, whereas we
have:

(v)′ (En)n always satisfies (C3). (En)n satisfies (C2) ⇐⇒ Z is τ -closed.

With respect to regularity we now prove that if (En)n is as in (10) then it is
regular (compare Theorem 4.1,(viii),(ix)). In order to see this, let E be the inductive
limit of (En)n and let D ⊂ E be bounded in E. Since E is contained in the locally
convex direct sum

⊕
n X and the inclusion E→⊕

n X is continuous, we have that
D is bounded in

⊕
n X. So there is an n such that πi(D) is bounded in X for i ≤ n

and πi(D) = 0 for i > n (where πi is the i-th projection). Therefore, D ⊂ En and
it is bounded in En. Thus, (En)n is regular.
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