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Abstract

For a Noetherian local domain A, there exists an upper bound Nτ (A) on
the minimal number of generators of any height two ideal a for which A/a is
Cohen-Macaulay of type τ . If A contains an infinite field, then we may take
Nτ (A) := (τ +1)ehom(A), where ehom(A) is the homological multiplicity of A.

1 Introduction

In this paper, we are interested in finding upper bounds on µA(a), the minimal
number of generators of a height two Cohen-Macaulay ideal a in a Noetherian local
ring A (here a is said to be Cohen-Macaulay, if A/a is Cohen-Macaulay). The upper
bounds that one finds in the literature often depend on invariants of the residue ring
A/a, or are only valid if A is Cohen-Macaulay; see for instance [1, 5, 6, 7, 11, 12,
14, 15, 17, 19]. The goal of this paper is to remove the Cohen-Macaulay assumption
on A and to provide absolute bounds, that is to say, bounds which only depend
on A. Here are some previously known cases of absolute bounds. In [12], Noether
Normalization is used to show that any prime ideal in a two-dimensional affine
algebra A (that is to say, a two-dimensional finitely generated algebra over a field)
is generated by at most N(A) elements, where N(A) only depends on the algebra.
In [8], Gottlieb shows that an ideal a for which A/a has depth at least dim A − 1 is
generated by at most ρ elements, where ρ is the parameter degree of A (see below).
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In this paper, we generalize Gottlieb’s results to height two Cohen-Macaulay
ideals. To state precise results, we need a definition. Let (A, m) be a d-dimensional
Noetherian local ring. We call A non-degenerate if A has the same characteristic as
any of its irreducible components of maximal dimension, that is to say, char(A) =
char(A/p), for every prime p of A such that dim(A/p) = d. Note that this condition
is void if A is equicharacteristic. In mixed characteristic, it means that A/pA has
dimension d−1, where p is the characteristic of A/m. In particular, any Noetherian
local domain is non-degenerate. It is easy to see that the class of non-degenerate
local rings is closed under completion. We say that an ideal I is non-degenerate, if
A/I is non-degenerate. An m-primary ideal I is non-degenerate if, and only if, I
contains p := char(A/m) if, and only if, A/I is equicharacteristic.

A parameter ideal I in A is an ideal generated by a (full) system of parameters.
The minimal length of A/I where I runs over all parameter ideals will be called the
parameter degree of A; if we only let I run over all non-degenerate parameter ideals,
the resulting minimum is called the equi-parameter degree of A. The motivation for
introducing these notions comes from the following structure theorem due to Cohen.

Theorem 1.1 (Cohen Structure Theorem). A complete Noetherian local ring A
is non-degenerate if, and only if, there exists a finite extension S ⊆ A with S a
complete regular local ring. In fact, given any non-degenerate parameter ideal I of
A, we may choose S in such way that nA = I, where n is the maximal ideal of S.

Proof. For the direct implication in the first statement, see [9, Theorem 29.4 and
Remark] or [2, IX. Théorème 3]. For the converse, we only have to treat the case
that A has mixed characteristic. Let d be the dimension of A and p the characteristic
of its residue field. If S ⊆ A is finite with S regular, then S/pS has dimension d−1,
and hence so does A/pA by base change.

The last statement is clear from the proof given in [9] when A has equal charac-
teristic. So assume A has characteristic zero and its residue field has characteristic
p. By assumption, pA has height one and is contained in I. Hence we may choose
xi ∈ I so that I = (x1, . . . , xd)A and (p, x2, . . . , xd) is a system of parameters in A,
where d is the dimension of A. Let V ⊆ A be a coefficient ring of A, that is to say,
a complete unramified discrete valuation ring with the same residue field as A. By
the proof in [9], the subring S0 := V [[x2, . . . , xd]] ⊆ A is regular and A is finitely
generated as an S0-module. Let S := S0[x1] ⊆ A. By the proof of [9, Theorem 29.8],
the extension S0 ⊆ S is Eisenstein, and hence by the same theorem, S is regular.
Since the maximal ideal n of S is generated by p and all the xi, we get nA = I, as
required. �

Note that the non-degenerate parameter ideals in A are precisely the ideals of
the form nA with n the maximal ideal of a complete regular subring over which A is
finite. We can now state the main result of this paper (Theorem 2.1, Corollaries 2.2,
3.9 and 3.10 and the discussion in §3).

Theorem 1.2. Let A be a Noetherian local ring and let τ ≥ 1. Assume that A
is non-degenerate (e.g., A is a domain, or equicharacteristic). If a is a height two
ideal of A such that A/a is Cohen-Macaulay of type τ , then a is generated by at
most (τ + 1)ǫ elements, where ǫ can be taken to be the equi-parameter degree of A.
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Alternatively, we may take ǫ to be the parameter degree of A, in case A is equichar-
acteristic, or the homological multiplicity of A, in case A is equicharacteristic with
infinite residue field, or the (usual) multiplicity of A, in case A is Cohen-Macaulay.

In particular, the minimal number of generators of a height two Gorenstein ideal
is at most 2ǫ.

The case when A is Cohen-Macaulay is well-known ([11, Chapter V, Theorem
3.2 and Corollary 3.3]) and is just added for comparison. Our bounds also improve
the ones given in [18, Example 9.5.1]. For the proof of Theorem 1.2, we borrow a
technique from [12], except that we replace their use of Noether Normalization by
the Cohen Structure Theorem. We even get some estimates without assuming that
a is a Cohen-Macaulay ideal:

Theorem 1.3. In a two-dimensional Noetherian local domain A of equi-parameter
degree ρ̄, every ideal a is generated by at most (τ +1)ρ̄ elements, where τ is the type
of A/a.

Using the Forster-Swan Theorem, we obtain estimates in the global case as well:
if A is d-dimensional Noetherian domain which is generated as a module by at most
ǫ elements over some regular subring, then any height two Cohen-Macaulay ideal a

of A can be generated by at most (τ +1)ǫ+d−2 elements, where τ is the maximum
of the types of Am/aAm, for m running over all maximal ideals of A (with a possible
exception when τ = ǫ = 1). In the last section, bounds for affine algebras are
shown to be uniform, in the sense that the bounds only depend on the degree of the
polynomials representing the affine algebra as a homomorphic image of a polynomial
ring (see Theorem 5.1). Here are two special cases that follow from this analysis.

Theorem 1.4. Let Y → X be a finite dominant map of degree ǫ > 1 between
affine d-dimensional schemes. If X has no singularities, then every codimension
two Gorenstein subscheme W of Y is the (ideal-theoretic) intersection of at most
2ǫ + d − 2 hypersurfaces.

Theorem 1.5. Let C be a (reduced) Gorenstein curve in affine 4-space over an
infinite field. If C lies on a quadratic hypersurface, then C is either a set-theoretic
complete intersection, or otherwise, the (ideal-theoretic) intersection of exactly five
hypersurfaces.
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2 Height Two Gorenstein Ideals

Theorem 2.1. For a non-degenerate Noetherian local ring A, there is an upper
bound on the number of generators of an arbitrary height two ideal a for which A/a
is Gorenstein.

Proof. Since neither height nor minimal number of generators is affected by taking
a faithfully flat extension, we may assume that A is moreover complete (note that
the completion of a non-degenerate ring is again non-degenerate). By Theorem 1.1,
there exists a regular local subring S ⊆ A, such that A is module finite over S. In
particular, there exists a surjective linear map

ϕ : SN
։ A. (1)

It will suffice to bound the number of generators of a viewed as an S-module. To
this end, let H := ϕ−1(a). In particular, we have an exact sequence

0 → H → SN → A/a → 0. (2)

Using for instance [3, Exercise 1.2.26] or [9, Exercise 16.7], we get that A/a is
a Cohen-Macaulay S-module of dimension d − 2, where d is the dimension of A.
Therefore, by the Auslander-Buchsbaum Theorem, A/a has projective dimension 2
as an S-module, and hence H has projective dimension one. Let

0 → Sp f
−→ Sq → H → 0 (3)

be a minimal free S-resolution of H , so that H is minimally generated by q elements.
Taking the (S-)dual of sequence (3), we get an exact sequence

Sq f∗

−−→Sp → Ext1
S(H, S) → 0, (4)

where f ∗ is the transpose of f , that is to say, if A is a matrix defining f , then the
matrix transpose of A gives f ∗. In particular, since we took (3) to be minimal, A
has all its entries in the maximal ideal of S. Therefore, the same is true for f ∗, so
that by Nakayama’s Lemma, Ext1

S(H, S) is minimally generated by p elements.
Applying [3, Theorem 3.3.7.(b)] to the finite local homomorphism S → A/a, we

get that
Ext2

S(A/a, S) = ωA/a,

where ωA/a is the canonical module of A/a. However, since A/a is Gorenstein, we
have that ωA/a

∼= A/a. On the other hand, taking the dual of the exact sequence (2)
shows that Ext1

S(H, S) ∼= Ext2
S(A/a, S). In summary, we obtain an isomorphism

Ext1
S(H, S) ∼= A/a.

Since this S-module is minimally generated by p elements, we get from (2) that
p ≤ N . Putting (2) and (3) together yields an exact sequence

0 → Sp → Sq → SN

from which it follows that q ≤ p + N . Therefore, q ≤ 2N , showing that H , and
hence a fortiori a = ϕ(H)A, can be generated by at most 2N elements. �
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Corollary 2.2. For a non-degenerate Noetherian local ring A and an arbitrary
τ ≥ 1, there is an upper bound on the number of generators of an arbitrary height
two ideal a of A for which A/a is Cohen-Macaulay of type τ .

Proof. Analyzing the proof of Theorem 2.1, we see that the only place were we
used that A/a is Gorenstein, is to establish the isomorphism ωA/a

∼= A/a. If A/a
is merely Cohen-Macaulay of type τ , then the canonical module ωA/a is generated
as an A/a-module by τ elements ([3, Proposition 3.3.11]). Therefore, there is an
epimorphism (A/a)τ

։ ωA/a. If A is generated as an S-module by N elements,
then this implies that ωA/a is generated by at most τN elements as an S-module.
Hence from (2) and (4) we get that p ≤ τN (notation as in that proof), so that
µA(a) ≤ q ≤ p + N ≤ (τ + 1)N . �

3 Noether Normalization Degree

We mentioned in the introduction that it is well-known that one can take ǫ in
Theorem 1.2 equal to the multiplicity of A, when A is Cohen-Macaulay. We now
will investigate several generalizations of multiplicity which can play the role of ǫ in
Theorem 1.2 in absence of the Cohen-Macaulay assumption.

Definition 3.1. We call the Noether Normalization degree of a Noetherian ring A
the least possible value of µS(A), where S runs over all regular subrings of A (this
includes the case that there is no such regular subring over which A is finite, in
which case we set its Noether Normalization degree equal to ∞).

By the classical Noether Normalization Theorem, any finitely generated algebra
over a field has finite Noether Normalization degree. By Theorem 1.1, a complete
Noetherian local ring has finite Noether Normalization degree if, and only if, it is
non-degenerate.

For the remainder of this section, (A, m) denotes a Noetherian local ring, with
multiplicity e, parameter degree ρ, equi-parameter degree ρ̄ and Noether Normal-
ization degree s. Clearly ρ ≤ ρ̄, with equality when A is equicharacteristic, for then
any system of parameters is non-degenerate. That this inequality can be strict is
witnessed by the following example.

Example 3.2. Let A := R/(X3 − p2)R with R := Zp[[X]] and Zp the ring of p-adic
integers. Here the only non-degenerate parameter ideal is pA showing that ρ̄ = 3,
whereas A/XA has length two (in fact ρ = 2 by the next lemma, as A is Coh-
en-Macaulay with e = 2). Note that in this example pA is not a reduction of the
maximal ideal of A.

Lemma 3.3. We have an inequality e ≤ ρ. If A/m is infinite, then e = ρ if, and
only if, A is Cohen-Macaulay.

Proof. Let I be a parameter ideal such that A/I has length ρ. By [3, Corollary
4.6.11] (=positivity of the first partial Euler characteristic), the multiplicity of I is
at most ρ and by [9, Formula 14.4] this multiplicity is at least e, showing that e ≤ ρ.

To prove the last statement, suppose e = ρ, so that A/I has length e, for some
parameter ideal I. Since I has multiplicity at least e, we get from [9, Theorem
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14.10] that I must have multiplicity e, so that A is Cohen-Macaulay by [9, Theorem
17.11]. Conversely, assume A is Cohen-Macaulay with infinite residue field. By [9,
Theorem 14.14], there exists a reduction I of m which is a parameter ideal of A.
Since I is a reduction of m, its multiplicity is e. By [9, Theorem 17.11], the length
of A/I is e, showing that ρ ≤ e. �

Note that we only used the assumption that the residue field of A is infinite for
the converse in the last statement. That this assumption is necessary is clear from
the next example.

Example 3.4. The local ring R/(X2Y + XY 2)R with R := F2[[X, Y ]] and F2 the
two-element field, is Cohen-Macaulay of multiplicity e = 3, but parameter degree
ρ = 4, since no element of degree one is a parameter.

Proposition 3.5. We have an inequality ρ̄ ≤ s, with equality if s is finite and A is
complete.

Proof. We may assume s < ∞. Hence there exists a regular local subring (S, n) ⊆ A
such that A is generated over S by s elements. By Nakayama’s Lemma, s is equal
to the vector space dimension of A/nA over the residue field of S. In particular,
A/nA has length at most s. On the other hand, this length is bigger than or equal
to ρ̄, since nA is a non-degenerate parameter ideal of A. In conclusion, we showed
that ρ̄ ≤ s.

For the opposite inequality, let I be a non-degenerate parameter ideal in A
such that A/I has length ρ̄. By Theorem 1.1, there exists a regular local subring
(S, n) ⊆ A over which A is finitely generated, such that I = nA. By Nakayama’s
lemma, µS(A) = ρ̄, showing that s ≤ ρ̄. �

Observe that in general, A has the same (equi-)parameter degree as its comple-
tion ̂A, since any m ̂A-primary ideal is extended from A. In particular, we showed
that for a non-degenerate Noetherian local ring, its equi-parameter degree is equal to
the Noether Normalization degree of its completion. We next relate these invariants
to the homological degree introduced by Vasconcelos in [17, §3] or [18, §9.5].

Proposition 3.6. Let ehom be the homological multiplicity of A and assume A is
complete. If A is equicharacteristic with infinite residue field, then s ≤ ehom.

Proof. In [17, Definition 3.23], the homological multiplicity ehom of A is defined to be
the homological degree of A viewed as an A-module. By [9, Theorem 14.14], there
exists a parameter ideal I in A whose image in the graded ring of A is generated
by elements of degree one. By Theorem 1.1, we can find a regular local subring
(S, n) ⊆ (A, m) so that the extension is finite and nA = I. Such an extension can
be used to calculate ehom by [17, Remark 3.11]. It follows that ehom is also the
homological degree of A viewed as an S-module. By [17, Proposition 4.1], we then
get that ehom is a bound on the number of generators of A as an S-module, whence
a fortiori, on the Noether Normalization degree s of A. �

From [9, Theorem 23.1] and the above results, we get immediately.
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Corollary 3.7. Let A be a complete local Cohen-Macaulay ring of multiplicity e.
If A is equicharacteristic and has an infinite residue field, then there is a regular
subring S ⊆ A such that A is a free S-module of rank e.

Since homological multiplicity agrees with multiplicity when A is Cohen-Macau-
lay, the assumption on the residue field is necessary in the previous proposition and
its corollary by Example 3.4, as is the equicharacteristic assumption by Example 3.2.
Since A and its completion have the same homological multiplicity by [17, Theorem
3.22], we get the following inequalities:

Corollary 3.8. Let ŝ be the Noether Normalization degree of the completion of A.
If A is equicharacteristic with infinite residue field, then e ≤ ρ = ρ̄ = ŝ ≤ ehom, with
equality everywhere if, and only if, A is Cohen-Macaulay.

We now turn to the bounds proven in the previous section. Inspecting the proofs
we get the following explicit upper bounds.

Corollary 3.9. Let A be a non-degenerate Noetherian local ring and let ρ̄ be its equi-
parameter degree. If a is a height two ideal of A for which A/a is Cohen-Macaulay
of type τ , then a can be generated by at most (τ + 1)ρ̄ elements.

Combining this with Corollary 3.8, we get:

Corollary 3.10. In an equicharacteristic Noetherian local ring A with an infinite
residue field and homological multiplicity ehom, any height two ideal a for which A/a
is Gorenstein (respectively, Cohen-Macaulay of type τ), can be generated by at most
2ehom elements (respectively, (τ + 1)ehom elements).

Remark 3.11. If A is a d-dimensional non-degenerate Noetherian local ring and a

an ideal in A such that A/a has depth at least d − 1, then µ(a) is at most the
equi-parameter degree of A. This was originally proved by Gottlieb in [8], who
actually proves a stronger result without the non-degenerate assumption, and with
parameter degree instead of equi-parameter degree. To prove the above assertion,
we may assume A is complete. Since the equi-parameter degree ρ̄ of A is equal to its
Noether Normalization degree by Proposition 3.5, we get an epimorphism (1) with
S regular and N = ρ̄. By the Auslander-Buchsbaum Theorem, the S-module A/a
has projective dimension one, so that ϕ−1(a) is free, of rank at most ρ̄.

In fact, we can incorporate these ideas in the proof of Corollary 2.2, to obtain
the following estimate:

Proposition 3.12. Let (A, m) be a d-dimensional non-degenerate Noetherian local
ring and let a be a height one ideal which is almost Cohen-Macaulay (meaning that
A/a has dimension d − 1 and depth d − 2). If ρ̄ is the equi-parameter degree of A
and λa the type of the local cohomology Hd−2

m (A/a) of A/a, then a is generated by
at most (λa + 1)ρ̄ elements.

Proof. As before, we may take A complete. In the proof of Corollary 2.2, we only
used that Ā := A/a is Cohen-Macaulay twice. Firstly, it was used to deduce that
ϕ−1(a) (notation as in proof) has projective dimension 2. But this follows in the
present situation from the Auslander-Buchsbaum theorem and our assumption that
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Ā has depth d − 2. Secondly, we used the type of Ā to estimate the number of
generators λ of Ext2

S(Ā, S). By Grothendieck duality, this module is isomorphic to
the Matlis (S-)dual of Hd−2

n (Ā), where n is the maximal ideal of the regular subring
S ⊆ A. An application of [3, Proposition 3.2.12] then yields that λ is equal to the
type of Hd−2

n (Ā) ∼= Hd−2
m (Ā). �

In the terminology of [3, Remark 3.5.10], Grothendieck duality yields that λa is
the minimal number of generators of the canonical module KA/a of A/a.

Corollary 3.13. Let A be a two-dimensional non-degenerate Noetherian local ring
and let ρ̄ be its equi-parameter degree. Every ideal a in A of positive height is
generated by at most (τ + 1)ρ̄ elements, where τ is the type of A/a.

Proof. If a has height two, then it is m-primary, once in particular Cohen-Macaulay,
and we can use Corollary 3.9. So assume Ā := A/a has dimension one. If its depth
is also one, then a is a Cohen-Macaulay ideal and we are done by Remark 3.11 (or
Gottlieb’s result). So assume its depth is zero. We need to show that λa as defined
in Proposition 3.12, is equal to the type τ of Ā. Since H0

m(Ā) is equal to Ann(mnĀ)
for some sufficiently large n, its socle is equal to Ann(mĀ), that is to say, equal to
the socle of Ā. By [3, Lemma 1.2.19], the dimension of the socle of a depth zero
module is its type, showing that λa = τ . �

In particular, we proved Theorem 1.3 from the introduction.

4 The Global Case

To make the reduction to the local case, we use the Forster-Swan Theorem (see for
instance [9, Theorem 5.7]).

Theorem 4.1 (Forster-Swan Theorem). Let A be a Noetherian ring and let M be
a finitely generated A-module. For each prime ideal p of A, define

f(p, M) := µAp
(Mp) + dim(A/p).

If f is the maximum of all f(p, M) for p running over all prime ideals in the support
of M , then M can be generated by at most f elements.

Corollary 4.2. Let A be a d-dimensional Noetherian ring and a an ideal of A.
Let f be a bound on the number of generators of each aAm, where m runs over all
maximal ideals of A. Then a can be generated by at most max{d + 1, f + dim A/a}
elements.

Proof. Let p be an arbitrary prime ideal of A. If a is not contained in p, then
aAp = Ap is generated by a single element, so that f(p, a) = 1 + dim A/p ≤ d + 1.
If a ⊆ p, then dim A/p ≤ dim A/a. Choose a maximal ideal m of A, containing
p. Since aAp is a localization of aAm, it is generated by at most f elements. The
assertion now follows from the Forster-Swan Theorem. �
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We also need to study the behavior of Noether Normalization degrees under
localization and completion.

Proposition 4.3. Let A be a Noetherian domain with Noether Normalization degree
s. For every prime ideal p of A, the Noether Normalization degree of the completion
̂Ap of Ap is at most s.

Proof. Let S be a regular subring of A such that µS(A) = s and let q := p ∩ S.
By base change, the fiber ring Aq/qAq has dimension at most s over the residue

field k(q). Since ̂Ap is a direct summand of the q-adic completion ̂Aq of Aq by [9,
Theorem 8.15], we get that

dimk(q)(̂Ap/q̂Ap) ≤ dimk(q)(̂Aq/q̂Aq) = dimk(q)(Aq/qAq) ≤ s.

In particular, ̂Ap is generated as an ̂Sq-module by at most s elements, by [9, Theorem

8.4]. Since Sq is regular, whence also its completion, we will have shown that ̂Ap

has Noether Normalization degree at most s provided the natural homomorphism
̂Sq → ̂Ap is injective. At this point, we will need the assumption that A is a domain.
By [9, Theorem 9.4], the going-down theorem holds for the inclusion S ⊆ A. Hence,
q and p have the same height by [9, Theorem 15.1]. Therefore, since ̂Sq → ̂Ap is

finite homomorphism between rings of the same dimension with ̂Sq a domain, it
must be injective. �

The following counterexample to the Proposition without the domain condition
was pointed out to me by a referee of an earlier version of this paper.

Example 4.4. Let A := R/(XY n, XZ)R with R := K[[X, Y, Z]] and K a field,
and let p := (Y, Z)A. One checks that A is generated by two elements over S :=
K[[X − Z, Y ]], but that Ap is an Artinian ring of length n + 1. In this example p

has height zero but its contraction to S is Y S whence has height one.

Remark 4.5. The theorem also holds if instead of assuming that A is a domain,
we require that it is bi-equidimensional (meaning that all minimal primes have the
same dimension and all maximal ideals have the same height). Indeed, with S ⊆ A
as above, we only need to show that p and q := p ∩ S have the same height, for
every prime ideal p of A. Let d be the dimension of A and h the height of p. Since
S ⊆ A is finite, S also has dimension d. Together with [9, Exercise 9.8], this gives
the inequalities h = ht(p) ≤ ht(q) ≤ d. To prove that the first inequality is an
equality, we do downward induction on h, where the case d = h trivially holds.
Hence suppose h < d, so that by assumption, p is not a maximal ideal. Since S is
universally catenary ([3, Theorem 2.1.12]), so is A, as it is finite over S. Since A is
in particular equidimensional, any maximal chain of prime ideals between two prime
ideals p1 ⊆ p2 in A has length ht(p2) − ht(p1). It follows that there exists a prime
ideal p′ of height h + 1 containing p. By our induction hypothesis, q′ := p′ ∩ S has
height h + 1 as well. Since A is finite over S, there are no inclusion relations among
prime ideals in A lying over the same prime in S. It follows that q  q′ so that the
former has height at most h, as we wanted to show. �



728 H. Schoutens

Let us define the global type of a module M over a Noetherian ring A, as the
maximal type of any localization Mm of M at a maximal ideal m of A.

Theorem 4.6. Let A be a d-dimensional Noetherian ring of finite Noether Normal-
ization degree s. Assume that A is either a domain or bi-equidimensional. If a is a
height two ideal of A for which A/a is Cohen-Macaulay of global type τ , then a can
be generated by at most (τ + 1)s + d− 2 elements (except when s = τ = 1, in which
case possibly d + 1 generators are needed).

Proof. Let a be a height two Cohen-Macaulay ideal of A. By Corollary 4.2, if we
find a bound f on the number of generators of aAm in each localization with respect
to a maximal ideal m, then a itself can be generated by f + dim A/a elements. The
statement therefore follows from Corollary 3.9, Proposition 4.3 and Remark 4.5,
since we may take f = (τ + 1)s. One just needs to observe that the given bound is
at least d and only in the indicated case s = τ = 1 it is equal to it. �

The case s = τ = 1 means that A is regular and a is a Gorenstein ideal, whence
locally a complete intersection. If A is a polynomial ring over some subring, then the
EE-Conjecture proven in [10], states that we may drop the contribution of f(p, a)
for all minimal primes p of A in the bound in the Forster-Swan Theorem, yielding
therefore in this case the upper bound d.

The theorem together with Theorem 1.3 yields immediately:

Corollary 4.7. Let A be a two-dimensional Noetherian domain of finite Noether
Normalization degree s and let a be an arbitrary ideal of A. If A/a has global type
τ , then a can be generated by at most (τ + 1)s + 1 elements.

Proof of Theorem 1.4.

If S and A denote the affine algebras of X and Y respectively, then our assumptions
imply that S ⊆ A is finite with S regular. By definition, the degree ǫ of Y → X is
the maximal number of points in a closed fiber. In other words, ǫ is the maximum
of the dimensions

ǫ(m) := dimS/m(Am/mAm),

where m runs over all maximal ideals of S. By Nakayama’s Lemma ǫ(m) = µSm
(Am)

and this is also equal to the minimal number of generators of An over Sm, for any
maximal ideal n of A lying over m. Therefore, if a ⊆ A is the ideal defining the
subscheme W , then aAn is generated by at most 2ǫ elements by Corollary 3.9. The
stated bound now follows from Corollary 4.2. �

5 The Affine Case

Affine rings, that is to say, finitely generated algebras over a field, have the property
that their Noether Normalization degree is finite. In fact, we have the following
sharper result.
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Theorem 5.1. For each pair (d, n), there exists a bound E(d, n) with the following
property. If A is an affine ring of the form K[X]/(f1, . . . , fs)K[X] with K a field,
X a set of d variables and fi polynomials of degree at most n, then the Noether
Normalization degree of A is at most E(d, n).

In particular, if a is a height two ideal of A for which A/a is Cohen-Macaulay
of global type τ , then a can be generated by at most (τ + 1)E(d, n) + d elements.

Proof. To prove the first statement, one just needs to observe that Noether Nor-
malization can be carried out algorithmically from the fi. The key idea is to make
a change of variables so that one of the fi becomes monic in some variable. If K
is infinite, this can be done by a linear change of variables; in the general case, we
can still control the degree of this new equation (see [18, §A.5] for details). As-
sume therefore that all fi have degree at most n′ and that f1 is monic in X1 of
degree n′, where n′ only depends on d and n. Hence K[X]/f1K[X] is generated by
1, X1, . . . , X

n′
−1

1 over K[X2, . . . , Xd]. Let

I1 := (f1, . . . , fs)K[X] ∩ K[X2, . . . , Xd]

and put A1 := K[X2, . . . , Xd]/I1. It follows that A1 ⊆ A is a finite extension,
generated by at most n′ elements. By [13, Theorem 2.6], the ideal I1 is generated
by polynomials of degree at most n′′, where n′′ depends only on n′, whence only on
d and n. Therefore, by an inductive argument, A1 admits a Noether Normalization
K[Y ] ⊆ A1 generated by at most n′′′ elements, where n′′′ depends only on n′′, whence
only on d and n. From the composition K[Y ] ⊆ A1 ⊆ A we see that A is generated
as a K[Y ]-module by at most n′′′n′′ elements, a number only depending on d and n.

To prove the second statement, it suffices to show, in view of Corollary 4.2,
that aAm is generated by at most (τ + 1)E(d, n) elements, for each maximal ideal
m of A (note that A has dimension at most d). To this end, we may first make a
faithfully flat base change, and hence assume that K is algebraically closed. After
a linear change of variables, we may assume furthermore that m = (X1, . . . , Xd)A.
The above argument then shows that Am has Noether Normalization degree at most
E(d, n) and hence the claim follows from Corollary 3.9. �

Using [8] or Remark 3.11, we can give a similar estimate in the height one case:

Corollary 5.2. A height one Cohen-Macaulay ideal can be generated by at most
E(d, n) + d elements.

The above bound holds even uniformly in families in the following sense.

Corollary 5.3. Let s : W → V be map of finite type between schemes of finite type
over some field. There exists a bound CM(s), such that for each x ∈ V and each
codimension two Cohen-Macaulay subscheme F of s−1(x) of global type τ , the ideal
of F is generated by at most (τ +1)CM(s) elements. If F has codimension one, then
at most CM(s) generators suffice.

Proof. Taking a finite affine covering, we may reduce to the case that V =: Spec A
and W =: Spec B are affine, so that s corresponds to a K-algebra homomorphism
A → B. Choose fi ∈ K[X] such that A ∼= K[X]/(f1, . . . , ft)K[X], and gi ∈ K[X, Y ]
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such that B ∼= A[Y ]/(g1, . . . , gt)A[Y ], for some tuples of variables X and Y . Let d be
the total number of variables and let n be the maximal degree of the fi and the gi. If
p denotes the prime ideal of A corresponding to the point x ∈ V , then the coordinate
ring of the fiber s−1(x) is B ⊗A k(p), where k(p) := Ap/pAp is the residue field of p.
It follows that B ⊗A k(p) ∼= k(p)[X]/(g1, . . . , gt)k(p)[X]. By Theorem 5.1, the ideal
of B ⊗A k(p) defining F is generated by at most (τ + 1)E(d, n) + d elements, where
E(d, n) is as in that Theorem. The height one case follows by a similar argument
using Corollary 5.2. �

Corollary 5.4. For each pair (d, n), there exists a bound N(d, n) with the following
property. Let A be an affine ring of the form K[X]/(f1, . . . , fs)K[X] with K a field,
X a set of d variables and fi polynomials of degree at most n. Let a be a Cohen-
Macaulay ideal of A of height h and let τ be the global type of A/a. If a contains a
height h − 2 ideal I := (g1, . . . , gt)A, with the gi of degree at most n, then a can be
generated by at most (τ + 1)N(d, n) elements. If I has height h − 1, then at most
N(d, n) generators suffice.

In particular, every height three ideal a of A which contains the image of a
polynomial of degree at most n not belonging to any minimal prime of A and for
which A/a is Gorenstein, can be generated by at most 2N(d, n) elements.

Proof. The second statement is a special case of the first, with h = 3 and τ = 1.
Let A, a and I be as in the first statement. Counting monomials of degree at most
n, one easily sees that there is a bound N’(d, n) on the number of generators of
I, only depending on d and n. Let B := A/I, so that B is also a homomorphic
image of a polynomial ring in d variables by an ideal generated by polynomials of
degree at most n. By Theorem 5.1, the height two Cohen-Macaulay ideal aB is
generated by at most (τ + 1)E(d, n) + d elements. Therefore, a is generated by at
most (τ + 1)E(d, n) + d + N’(d, n) elements. �

Proof of Theorem 1.5.

Let S := K[X1, . . . , X4] and let a ⊆ S be the one-dimensional radical ideal defining
C. By assumption, there is a degree two polynomial f ∈ a. As in the proof of
Theorem 5.1, we see that S/fS has Noether Normalization degree 2. Therefore,
a(S/fS) is locally generated by at most 4 elements by Theorem 4.6, and hence a

is locally generated by at most 5 elements. By [4], a grade three Gorenstein ideal
in a local ring is generated by an odd number of elements, so that µ(aSm) is either
3 or 5 for every maximal ideal m of S, and the latter case occurs except when a is
locally a complete intersection. Since S is regular and a is radical, aSp is generated
by 3 elements for every one-dimensional prime p containing a. Hence for such p, its
contribution in the Forster-Swan Theorem is f(p; a) = 4. Therefore, µ(a) = 5, if a

is not locally a complete intersection. On the other hand, if a is locally a complete
intersection, then µ(a) ≤ 4 by the EE-conjecture proven in [10]. By work of Ferrand,
Boratyński and Mohan Kumar, every locally complete intersection curve in affine
space is a set-theoretic complete intersection (see for instance [16, Corollary 1.21]).

�
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Theorem 5.5. Let W be a codimension three Gorenstein subvariety in affine d-space
over an infinite field. If W lies on a degree e hypersurface, then its ideal a := I(W )
is generated by at most 2e + d − 2 elements. If, moreover, W has at most isolated
singularities, then a is generated by at most max{2e + 1, d} elements.

Proof. As before, OH has Noether Normalization degree at most e, where H is
the degree e hypersurface containing W . Therefore, aOH is generated by at most
2e + d− 3 elements by Theorem 4.6, whence a requires at most one more generator
(to wit, the defining equation of H). Suppose now that W has at most isolated
singularities. At a non-closed point of W , the ideal a is locally generated by at most
3 elements, since it is a complete intersection at such a point. We already observed
that at closed points, aOH requires at most 2e local generators, whence a requires at
most 2e + 1 local generators. The EE-conjecture ([10]) then yields an upper bound
of max{2e + 1, d} global generators for a. �
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