Stability for generalized Jensen functional
equations and isomorphisms between
C*-algebras
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Abstract

Let A be a unital C*-algebra and let My and M be Banach left A-modules.
In this paper, we prove the generalized Hyers-Ulam-Rassias stability for a
generalized form,

g( 2": Ti%) = 2": sig(wi)
i=1 i=1

of a Cauchy-Jensen functional equation 2g(%3%) = g(z) + g(y) for a mapping

g : My — Ms. As an application, we show that every approximate C*-algebra
isomorphism h : A — B between unital C*-algebras is a C*-algebra isomor-
phism when h satisfies some regular conditions.

Introduction

In 1940, S.M. Ulam [16] raised the following problem: Under what conditions does

there exist an additive mapping near an approximately additive mapping?
In 1941, D.H. Hyers [4] gave a first affirmative answer to the question of Ulam

for Banach spaces: Let E; and E5 be Banach spaces, ¢ > 0 and let f : E; — FE,

satisfy

[f(x+y) = flz) = fly)l <e
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for all z,y € E;. Then the limit

2n
T(xz) := lim J(2")
n—oo on
exists for all x € E; and the mapping T : ] — Ej5 is the unique additive mapping
such that
1f(z) =T ()| <e
for all x € E;. Moreover, if f(tx) is continuous in ¢ for each fixed z € Ej, then
the mapping T is linear. Th.M. Rassias [13] succeeded in extending the result of
Hyers’ theorem by weakening the condition for the Cauchy difference controlled by
lz]|” + ||y]|P, p € [0,1) to be unbounded. Thereafter, P. Gavruta [3] generalized the
stability result of Th.M. Rassias to the case of the unbounded mapping ¢ as follows:
Let G be an abelian group, £ a Banach space and let ¢ : G — [0, 00) be a mapping
such that

®(z,y) = Y 27" p(2(2), 2"(y)) < o0
n=0
for all z,y € G. If a mapping f : G — E satisfies
1f(z+y) = fz) = fW < e(z,y)

for all =,y € G, then there exists a unique additive mapping 7' : G — E such that

1/ () = T(2)|| < @(x, x)

for all z € G.

Let X be a Banach space. Let GG be an abelian group and E a subset of G
such that nz € E for any integer n and all x € E, and 2x # 0 and 3z # 0 for all
x € E'\{0}. Assume that f : £ — X is a mapping for which there exists a mapping
v : E\ {0} x E'\ {0} — [0,00) such that

“2f<x;_y> — f(z) - f(y)H < p(z,y)

for all z,y € B\ {0} with 22 € E. Lee and Jun [9] showed that if the series
olz,y) == 3"“@(3’“&3,3’“3;) < 00
k=0

for all z,y € E \ {0}, then there exists a unique additive mapping 7' : F — X
satisfying the inequality

I f(z) = f(0) = T(2)|| <37 (p(a, —z) + @(—,31))

for all z € E \ {0}. A large list of references concerning the stability problem of
functional equations can be found in [5, 11, 14].

Th.M. Rassias and J. Tabor [15] asked about the stability problem for the fol-
lowing general linear functional equation

glax + by +¢) = Ag(x) + Bg(y) + C (1.1)
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with abAB # 0. The equation (1.1) is generalized to the following equation

9 (i ridi + C> = Zn: sig(xi) + C, (1.2)

where at least two of {r; € R : i = 1,--- ,n} are nonzero, s; € R, and ¢ € My,
C € M, are vectors. It was shown in [6] that a mapping g : M; — M, with
g(0) = 0 satisfies the functional equation (1.2) if and only if the mapping g is Cauchy
additive. In this case we obtain that g(r;z) = s;g(x) for eachi = 1, -+, n. Moreover,
the authors established the generalized Hyers-Ulam-Rassias stability problem for an
approximate mapping g : M; — M, of the functional equation (1.2) in case that
rori #0and Y s; # 0 are not simultaneously equal to 1. They asked about
the generalized Hyers-Ulam-Rassias stability problem of (1.2) for the case either
rari=0=>" s, 0or > ri=1=>"s;.
Now, let z1,x9, -+ ,2,(n > 2) be distinct vectors in a finite dimensional vector
space and let r; € (0,00) be a weight associated with each x;. We set N := " | r;

for the notational convenience. Then for a mean value M := Zﬁ% a mapping
g(x) = x satisfies a equation Ng(M) = >, r;g(x;), which yields the following
generalized functional equation

D T .
Ng (le = riglwi) (1.3)
i=1
of a Cauchy-Jensen functional equation 2¢g(*3¥) = g(z) + ¢(y). For much more

general functional equation than (1.3), we are going to investigate an approximate
mapping of the following functional equation

g (En; w) = f:lsig(:vi), (1.4)

with 30, r; =1 =", s;, where at least two of {r; € R:4=1,--- ,n} are nonzero,
s; € R, n>1.

Throughout this paper, let A be a unital C*-algebra with norm |- | and let
U(A) the unitary group of A, A;, the set of invertible elements in A, A, the set
of self-adjoint elements in A, A; = {a € A | |a| = 1}, A} the set of positive
elements in A;. Let M; and M, be Banach left A-modules unless we give any
specific reference. Recently, Park [10, 12] applied the stability results to investigate
C*-algebra isomorphisms between unital C*-algebras. Now, in the present paper
we are going to investigate the generalized Hyers-Ulam-Rassias stability problem
for the equation (1.4) in Banach modules over a unital C*-algebra acting on U(.A)
or Af. These results are applied to investigate C*-algebra isomorphisms between
unital C*-algebras. By R, and N we denote the sets of nonnegative real numbers
and of positive integers, respectively.

2 Stability of (1.4)

In this section, we are going to prove the generalized Hyers-Ulam-Rassias stability
for the equation (1.4) where at least two of {r; € R : i = 1,--- n} are nonzero,
sieRforalli=1,--- ,n(n>1)and > r,=1=%",s;.
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Theorem 2.1. Let f: My — My be a mapping with f(0) = 0 for which there exists
a mapping ¢ : Mi" — R and anr, (¢ € {1,--- ,n}) such that

HDuf(l‘h C L Tp) = f(Z?ﬂ Tz'u%) — Y siuf ()| < dlan, o ), (2.1)

Qp(z1,- -, w0) = Z})io M%Qb(réjxl"" ;7 ) < 00 (2.2)
((I)g(l'l, e Ty) = 32 sl T (e, - e ) < oo, Tespectively,) (2.3)
for all zy,---,x, € My and all w € U(A). Then there exists a unique A-linear

mapping g : My — My near f, defined by

g(x) = lim s, f (re"z), (2.4)
(g(x) = WILLmOO s f(rg "), respectively,) (2.5)

which satisfies the equation (1.4) and the inequality

[£(z) = g(@)l| < B0, - 0, 3,0, ,0) (2.6

(—th
for all x € M.

Proof. Put x; := r/z and z; := 0 for all ¢ # £ in (2.1). Then, the inequality
(2.1) is rewritten in the form

Hf(rfluas) — spuf(rdz)

< ¢(Oa ,O,ng.iE, 07 aO) (27)
par

for all z € My and all u € U(A). Define a sequence f,, : M; — My by
fm(x) =8, f (ri"x), x€ M,

for all m € N. Then we figure out by (2.7)

[ fiatu) —ufy@l < 1se 00 (1) = swfGin)| 29
< ’8£|_(j+1)¢(07”' 707T€jx707"' 70)
pars

for all z € My and all w € U(A). Set u =1 € U(A) in (2.1). Then it follows by the
convergence of (2.2) that for all nonnegative integers k, m with m > k > 0,

[fm(2) = fe(@)] < mg_ [ fj+1(x) = f5()] (2.9)

IN

m—1
Z |S€|7(j+1)¢(07 U 707 Tfjx7 07 T 0)
j=k

— 0 as k — o0,
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which shows that the sequence { f,,() }men is a Cauchy sequence, and thus converges
in M,. Therefore a mapping g : M; — M, given by

g(x) := lim s, f (r/"x)

is well defined. Now, letting £ = 0 in (2.9) and letting m — oo, we get the approxi-
mation (2.6) for a mapping g near f.

We prove that the mapping g satisfies the equation (1.4). Replacing z; by r,"x;
foralli=1,--- nin (2.7), we get

n

Hf Z W%)) =Y sif(rd™a)

i=1

n

= Hf ri(re x@)> = sif(re™ ;)

i=1

S ¢(T€ Ty, ,Tgml'n)

for all xq,--+ ,x, € M;. Dividing the last inequality by |s,|™ and taking the limit as
m — oo, we see that g satisfies the equation (1.4). Hence, the mapping g is additive
satisfying the relation g(r;xz) = s;g9(x) for each i = 1,--- ,n by [6, Lemma 2.1].
Now, we prove the uniqueness of g satisfying the equation (1.4) and the inequality
(2.6). Assume that h is an arbitrary solution of (1.4) such that the mapping z —
|| f(xz) — h(z)|| is bounded by the inequality (2.6). Then, it follows by induction that

se "g(rd"x) = g(x), s "h(r"z) = h(z)

for all € M;. Thus for every z € M; we figure out by (2.6)

1h(z) = (@)l = [lse™™h(rd™x) — 7" f(re" )|
< ISe!_mHh(Wme) — f(r"z)|

w
Z|5 ‘erjJrl 0,--+,0,r"2,0,---,0
{—th

IN

By passing the limit as m — oo in the above inequality, we obtain h(x) = g(x) for
all x € M;. This proves the uniqueness of g.
On the other hand, taking the limit as j — oo in (2.8), we get

g(ux) —ug(x) =0 (2.10)

for all z € M; and all u € U(A). It is clear that g(0x) = 0 = 0g(x) for all x € M.

Now, let a be a nonzero element in A and K a positive integer greater than 4|al.

Then we have [£] < + < 1 — Z. By [7, Theorem 1], there exist three elements

u1, ug,uz € U(A) such that 3% = u; + uy + us. Thus we calculate by (2.10)

3 K 3

- ( )( ULz +g(uQSC)+!J(U31‘))

= ( ) uy + ug +uz)g(z) = ([3() '3?9(3”) = ag(w)

glaxr) = g (K 3— x) = (K) 9w + gz + usw)
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for all a € A (a # 0) and all x € M;. So the unique additive mapping g : M; — Mo
is an A-linear mapping, as desired.

The proof of assertion indicated by parentheses is similarly proved by the in-
equalities due to (2.7)

Hf(r[mux) - Sguf<Tg_m_1I)H < ¢(07 T 707 rf_m_l'ra 07 tee 70)7

———
(—th
" [ ! 0,7 72,0,---,0
HSZ f( Z SZ| ¢ y U, g 7, U, ) )7
= —th
for all z € My, m € N and all u € U(.A). The proof is now complete. []

The following theorem is an alternative result of Theorem 2.1 depending on the
action of u in D, f.

Theorem 2.2. Let f: My — My be a mapping with f(0) = 0 for which there exists
a mapping ¢ : Mi"™ — R* and an ry (¢ € {1,--- ,n}) such that

HDuf(xb 7xn)H < ¢($1,"' 7];71)7

(Pf(xla"' )xn) = Zqu (T[jxh”' 7rfjxn> < o0
j=0

[o.¢]
(@e(ﬁl, e Ty) = Z [sel "¢ (Te_jxh e ,Te_j$n> < o0, TeSp@CtiU@ly;)
j=1

for all zy,-++ ,x, € My and all u € Ayt U {i}. If f is measurable or f(tx) is
continuous in t € R for each fired x € My, then there exists a unique A-linear
mapping g : My — Ms, defined by

g(x) = lim s, " f (r,/"z), <g(x) = lim s, f (7‘["%) ) respectively,)

which satisfies the equation (1.4) and the inequality

1f(z) = g(2)|| < @(0,---,0, z_,0,---,0)

for all x € M.

Proof. By the same reasoning as the proof of Theorem 2.1, it follows from
u=1¢€ A, TU{i}in (2.1) that there exists a unique additive mapping g : M; — Mo,
defined by (2.4), which satisfies the equation (1.4) and the inequality (2.6). Under
the assumption that f is measurable or f(¢x) is continuous in ¢ € R for each fixed
x € M, the additive mapping ¢ satisfies g(tx) = tg(x) for all ¢ € R and each fixed
x € M. That is, g is R-linear [5].

Next, it follows from (2.10) subject to u € A; T U{i} that g(az) = ¢ (\a|ﬁ . x) =
la|g (ﬁ : x) |al <‘a|) g(z) = ag(z) for all nonzero a € AT U {i} and all z € M.

Now, for any element a € A, a = a; + ias, where a; := ‘“’T‘z € Ay and ay == 5= €
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Asq are self-adjoint elements; furthermore, a = af —ay +iad —iay , where af, ay , a3
and a, are all positive elements (see [2, Lemma 38.8]). Thus we obtain
glar) = g<afm —ajr+iafx — ia;x)
= glafx) — glayx) + ig(ag x) —ig(ay z)
— (af — a7 +iaf —ia; ) g(a)
= ag(x)

for all a € A and all x € M;. Thus the additive mapping g is A-linear, as desired.
The proof of the theorem is complete. |
As an application, we obtain the generalized Hyers-Ulam-Rassias stability of the

equation (1.3), where N := Y7 | ;.

Corollary 2.3. Let f : My — My be a mapping with f(0) = 0 for which there exists
a mapping ¢ : M;" — RY such that

i=1

S Sp(xla"' ,.Z'n)

for all xy,--+ x, € My and all u € U(A). Assume that the following series

L ol R (CO RN CO
<<I>(x1, Cee Ty = i (;\i)jgo ((fi)jxl, e (Z)an> , respectively,)

i=1

converges for some ¢ =1,--- n and all x1,--- ,x, € M. Then there exists a unique
A-linear mapping g : My — M, defined by

o) = Jim (3) "1 (%))

(g(:p) = n%g{l)o (;\?)mf ((i\;)mx) , Tespectively,>

which satisfies the equation (1.4) and the inequality

1) - g(@)] s;@m,m 0,20, 0)

for all x € M.
Proof. We observe that

n

|7 (3 5o = 32 eusten

i=1

1
< e T,
< P o)

for all zy,--- 2, € M; and all u € U(A). Define ¢(xq,--- ,x,) 1= %gp(ajl, Ce Ty),
and apply Theorem 2.1 ( Theorem 2.2, respectively ) to obtain the conclusion. =
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In the following we consider a mapping H satisfying some specific conditions.
In particular, we obtain a special case of it if p(\) := AP and H is a homogeneous
mapping of degree p > 0 with |ry|? # |s,]|.

Corollary 2.4. Let f : My — My be a mapping with f(0) = 0 and a mapping
H:R,"™ — R, satisfy

Hf(;ngmmo - ;n:lSsz(xJ

for all xy,--- ,x, € My and all uw € U(A). Assume that there exists a mapping
¢ : Ry — Ry such that

< H(llzall, -+ [lzall)

(2) @ (|re]) # |sel  for some €, and p(X) >0 forall X>0,

(17) ¢ ()\ ) = gp()\)4p< > for all X >0,
(1ii) H(Aty, -+ Aty) < (N H(t, -+ ,tn) forall t; € Ry, and all X\ > 0.

Te T¢

Then there exists a unique A-linear mapping g : My — M, which satisfies the
equation (1.4) and the inequality

{—th

~~
H(O,--~ 7()7Hx||,0’... 70)

1/ () = g(x)]| <
[sel = @(lrel)

for all x € My. The mapping g is defined by

iy o s (). > e
g(z) =
lmnyme 5™ (7 ), Lol < (o)

for all x € M.

, J
It follows by condition (ii) of Corollary 2.4 that cp<|n/|3> = go(\rd) for any

integer j. We obtain the Hyers-Ulam stability problem for the equation (1.4) as a
corollary.

Corollary 2.5. Assume that there exist constants ¢ > 0 and s, with 0 < |sg| # 1
for some £ =1,--- n for which a mapping [ : My — My with f(0) = 0 satisfies

Hf (Z riua:i> — Zszuf(xz) <e
i=1 i=1
for all (x1,--- ,x,) € Mi" and all u € U(A). Then there exists a unique A-linear
mapping g : My — My satisfying the equation (1.4) and the inequality
5
lg(z) = f(o)l| < 7
el = 1

for all x € M,y. The mapping g is defined by (2.4) if |s¢| > 1, and by (2.5) if
0 < |sg] <1
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3 ('*-algebra isomorphisms between unital  (C*-algebras

Throughout this section, assume that r; = s; are all rational numbers for all ¢ =
1,---,n. Assume that A and B are unital C*-algebras. As an application, we
are going to investigate C*-algebra isomorphisms between unital C*-algebras. We
denote Ny by the set of nonnegative integers.

Theorem 3.1. Let h : A — B be a bijective mapping with h(0) = 0 for which there
exist mappings ¢ : A" — RT satisfying (2.2), 1 : AXx A — R and ¢ : A — RT
such that

H <Z AT, ) — Zn:lri/\h(xi) < (1,0, Tp), (3.1)
[ (re = h(r"w)h(z)|| < i(rd™u, x), (32)
[0 (re™u ) —h(rmu)’|| < P (r"u) (3.3)

forallx € St :={pu e C||ul =1}, allu € U(A), all x,21,- ,2, € A and all
m € Nyg. Assume that

Qim T (re™u,x) =0, for all ueU(A),x € A, (3.4)
dim 7,7y (re™u) =0, for all uweU(A), (3.5)
WlLl_rgo re "h(riMug) € Ain,  for some wug € A. (3.6)

Then the bijective mapping h : A — B is a C*-algebra isomorphism.

Proof. Consider the C*-algebras A and B as Banach left modules over the unital
C*-algebra C. We note that S' = U(C). By Theorem 2.1, there exists a unique
C-linear mapping H : A — B, defined by H(z) := lim,, .o, 7, ™h (ry™z) , satisfying
the inequality

Ih(z) = H(z)|| <> 7 #(0, -+, 0,772, 0,---,0)
=0 i £—th
for all x € A.
By (3.3) and (3.5), we have
H(u*) = lim re""h(r/"u") = lim r,""h (re™u)” (3.7)

= (nlbirrgorg_mh (r[”u)) = H(u)"
for all w € U(A). Since H is C-linear and each x € A is a finite linear combination
of unitary elements ([8, Theorem 4.1.7]), i.e., x = YJL, cju; (¢; € C,u; € U(A)),
we get by (3.7)

H(mzﬂ(iﬂ;)zic S (ZCJ )
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for all z € A.
Using the relations (3.2) and (3.4), we get
H(uz) = lim r,""h(r{"ux) (3.8)
= lim 7, ™h (re™u)h(z) = H(u)h(x)

for all u € U(A) and all x € A. On the other hand, it follows from (3.8) and the
additivity of H that the equation

H(ux) = ro7"H (r/"ux) =1, ™ H (ur,"x)
ro " H(u)h (r"x) = H(u)ry™h (r™x)

holds for all u € U(A) and all € A. Taking the limit as m — oo in the last
equation, we obtain

H(uzx) = H(u)H(x) (3.9)

for all u € U(A) and all z € A. Now, let z € A be an arbitrary element. Then
z=3",cju; (¢j€C,u; € U(A)), and it follows from (3.8) that

i=1

H(zz) = H (i cjuja:) = i:lch(uja:) = ilch(uj)h(x) (3.10)

= H (il cjuj) h(z) = H(z)h(z)

for all z,x € A. Similarly, we see from (3.9) that
H(zz) = H(z)H(x) (3.11)
for all z,x € A. It follows from (3.10) and (3.11) that
H(uo)H(x) = H(uox) = H(uo)h(z)

for all z € A. Since H(ug) = lim,, oo 70~ ™h (r/™uyg) is invertible by assumption, we
see that H(z) = h(z) for all x € A. Hence the bijective mapping h : A — B is a
C*-algebra isomorphism, as desired. [ |

Theorem 3.2. Let h: A — B be a bijective mapping satisfying h(0) = 0 and (3.6)
for which there exist a mapping ¢ : A™ — RT satisfying (2.2), and mappings 1,1
such that

Hh (i ri)\xi> - zn:ri/\h(a:i) < P(xy, -+, ), (3.12)
|h(re™uz) — h(re™u)h(z)|] < 1(ri™u, x), (3.13)
|7 (re™u™) — b (re™u)"|| < 9 (re™u) (3.14)

forallxe St :={ueC||ul=1}, alue AT U{i} and all x, 21, -+ ,x, € A and
all m € Ny. Assume that

dm "y (e, ) = 0, for all u e AP Ui}, dlxe A (3.15)
lim 7, " (r™u) =0, for all uwe A" U{i}. (3.16)

m—00

Then the bijective mapping h : A — B is a C*-algebra isomorphism.
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Proof. By Theorem 2.1, there exists a unique C-linear mapping H : A — B,
defined by H(z) := lim,, .., ¢~ "h (r,/™x), satisfying the functional inequality

¢<07 707r€jxa07'” 7O>
——

for all z € A.
By (3.14) and (3.16), we have H(u*) = H(u)* for all u € A;* U {i}, and so

ey = (i) =i () = e ()

= H(a)"

for all nonzero a € A* U {i}. Now, for any element a € A, a = a; + iay, where
ai,a; € Ay furthermore, a = af — ay +ia3 —iay, where ai’, ay, a3 and a; are all
positive elements (see [2, Lemma 38.8]). Since H is C-linear, we figure out

H(a*) = H ((af —ay +iag — z’a;)*)
= H(af") — H(a;") + H((iaf)*) — H((iaz)")
= H(a) = H(ay) —iH(af)" + i (a3 )
— {H(air —ay +iag — ia;)} = H(a)"
for all a € A.

Using (3.13) and (3.15) we get H(uz) = H(u)h(x) for all u € A;" U {i} and all
x € A, and so H(ax) = H(a)h(x) for all a € A" U {i} and all z € A because

H(az) = H<la||z‘ ) \a]H(H ) (3.17)

|ayH<| |> h(z) = H(a)h(z), Yae A*.

Now, for any element a € A, a = af — a] + ia3 — iay, where af,a],ai and a;

are positive elements (see [2, Lemma 38.8]). Thus we calculate by (3.17) and the
additivity of H

=

H(az) = a
= H(afx)— H(ayx)+iH(agx) — iH (a3 x)
i) -

Hiar) + iH(af) - iH(a7) ) h(z)

T —ajx+iax — z'a2_$) (3.18)

I
—
=
=
Q

= H(a)h(z)
for all a,x € A. By (3.18) and the additivity of H, one has

H(ax) = r,™H (r/"ax) =1, "H (ar,"x)
= 1y "H(a)h (rs"x) = H(a)r, "h(r"z),
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which yields by taking the limit as m — oo
H(ax) = H(a)H(z) (3.19)

for all a,x € A.
It follows from (3.18) and (3.19) that for a given ug subject to (3.6)

H(up)H(x) = H(upx) = H(ug)h(x)

for all z € A. Since H(ug) = limy,, oo 7¢"™h (ri™ug) € Aip, we see that H(z) = h(z)
for all z € A. Hence the bijective mapping h : A — B is a C*-algebra isomorphism,
as desired. -

Theorem 3.3. Let h : A — B be a bijective mapping with h(0) = 0 satisfying (2.2),
(8.2) and (3.83) such that

||D)\h(.171,"' >$n)|| S ¢($1a"' 7zn) (320)

holds for A = 1,i. Assume that the conditions (3.4), (3.5) and (3.6) are satisfied,
and that h is measurable or h(tz) is continuous int € R for each fived x € A. Then
the bijective mapping h : A — B is a C*-algebra isomorphism.

Proof. Fix A =1 in (3.20). By the same reasoning as in the proof of Theorem
2.1, there exists a unique additive mapping H : A — B satisfying the inequality
(2.6). By the assumption that h is measurable or h(tz) is continuous in ¢t € R for
each fixed z € A, the mapping H : A — B is R-linear, that is, H(tz) = tH(x) for all
t € Rand all z € A [5, 13]. Put A =i in (3.20). Then applying the same argument
to (2.8) as in the proof of Theorem 2.1, we obtain that

D;H(0,---,0, x ,0,---,0) =0,

~~
{—th

or H(iz) =iH(z), and so for any p=s+it € C
H(px) = H(sx+itr) = H(sx)+ H(itx) = sH(x) + itH(x)
= (s+it)H(x) = uH(x)

for all x € A. Hence the mapping H : A — B is C-linear.
The rest of the proof is the same as the proof of Theorem 3.1. [

Theorem 3.4. Let h : A — B be a bijective mapping with h(0) = 0 satisfying (2.2),
(5.6), (3.13) and (5.14) such that

[ Dab(zy, - )|l < d(ar, -, 2n) (3.21)

holds for A = 1,i. Assume that the equations (3.15), (3.16) are satisfied, and that
h is measurable or h(tx) is continuous in t € R for each fized x € A. Then the
bijective mapping h : A — B is a C*-algebra isomorphism.

Proof. The proof is the similar to that of Theorem 3.3. ]
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Theorem 3.5. Let B be a unital C*-algebra in which the norm is multiplicative.
Let h : A — B be a bijective mapping with h(0) = 0 for which there exist a constant
d >0 and a mapping ¢ : A" — R satisfying (2.2) ((2.3), respectively), such that

H (Z 7“1)\.7)2> — iri)\h(m) < P(xy, -, xy),

[h(xy) — h(z)h(y)l| <0, (3.22)
1 (g™ ") = (rg™uw) || < ¢ (rd™u, -+ ™)

(Hh (r[mu*) —h (7"@ mu) (T’g M, - ,rg’mu) , respeetz'vely,)

forall A\ € S* :={p e C| |y =1}, dlu e U(A), all z,y,z1, - ,x, € A and all
m € Ny. Assume that

lim r,"™h (r/"uy) € Aip, for some wuy € A

(W{gréo re™h (rg’muo> € A, for some wuy€ A, respectively) :
Then the bijective mapping h : A — B is a C*-algebra isomorphism.

Proof. It follows from (3.22) that the mapping h either is bounded or satisfies
the equation h(zy) = h(z)h(y) [1, 5]. Utilizing Theorem 3.1 with ¢, := 0, we have
the desired result. ]
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