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Abstract

LetA be a unital C∗-algebra and let M1 and M2 be Banach leftA-modules.
In this paper, we prove the generalized Hyers-Ulam-Rassias stability for a
generalized form,

g
( n∑

i=1

rixi

)
=

n∑
i=1

sig(xi)

of a Cauchy-Jensen functional equation 2g(x+y
2 ) = g(x) + g(y) for a mapping

g : M1 → M2. As an application, we show that every approximate C∗-algebra
isomorphism h : A → B between unital C∗-algebras is a C∗-algebra isomor-
phism when h satisfies some regular conditions.

1 Introduction

In 1940, S.M. Ulam [16] raised the following problem: Under what conditions does
there exist an additive mapping near an approximately additive mapping?

In 1941, D.H. Hyers [4] gave a first affirmative answer to the question of Ulam
for Banach spaces: Let E1 and E2 be Banach spaces, ε ≥ 0 and let f : E1 → E2

satisfy
‖f(x+ y)− f(x)− f(y)‖ ≤ ε
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for all x, y ∈ E1. Then the limit

T (x) := lim
n→∞

f(2nx)

2n

exists for all x ∈ E1 and the mapping T : E1 → E2 is the unique additive mapping
such that

‖f(x)− T (x)‖ ≤ ε

for all x ∈ E1. Moreover, if f(tx) is continuous in t for each fixed x ∈ E1, then
the mapping T is linear. Th.M. Rassias [13] succeeded in extending the result of
Hyers’ theorem by weakening the condition for the Cauchy difference controlled by
‖x‖p + ‖y‖p, p ∈ [0, 1) to be unbounded. Thereafter, P. Gǎvruta [3] generalized the
stability result of Th.M. Rassias to the case of the unbounded mapping ϕ as follows:
Let G be an abelian group, E a Banach space and let ϕ : G2 → [0,∞) be a mapping
such that

Φ(x, y) :=
∞∑

n=0

2−(n+1)ϕ(2n(x), 2n(y)) <∞

for all x, y ∈ G. If a mapping f : G→ E satisfies

‖f(x+ y)− f(x)− f(y)‖ ≤ ϕ(x, y)

for all x, y ∈ G, then there exists a unique additive mapping T : G→ E such that

‖f(x)− T (x)‖ ≤ Φ(x, x)

for all x ∈ G.
Let X be a Banach space. Let G be an abelian group and E a subset of G

such that nx ∈ E for any integer n and all x ∈ E, and 2x 6= 0 and 3x 6= 0 for all
x ∈ E \{0}. Assume that f : E → X is a mapping for which there exists a mapping
ϕ : E \ {0} × E \ {0} → [0,∞) such that∥∥∥∥2f(x+ y

2

)
− f(x)− f(y)

∥∥∥∥ ≤ ϕ(x, y)

for all x, y ∈ E \ {0} with x+y
2
∈ E. Lee and Jun [9] showed that if the series

ϕ̃(x, y) :=
∞∑

k=0

3−kϕ
(
3kx, 3ky

)
<∞

for all x, y ∈ E \ {0}, then there exists a unique additive mapping T : E → X
satisfying the inequality

‖f(x)− f(0)− T (x)‖ ≤ 3−1 (ϕ̃(x,−x) + ϕ̃(−x, 3x))

for all x ∈ E \ {0}. A large list of references concerning the stability problem of
functional equations can be found in [5, 11, 14].

Th.M. Rassias and J. Tabor [15] asked about the stability problem for the fol-
lowing general linear functional equation

g(ax+ by + c) = Ag(x) +Bg(y) + C (1.1)
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with abAB 6= 0. The equation (1.1) is generalized to the following equation

g

(
n∑

i=1

rixi + c

)
=

n∑
i=1

sig(xi) + C, (1.2)

where at least two of {ri ∈ R : i = 1, · · · , n} are nonzero, si ∈ R, and c ∈ M1,
C ∈ M2 are vectors. It was shown in [6] that a mapping g : M1 → M2 with
g(0) = 0 satisfies the functional equation (1.2) if and only if the mapping g is Cauchy
additive. In this case we obtain that g(rix) = sig(x) for each i = 1, · · · , n. Moreover,
the authors established the generalized Hyers-Ulam-Rassias stability problem for an
approximate mapping g : M1 → M2 of the functional equation (1.2) in case that∑n

i=1 ri 6= 0 and
∑n

i=1 si 6= 0 are not simultaneously equal to 1. They asked about
the generalized Hyers-Ulam-Rassias stability problem of (1.2) for the case either∑n

i=1 ri = 0 =
∑n

i=1 si or
∑n

i=1 ri = 1 =
∑n

i=1 si.
Now, let x1, x2, · · · , xn(n ≥ 2) be distinct vectors in a finite dimensional vector

space and let ri ∈ (0,∞) be a weight associated with each xi. We set N :=
∑n

i=1 ri

for the notational convenience. Then for a mean value M :=
∑n

i=1
rixi

N
a mapping

g(x) = x satisfies a equation Ng(M) =
∑n

i=1 rig(xi), which yields the following
generalized functional equation

Ng

(∑n
i=1 rixi

N

)
=

n∑
i=1

rig(xi) (1.3)

of a Cauchy-Jensen functional equation 2g(x+y
2

) = g(x) + g(y). For much more
general functional equation than (1.3), we are going to investigate an approximate
mapping of the following functional equation

g

(
n∑

i=1

rixi

)
=

n∑
i=1

sig(xi), (1.4)

with
∑n

i=1 ri = 1 =
∑n

i=1 si, where at least two of {ri ∈ R : i = 1, · · · , n} are nonzero,
si ∈ R, n > 1.

Throughout this paper, let A be a unital C∗-algebra with norm | · | and let
U(A) the unitary group of A, Ain the set of invertible elements in A, Asa the set
of self-adjoint elements in A, A1 := {a ∈ A | |a| = 1}, A+

1 the set of positive
elements in A1. Let M1 and M2 be Banach left A-modules unless we give any
specific reference. Recently, Park [10, 12] applied the stability results to investigate
C∗-algebra isomorphisms between unital C∗-algebras. Now, in the present paper
we are going to investigate the generalized Hyers-Ulam-Rassias stability problem
for the equation (1.4) in Banach modules over a unital C∗-algebra acting on U(A)
or A+

1 . These results are applied to investigate C∗-algebra isomorphisms between
unital C∗-algebras. By R+ and N we denote the sets of nonnegative real numbers
and of positive integers, respectively.

2 Stability of (1.4)

In this section, we are going to prove the generalized Hyers-Ulam-Rassias stability
for the equation (1.4) where at least two of {ri ∈ R : i = 1, · · · , n} are nonzero,
si ∈ R for all i = 1, · · · , n(n > 1) and

∑n
i=1 ri = 1 =

∑n
i=1 si.
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Theorem 2.1. Let f : M1 →M2 be a mapping with f(0) = 0 for which there exists
a mapping φ : M1

n → R+ and an r` (` ∈ {1, · · · , n}) such that∥∥∥∥Duf(x1, · · · , xn) := f
(∑n

i=1 riuxi

)
−∑n

i=1 siuf(xi)
∥∥∥∥ ≤ φ(x1, · · · , xn), (2.1)

Φ`(x1, · · · , xn) :=
∑∞

j=0
1

|s`|j+1φ (r`
jx1, · · · , r`

jxn) <∞ (2.2)(
Φ`(x1, · · · , xn) :=

∑∞
j=1 |s`|j−1φ (r`

−jx1, · · · , r`
−jxn) <∞, respectively,

)
(2.3)

for all x1, · · · , xn ∈ M1 and all u ∈ U(A). Then there exists a unique A-linear
mapping g : M1 →M2 near f, defined by

g(x) = lim
m→∞

s`
−mf (r`

mx) , (2.4)(
g(x) = lim

m→∞
s`

mf(r`
−mx), respectively,

)
(2.5)

which satisfies the equation (1.4) and the inequality

‖f(x)− g(x)‖ ≤ Φ`(0, · · · , 0, x︸︷︷︸
`−th

, 0, · · · , 0) (2.6)

for all x ∈M1.

Proof. Put x` := r`
jx and xi := 0 for all i 6= ` in (2.1). Then, the inequality

(2.1) is rewritten in the form∥∥∥∥f(rj+1
` ux

)
− s`uf(r`

jx)
∥∥∥∥ ≤ φ(0, · · · , 0, r`

jx︸︷︷︸
`−th

, 0, · · · , 0) (2.7)

for all x ∈M1 and all u ∈ U(A). Define a sequence fm : M1 →M2 by

fm(x) := s−m
` f (r`

mx) , x ∈M1

for all m ∈ N. Then we figure out by (2.7)

‖fj+1(ux)− ufj(x)‖ ≤ |s`|−(j+1)

∥∥∥∥f(rj+1
` ux

)
− s`uf(r`

jx)
∥∥∥∥ (2.8)

≤ |s`|−(j+1)φ(0, · · · , 0, r`
jx︸︷︷︸

`−th

, 0, · · · , 0)

for all x ∈M1 and all u ∈ U(A). Set u = 1 ∈ U(A) in (2.1). Then it follows by the
convergence of (2.2) that for all nonnegative integers k,m with m > k ≥ 0,

‖fm(x)− fk(x)‖ ≤
m−1∑
j=k

‖fj+1(x)− fj(x)‖ (2.9)

≤
m−1∑
j=k

|s`|−(j+1)φ(0, · · · , 0, r`
jx︸︷︷︸

`−th

, 0, · · · , 0)

→ 0 as k →∞,
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which shows that the sequence {fm(x)}m∈N is a Cauchy sequence, and thus converges
in M2. Therefore a mapping g : M1 →M2 given by

g(x) := lim
m→∞

s−m
` f (r`

mx)

is well defined. Now, letting k = 0 in (2.9) and letting m→∞, we get the approxi-
mation (2.6) for a mapping g near f.

We prove that the mapping g satisfies the equation (1.4). Replacing xi by r`
mxi

for all i = 1, · · · , n in (2.7), we get∥∥∥∥∥f
(
r`

m
( n∑

i=1

rixi

))
−

n∑
i=1

sif(r`
mxi)

∥∥∥∥∥ =

∥∥∥∥∥f
( n∑

i=1

ri(r`
mxi)

)
−

n∑
i=1

sif(r`
mxi)

∥∥∥∥∥
≤ φ(r`

mx1, · · · , r`
mxn)

for all x1, · · · , xn ∈M1. Dividing the last inequality by |s`|m and taking the limit as
m→∞, we see that g satisfies the equation (1.4). Hence, the mapping g is additive
satisfying the relation g(rix) = sig(x) for each i = 1, · · · , n by [6, Lemma 2.1].

Now, we prove the uniqueness of g satisfying the equation (1.4) and the inequality
(2.6). Assume that h is an arbitrary solution of (1.4) such that the mapping x 7→
‖f(x)−h(x)‖ is bounded by the inequality (2.6). Then, it follows by induction that

s`
−mg(r`

mx) = g(x), s`
−mh(r`

mx) = h(x)

for all x ∈M1. Thus for every x ∈M1 we figure out by (2.6)

‖h(x)− fm(x)‖ = ‖s`
−mh(r`

mx)− s`
−mf(r`

mx)‖
≤ |s`|−m‖h(r`

mx)− f(r`
mx)‖

≤
∞∑

j=0

1

|s`|m+j+1
φ

0, · · · , 0, r`
m+jx︸ ︷︷ ︸
`−th

, 0, · · · , 0

 .
By passing the limit as m → ∞ in the above inequality, we obtain h(x) = g(x) for
all x ∈M1. This proves the uniqueness of g.

On the other hand, taking the limit as j →∞ in (2.8), we get

g(ux)− ug(x) = 0 (2.10)

for all x ∈ M1 and all u ∈ U(A). It is clear that g(0x) = 0 = 0g(x) for all x ∈ M1.
Now, let a be a nonzero element in A and K a positive integer greater than 4|a|.
Then we have | a

K
| < 1

4
< 1 − 2

3
. By [7, Theorem 1], there exist three elements

u1, u2, u3 ∈ U(A) such that 3 a
K

= u1 + u2 + u3. Thus we calculate by (2.10)

g(ax) = g
(
K

3
· 3 a
K
x
)

=
(
K

3

)
g(u1x+ u2x+ u3x)

=
(
K

3

)(
g(u1x) + g(u2x) + g(u3x)

)
=

(
K

3

)
(u1 + u2 + u3)g(x) =

(
K

3

)
· 3 a
K
g(x) = ag(x)
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for all a ∈ A (a 6= 0) and all x ∈M1. So the unique additive mapping g : M1 →M2

is an A-linear mapping, as desired.
The proof of assertion indicated by parentheses is similarly proved by the in-

equalities due to (2.7)

‖f(r`
−mux)− s`uf(r`

−m−1x)‖ ≤ φ(0, · · · , 0, r`
−m−1x︸ ︷︷ ︸
`−th

, 0, · · · , 0),

‖s`
mf(r`

−mx)− f(x)‖ ≤
m∑

j=1

|s`|j−1φ(0, · · · , 0, r`
−jx︸ ︷︷ ︸

`−th

, 0, · · · , 0),

for all x ∈M1, m ∈ N and all u ∈ U(A). The proof is now complete. �

The following theorem is an alternative result of Theorem 2.1 depending on the
action of u in Duf .

Theorem 2.2. Let f : M1 →M2 be a mapping with f(0) = 0 for which there exists
a mapping φ : M1

n → R+ and an r` (` ∈ {1, · · · , n}) such that

‖Duf(x1, · · · , xn)‖ ≤ φ(x1, · · · , xn),

Φ`(x1, · · · , xn) :=
∞∑

j=0

1

|s`|j+1
φ
(
r`

jx1, · · · , r`
jxn

)
<∞

Φ`(x1, · · · , xn) :=
∞∑

j=1

|s`|j−1φ
(
r`
−jx1, · · · , r`

−jxn

)
<∞, respectively,


for all x1, · · · , xn ∈ M1 and all u ∈ A1

+ ∪ {i}. If f is measurable or f(tx) is
continuous in t ∈ R for each fixed x ∈ M1, then there exists a unique A-linear
mapping g : M1 →M2, defined by

g(x) = lim
m→∞

s`
−mf (r`

mx) ,
(
g(x) = lim

m→∞
s`

mf
(
r`
−mx

)
, respectively,

)
which satisfies the equation (1.4) and the inequality

‖f(x)− g(x)‖ ≤ Φ`(0, · · · , 0, x︸︷︷︸
`−th

, 0, · · · , 0)

for all x ∈M1.

Proof. By the same reasoning as the proof of Theorem 2.1, it follows from
u = 1 ∈ A1

+∪{i} in (2.1) that there exists a unique additive mapping g : M1 →M2,
defined by (2.4), which satisfies the equation (1.4) and the inequality (2.6). Under
the assumption that f is measurable or f(tx) is continuous in t ∈ R for each fixed
x ∈ M1, the additive mapping g satisfies g(tx) = tg(x) for all t ∈ R and each fixed
x ∈M1. That is, g is R-linear [5].

Next, it follows from (2.10) subject to u ∈ A1
+∪{i} that g(ax) = g

(
|a| a

|a| · x
)

=

|a|g
(

a
|a| · x

)
= |a|

(
a
|a|

)
· g(x) = ag(x) for all nonzero a ∈ A+ ∪ {i} and all x ∈ M1.

Now, for any element a ∈ A, a = a1 + ia2, where a1 := a+a∗

2
∈ Asa and a2 := a−a∗

2i
∈



Stability for generalized Jensen functional equations 7

Asa are self-adjoint elements; furthermore, a = a+
1 −a−1 +ia+

2 −ia−2 , where a+
1 , a

−
1 , a

+
2

and a−2 are all positive elements (see [2, Lemma 38.8]). Thus we obtain

g(ax) = g
(
a+

1 x− a−1 x+ ia+
2 x− ia−2 x

)
= g(a+

1 x)− g(a−1 x) + ig(a+
2 x)− ig(a−2 x)

=
(
a+

1 − a−1 + ia+
2 − ia−2

)
g(x)

= ag(x)

for all a ∈ A and all x ∈ M1. Thus the additive mapping g is A-linear, as desired.
The proof of the theorem is complete. �

As an application, we obtain the generalized Hyers-Ulam-Rassias stability of the
equation (1.3), where N :=

∑n
i=1 ri.

Corollary 2.3. Let f : M1 →M2 be a mapping with f(0) = 0 for which there exists
a mapping ϕ : M1

n → R+ such that∥∥∥∥∥Nf
(∑n

i=1 riuxi

N

)
−

n∑
i=1

riuf(xi)

∥∥∥∥∥ ≤ ϕ(x1, · · · , xn)

for all x1, · · · , xn ∈M1 and all u ∈ U(A). Assume that the following series

Φ(x1, · · · , xn) :=
∞∑

j=0

(
N

r`

)j

ϕ

((
r`

N

)j

x1, · · · ,
(
r`

N

)j

xn

)
Φ(x1, · · · , xn) :=

∞∑
j=1

(
r`

N

)j

ϕ

((
N

r`

)j

x1, · · · ,
(
N

r`

)j

xn

)
, respectively,


converges for some ` = 1, · · · , n and all x1, · · · , xn ∈M1. Then there exists a unique
A-linear mapping g : M1 →M2, defined by

g(x) := lim
m→∞

(
N

r`

)m

f
((

r`

N

)m

x
)
,(

g(x) := lim
m→∞

(
r`

N

)m

f
((

N

r`

)m

x
)
, respectively,

)
which satisfies the equation (1.4) and the inequality

‖f(x)− g(x)‖ ≤ 1

r`

Φ(0, · · · , 0, x︸︷︷︸
`−th

, 0, · · · , 0)

for all x ∈M1.

Proof. We observe that∥∥∥∥∥f
(

n∑
i=1

ri

N
uxi

)
−

n∑
i=1

ri

N
uf(xi)

∥∥∥∥∥ ≤ 1

N
ϕ(x1, · · · , xn)

for all x1, · · · , xn ∈ M1 and all u ∈ U(A). Define φ(x1, · · · , xn) := 1
N
ϕ(x1, · · · , xn),

and apply Theorem 2.1 ( Theorem 2.2, respectively ) to obtain the conclusion. �
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In the following we consider a mapping H satisfying some specific conditions.
In particular, we obtain a special case of it if ϕ(λ) := λp and H is a homogeneous
mapping of degree p > 0 with |r`|p 6= |s`|.

Corollary 2.4. Let f : M1 → M2 be a mapping with f(0) = 0 and a mapping
H : R+

n → R+ satisfy∥∥∥∥∥f
( n∑

i=1

riuxi

)
−

n∑
i=1

siuf(xi)

∥∥∥∥∥ ≤ H(‖x1‖, · · · , ‖xn‖)

for all x1, · · · , xn ∈ M1 and all u ∈ U(A). Assume that there exists a mapping
ϕ : R+ → R+ such that

(i) ϕ (|r`|) 6= |s`| for some `, and ϕ(λ) > 0 for all λ > 0,

(ii) ϕ
(
λ

∣∣∣∣r`

∣∣∣∣) = ϕ(λ)ϕ
(∣∣∣∣r`

∣∣∣∣) for all λ > 0,

(iii) H(λt1, · · · , λtn) ≤ ϕ(λ)H(t1, · · · , tn) for all ti ∈ R+, and all λ > 0.

Then there exists a unique A-linear mapping g : M1 → M2 which satisfies the
equation (1.4) and the inequality

‖f(x)− g(x)‖ ≤ H(0, · · · , 0,
`−th︷︸︸︷
‖x‖, 0, · · · , 0)∣∣∣∣|s`| − ϕ(|r`|)

∣∣∣∣
for all x ∈M1. The mapping g is defined by

g(x) :=


limm→∞ s`

−mf
(
r`

mx
)
, if |s`| > ϕ(|r`|)

limm→∞ s`
mf
(
r`
−mx

)
, if |s`| < ϕ(|r`|)

for all x ∈M1.

It follows by condition (ii) of Corollary 2.4 that ϕ
(
|r`|j

)
= ϕ

(
|r`|

)j

for any

integer j. We obtain the Hyers-Ulam stability problem for the equation (1.4) as a
corollary.

Corollary 2.5. Assume that there exist constants ε ≥ 0 and s` with 0 < |s`| 6= 1
for some ` = 1, · · · , n for which a mapping f : M1 →M2 with f(0) = 0 satisfies∥∥∥∥∥f

(
n∑

i=1

riuxi

)
−

n∑
i=1

siuf(xi)

∥∥∥∥∥ ≤ ε

for all (x1, · · · , xn) ∈ M1
n and all u ∈ U(A). Then there exists a unique A-linear

mapping g : M1 →M2 satisfying the equation (1.4) and the inequality

‖g(x)− f(x)‖ ≤ ε∣∣∣∣|s`| − 1
∣∣∣∣

for all x ∈ M1. The mapping g is defined by (2.4) if |s`| > 1, and by (2.5) if
0 < |s`| < 1.
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3 C∗-algebra isomorphisms between unital C∗-algebras

Throughout this section, assume that ri = si are all rational numbers for all i =
1, · · · , n. Assume that A and B are unital C∗-algebras. As an application, we
are going to investigate C∗-algebra isomorphisms between unital C∗-algebras. We
denote N0 by the set of nonnegative integers.

Theorem 3.1. Let h : A → B be a bijective mapping with h(0) = 0 for which there
exist mappings φ : An → R+ satisfying (2.2), ψ1 : A × A → R+, and ψ : A → R+

such that ∥∥∥∥∥h
(

n∑
i=1

riλxi

)
−

n∑
i=1

riλh(xi)

∥∥∥∥∥ ≤ φ(x1, · · · , xn), (3.1)

‖h(r`
mux)− h(r`

mu)h(x)‖ ≤ ψ1(r`
mu, x), (3.2)

‖h (r`
mu∗)− h (r`

mu)∗‖ ≤ ψ (r`
mu) (3.3)

for all λ ∈ S1 := {µ ∈ C | |µ| = 1}, all u ∈ U(A), all x, x1, · · · , xn ∈ A and all
m ∈ N0. Assume that

lim
m→∞

r`
−mψ1 (r`

mu, x) = 0, for all u ∈ U(A), x ∈ A, (3.4)

lim
m→∞

r`
−mψ (r`

mu) = 0, for all u ∈ U(A), (3.5)

lim
m→∞

r`
−mh (r`

mu0) ∈ Ain, for some u0 ∈ A. (3.6)

Then the bijective mapping h : A → B is a C∗-algebra isomorphism.

Proof. Consider the C∗-algebras A and B as Banach left modules over the unital
C∗-algebra C. We note that S1 = U(C). By Theorem 2.1, there exists a unique
C-linear mapping H : A → B, defined by H(x) := limm→∞ r`

−mh (r`
mx) , satisfying

the inequality

‖h(x)−H(x)‖ ≤
∞∑

j=0

1

|r`|j+1
φ(0, · · · , 0, r`

jx︸︷︷︸
`−th

, 0, · · · , 0)

for all x ∈ A.
By (3.3) and (3.5), we have

H(u∗) = lim
m→∞

r`
−mh (r`

mu∗) = lim
m→∞

r`
−mh (r`

mu)∗ (3.7)

=
(

lim
m→∞

r`
−mh (r`

mu)
)∗

= H(u)∗

for all u ∈ U(A). Since H is C-linear and each x ∈ A is a finite linear combination
of unitary elements ([8, Theorem 4.1.7]), i.e., x =

∑m
j=1 cjuj (cj ∈ C, uj ∈ U(A)),

we get by (3.7)

H(x∗) = H

 m∑
j=1

c̄ju
∗
j

 =
m∑

j=1

c̄jH(u∗j) =
m∑

j=1

c̄jH(uj)
∗ =

 m∑
j=1

cjH(uj)

∗

= H

 m∑
j=1

cjuj

∗ = H(x)∗
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for all x ∈ A.
Using the relations (3.2) and (3.4), we get

H(ux) = lim
m→∞

r`
−mh (r`

mux) (3.8)

= lim
m→∞

r`
−mh (r`

mu)h(x) = H(u)h(x)

for all u ∈ U(A) and all x ∈ A. On the other hand, it follows from (3.8) and the
additivity of H that the equation

H(ux) = r`
−mH (r`

mux) = r`
−mH (ur`

mx)

= r`
−mH(u)h (r`

mx) = H(u)r`
−mh (r`

mx)

holds for all u ∈ U(A) and all x ∈ A. Taking the limit as m → ∞ in the last
equation, we obtain

H(ux) = H(u)H(x) (3.9)

for all u ∈ U(A) and all x ∈ A. Now, let z ∈ A be an arbitrary element. Then
z =

∑m
j=1 cjuj (cj ∈ C, uj ∈ U(A)), and it follows from (3.8) that

H(zx) = H

 m∑
j=1

cjujx

 =
m∑

j=1

cjH(ujx) =
m∑

j=1

cjH(uj)h(x) (3.10)

= H

 m∑
j=1

cjuj

h(x) = H(z)h(x)

for all z, x ∈ A. Similarly, we see from (3.9) that

H(zx) = H(z)H(x) (3.11)

for all z, x ∈ A. It follows from (3.10) and (3.11) that

H(u0)H(x) = H(u0x) = H(u0)h(x)

for all x ∈ A. Since H(u0) = limm→∞ r`
−mh (r`

mu0) is invertible by assumption, we
see that H(x) = h(x) for all x ∈ A. Hence the bijective mapping h : A → B is a
C∗-algebra isomorphism, as desired. �

Theorem 3.2. Let h : A → B be a bijective mapping satisfying h(0) = 0 and (3.6)
for which there exist a mapping φ : An → R+ satisfying (2.2), and mappings ψ1, ψ
such that ∥∥∥∥∥h

(
n∑

i=1

riλxi

)
−

n∑
i=1

riλh(xi)

∥∥∥∥∥ ≤ φ(x1, · · · , xn), (3.12)

‖h(r`
mux)− h(r`

mu)h(x)‖ ≤ ψ1(r`
mu, x), (3.13)

‖h (r`
mu∗)− h (r`

mu)∗‖ ≤ ψ (r`
mu) (3.14)

for all λ ∈ S1 := {µ ∈ C | |µ| = 1}, all u ∈ A1
+ ∪ {i} and all x, x1, · · · , xn ∈ A and

all m ∈ N0. Assume that

lim
m→∞

r`
−mψ1 (r`

mu, x) = 0, for all u ∈ A1
+ ∪ {i}, all x ∈ A, (3.15)

lim
m→∞

r`
−mψ (r`

mu) = 0, for all u ∈ A1
+ ∪ {i}. (3.16)

Then the bijective mapping h : A → B is a C∗-algebra isomorphism.
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Proof. By Theorem 2.1, there exists a unique C-linear mapping H : A → B,
defined by H(x) := limm→∞ r`

−mh (r`
mx) , satisfying the functional inequality

‖h(x)−H(x)‖ ≤
∞∑

j=0

1

|r`|j+1
φ(0, · · · , 0, r`

jx︸︷︷︸
`−th

, 0, · · · , 0)

for all x ∈ A.
By (3.14) and (3.16), we have H(u∗) = H(u)∗ for all u ∈ A1

+ ∪ {i}, and so

H(a∗) = H

(
|a| · a

∗

|a|

)
= |a|H

(
a∗

|a|

)
=

[
|a|H

(
a

|a|

)]∗
= H(a)∗

for all nonzero a ∈ A+ ∪ {i}. Now, for any element a ∈ A, a = a1 + ia2, where
a1, a2 ∈ Asa; furthermore, a = a+

1 − a−1 + ia+
2 − ia−2 , where a+

1 , a
−
1 , a

+
2 and a−2 are all

positive elements (see [2, Lemma 38.8]). Since H is C-linear, we figure out

H(a∗) = H
(
(a+

1 − a−1 + ia+
2 − ia−2 )∗

)
= H(a+

1
∗
)−H(a−1

∗
) +H((ia+

2 )∗)−H((ia−2 )∗)

= H(a+
1 )∗ −H(a−1 )∗ − iH(a+

2 )∗ + iH(a−2 )∗

=
[
H(a+

1 − a−1 + ia+
2 − ia−2 )

]∗
= H(a)∗

for all a ∈ A.
Using (3.13) and (3.15) we get H(ux) = H(u)h(x) for all u ∈ A1

+ ∪ {i} and all
x ∈ A, and so H(ax) = H(a)h(x) for all a ∈ A+ ∪ {i} and all x ∈ A because

H(ax) = H

(
|a| a
|a|

· x
)

= |a|H
(
a

|a|
· x
)

(3.17)

= |a|H
(
a

|a|

)
· h(x) = H(a)h(x), ∀a ∈ A+.

Now, for any element a ∈ A, a = a+
1 − a−1 + ia+

2 − ia−2 , where a+
1 , a

−
1 , a

+
2 and a−2

are positive elements (see [2, Lemma 38.8]). Thus we calculate by (3.17) and the
additivity of H

H(ax) = H
(
a+

1 x− a−1 x+ ia+
2 x− ia−2 x

)
(3.18)

= H(a+
1 x)−H(a−1 x) + iH(a+

2 x)− iH(a−2 x)

=
(
H(a+

1 )−H(a−1 ) + iH(a+
2 )− iH(a−2 )

)
h(x)

= H(a)h(x)

for all a, x ∈ A. By (3.18) and the additivity of H, one has

H(ax) = r`
−mH (r`

max) = r`
−mH (ar`

mx)

= r`
−mH(a)h (r`

mx) = H(a)r`
−mh (r`

mx) ,
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which yields by taking the limit as m→∞

H(ax) = H(a)H(x) (3.19)

for all a, x ∈ A.
It follows from (3.18) and (3.19) that for a given u0 subject to (3.6)

H(u0)H(x) = H(u0x) = H(u0)h(x)

for all x ∈ A. Since H(u0) = limm→∞ r`
−mh (r`

mu0) ∈ Ain, we see that H(x) = h(x)
for all x ∈ A. Hence the bijective mapping h : A → B is a C∗-algebra isomorphism,
as desired. �

Theorem 3.3. Let h : A → B be a bijective mapping with h(0) = 0 satisfying (2.2),
(3.2) and (3.3) such that

‖Dλh(x1, · · · , xn)‖ ≤ φ(x1, · · · , xn) (3.20)

holds for λ = 1, i. Assume that the conditions (3.4), (3.5) and (3.6) are satisfied,
and that h is measurable or h(tx) is continuous in t ∈ R for each fixed x ∈ A. Then
the bijective mapping h : A → B is a C∗-algebra isomorphism.

Proof. Fix λ = 1 in (3.20). By the same reasoning as in the proof of Theorem
2.1, there exists a unique additive mapping H : A → B satisfying the inequality
(2.6). By the assumption that h is measurable or h(tx) is continuous in t ∈ R for
each fixed x ∈ A, the mapping H : A → B is R-linear, that is, H(tx) = tH(x) for all
t ∈ R and all x ∈ A [5, 13]. Put λ = i in (3.20). Then applying the same argument
to (2.8) as in the proof of Theorem 2.1, we obtain that

DiH(0, · · · , 0, x︸︷︷︸
`−th

, 0, · · · , 0) = 0,

or H(ix) = iH(x), and so for any µ = s+ it ∈ C

H(µx) = H(sx+ itx) = H(sx) +H(itx) = sH(x) + itH(x)

= (s+ it)H(x) = µH(x)

for all x ∈ A. Hence the mapping H : A → B is C-linear.
The rest of the proof is the same as the proof of Theorem 3.1. �

Theorem 3.4. Let h : A → B be a bijective mapping with h(0) = 0 satisfying (2.2),
(3.6), (3.13) and (3.14) such that

‖Dλh(x1, · · · , xn)‖ ≤ φ(x1, · · · , xn) (3.21)

holds for λ = 1, i. Assume that the equations (3.15), (3.16) are satisfied, and that
h is measurable or h(tx) is continuous in t ∈ R for each fixed x ∈ A. Then the
bijective mapping h : A → B is a C∗-algebra isomorphism.

Proof. The proof is the similar to that of Theorem 3.3. �
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Theorem 3.5. Let B be a unital C∗-algebra in which the norm is multiplicative.
Let h : A → B be a bijective mapping with h(0) = 0 for which there exist a constant
δ ≥ 0 and a mapping φ : An → R+ satisfying (2.2) ((2.3), respectively), such that∥∥∥∥∥h

(
n∑

i=1

riλxi

)
−

n∑
i=1

riλh(xi)

∥∥∥∥∥ ≤ φ(x1, · · · , xn),

‖h(xy)− h(x)h(y)‖ ≤ δ, (3.22)

‖h (r`
mu∗)− h (r`

mu)∗‖ ≤ φ (r`
mu, · · · , r`

mu)(∥∥∥h (r`
−mu∗

)
− h

(
r`
−mu

)∗∥∥∥ ≤ φ
(
r`
−mu, · · · , r`

−mu
)
, respectively,

)
for all λ ∈ S1 := {µ ∈ C | |µ| = 1}, all u ∈ U(A), all x, y, x1, · · · , xn ∈ A and all
m ∈ N0. Assume that

lim
m→∞

r`
−mh (r`

mu0) ∈ Ain, for some u0 ∈ A(
lim

m→∞
r`

mh
(
r`
−mu0

)
∈ Ain, for some u0 ∈ A, respectively

)
.

Then the bijective mapping h : A → B is a C∗-algebra isomorphism.

Proof. It follows from (3.22) that the mapping h either is bounded or satisfies
the equation h(xy) = h(x)h(y) [1, 5]. Utilizing Theorem 3.1 with ψ1 := 0, we have
the desired result. �
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