
Birkhoff-Kellogg and Best Proximity Pair Results

Donal O’Regan Naseer Shahzad Ravi P. Agarwal

Abstract

The paper presents new Birkhoff-Kellogg type theorems for maps in the

S-KKM class. Best proximity pair theorems are also established for the ad-

missible class A
κ
c and the PK class.

1 Introduction

The paper discusses maps in the S-KKM class and in the admissible class Aκ
c . We

prove new Birkhoff-Kellogg type results on invariant direction for the class of S-
KKM maps, which is a general class of maps including other important classes such
as the composite class Aκ

c . We also obtain ”invariant direction” results for countably
condensing maps. We establish best proximity pair theorems for multimaps in the Aκ

c

and PK classes. The results given in this paper extend, generalize and complement
various known results in the literature including those of [1, 7, 8, 10, 11, 13].

2 Preliminaries

Let X and Y be Hausdorff topological vector spaces. Recall a polytope P in X

is any convex hull of a nonempty finite subset of X. Given a class X of maps,
X (X, Y ) denotes the set of maps F : X → 2Y (the nonempty subsets of Y )
belonging to X , and Xc the set of finite compositions of maps in X . A class A of
maps is defined by the following properties:

(i). A contains the class C of single valued continuous functions;

(ii). each F ∈ Ac is upper semicontinuous and compact valued; and
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(iii). for any polytope P , F ∈ Ac(P, P ) has a fixed point, where the intermediate
spaces of composites are suitably chosen for each A.

Definition 2.1. F ∈ A
κ
c (X, Y ) (i.e. F is A

κ
c –admissible) if for any compact subset

K of X, there is a G ∈ Ac(K, Y ) with G(x) ⊆ F (x) for each x ∈ K.

Definition 2.2. Let X be a convex subset of a Hausdorff topological vector space
and Y a topological space. If S, T : X → 2Y are two set-valued maps such that
T (co(A)) ⊆ S(A) for each finite subset A of X , then we say that S is a generalized
KKM map w.r.t. T . The map T : X → 2Y is said to have the KKM property if
for any generalized KKM w.r.t. T map S , the family

{S(x) : x ∈ X}

has the finite intersection property. We let

KKM(X, Y ) = {T : X → 2Y : T has the KKM property } .

Remark 2.1. If X is a convex space, then Aκ
c (X, Y ) ⊂ KKM(X, Y ) (see [6]).

Definition 2.3. Let X be a nonempty set, Y a nonempty convex subset of a
Hausdorff topological vector space and Z a topological space. If S : X → 2Y ,
T : Y → 2Z , F : X → 2Z are three set-valued maps such that T (co(S(A))) ⊆ F (A)
for each nonempty finite subset A of X , then F is called a generalized S-KKM
map w.r.t. T . If the map T : X → 2Z is such that for any generalized S-KKM
w.r.t. T map F , the family

{F (x) : x ∈ X}

has the finite intersection property, then T is said to have the S-KKM property. The
class

S-KKM(X, Y, Z) = {T : Y → 2Z : T has the S-KKM property } .

Remark 2.2. Note that S-KKM(X, Y, Z) = KKM(X, Z) whenever X = Y and
S is the identity mapping 1X . Moreover, KKM(Y, Z) is a proper subset of S-
KKM(X, Y, Z) for any S : X → 2Y . S-KKM(X, Y, Z) also includes other important
classes of multimaps (see [4, 5] for examples).

Remark 2.3. Let X be a convex space, Y a convex subset of a Hausdorff locally
convex space, and Z a normal space. Suppose s : Y → Y is surjective, F ∈
s-KKM(Y, Y, Z) is closed, and f ∈ C(X, Y ). Then F ◦ f ∈ 1X −KKM(X, X, Z) (see
[5]).

Remark 2.4. Let X be a convex subset of a Hausdorff topological space, Y a convex
space, and Z, W topological spaces and S : X → 2Y . If F ∈ S-KKM(X, Y, Z) and
f ∈ C(Z, W ), then f ◦ F ∈ S-KKM(X, Y, W ) (see [5]).

Let (E, d) be a pseudometric space. For any C ⊆ E , let B(C, ǫ) = {x ∈ E :
d(x, C) ≤ ǫ}, here ǫ > 0 The measure of noncompactness of the set M ⊆ E is
defined by α(M) = inf Q(M) , where

Q(M) = {ǫ > 0 : M ⊆ B(A, ǫ) for some finite subset A of E}.
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Let C be a subset of a locally convex Hausdorff topological vector space E , and
let P be a defining system of seminorms on E . Suppose F : C → 2E . Then F

is called countably P -concentrative mapping if F (C) is bounded, and for p ∈ P
and each countably bounded subset S of C , we have αp(F (S)) ≤ αp(S) , and for
p ∈ P for each countably bounded non- p -precompact subset S of C (i.e., S is not
precompact in the pseudonormed space (E, p) ) we have αp(F (S)) < αp(S) ; here
αp(.) denotes the measure of noncompactness in the pseudonormed space (E, p) .

Let Q be a subset of a Hausdorff topological space X . We let Q (respectively,
∂Q , int(Q) ) denote the closure (respectively, boundary, interior) of Q .

Definition 2.4. Let Z and W be subsets of Hausdorff topological vector spaces E1

and E2 and F a set-valued map. We say that F ∈ PK(Z, W ) if W is convex,
and there exists a map S : Z → W with

Z = ∪{intS−1(w) : w ∈ W} , co(S(x)) ⊂ F (x) forx ∈ Z ,

and S(x) 6= ∅ for each x ∈ Z ; here S−1(w) = {z : w ∈ S(z)} .

Remark 2.5. Suppose Z is paracompact, W is convex, and F ∈ PK(Z, W ) .
Then there exists a continuous (single valued) mapping f : Z → W such that
f(x) ∈ F (x) for each x ∈ Z (see [9]).

A nonempty subset X of a Hausdorff topological vector space E is said to be
admissible if for every compact subset K of X and every neighborhood V of 0, there
exists a continuous map h : K → X with x − h(x) ∈ V for all x ∈ K and h(K) is
contained in a finite dimensional subspace of E. X is said to be q-admissible if any
nonempty compact, convex subset Ω of X is admissible.

The following results [2, 4] will be needed in the sequel.

Theorem 2.1. Let Ω be an admissible convex subset of a Hausdorff topological
vector space E and X a nonempty subset of Ω Suppose s : X → Ω is surjective
and F ∈ s − KKM(X, Ω, Ω) is compact and closed. Then F has a fixed point in
Ω.

Theorem 2.2. Let Ω be a q-admissible closed convex subset of a Hausdorff topo-
logical vector space E with x0 ∈ Ω. Suppose s : Ω → Ω is surjective and F ∈
s − KKM(Ω, Ω, Ω) is closed with the following property holding:

(2.1) A ⊆ Ω, A = co ({x0} ∪ F (A)) implies A is compact.

Then F has a fixed point in Ω.

Theorem 2.3. Let Ω be a closed convex bounded subset of a Fréchet vector space
E (P is a defining family of seminorms) and x0 ∈ Ω. Suppose s : Ω → Ω is
surjective and F ∈ s − KKM(Ω, Ω, Ω) is closed countably P -concentrative map.
Then F has a fixed point in Ω.

The following fixed point result is a particular case of a result established in [9].

Theorem 2.4. Let Ω be a nonempty convex subset of a Hausdorff locally convex
topological vector space and F ∈ Aκ

c (Ω, Ω) a compact map. Then F has a fixed
point.
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3 Birkhoff-Kellogg Type Results

We obtain a variety of the Birkhoff-Kellogg type results on invariant directions. Let
E be a Hausdorff locally convex topological vector space, C a closed convex subset
of E, and U ⊆ C a convex, open subset of E with 0 ∈ U . Since U is open in C, we
have intCU = U . Let s : U → U be surjective. We consider maps F : U → K(C)
which satisfies F ∈ s − KKM(U, U, C); here U denotes the closure of U in C and
K(C) represents the family of nonempty closed subsets of C.

Throughout we will assume the map F : U → K(C) satisfies one of the following
conditions:
(H1). F is compact;
(H2). If D ⊆ U and D ⊆ co({0} ∪ F (co({0} ∪ D) ∩ U)), then D is compact;
or
(H3). F is countably P-concentrative and E is Fréchet (here P is a defining system
of seminorms).

Fix i ∈ {1, 2, 3}. We say F ∈ s − KKM i(U, U, C) if F ∈ s − KKM(U, U, C)
satisfies (Hi).

Theorem 3.1. Fix i ∈ {1, 2, 3} and let E be a Hausdorff locally convex topological
vector space, C a closed convex subset of E, U ⊆ C convex, U an open subset
of E, and 0 ∈ U . Suppose C is a normal space, s : U → U is surjective and
F ∈ s − KKM i(U, U, C) is closed. Then either
(i). F has a fixed point in U ;
or
(ii). there exists x ∈ ∂U and λ ∈ (0, 1) with x ∈ λFx;
here ∂U denotes the boundary of U in C.

PROOF: Let µ be the Minkowski functional on U and let r : E → U be defined by

r(x) =
x

max{1, µ(x)}
for x ∈ E.

Let G = Fr. Then G ∈ 1C − KKM(C, C, C) by Remark 2.3. Furthermore G is
closed. Next we show that G has a fixed point in C for i ∈ {1, 2, 3}.
Let i = 1. Since F ∈ s − KKM(U, U, C) is compact and r is continuous, it follows
that G is compact. Now Theorem 2.1 guarantees that there exists y ∈ C such that
y ∈ G(y).
Let i = 2. Let D ⊆ C and D = co({0} ∪G(D)). Then since r(A) ⊆ co({0} ∪A) for
any subset A of E, we have

D ⊆ co({0} ∪ F (co({0} ∪ D) ∩ U)).

Since F ∈ s − KKM2(U, U, C), if follows that D is compact. Now Theorem 2.2
guarantees that there exists y ∈ C such that y ∈ G(y).
Now let i = 3. We show that G is countably P-concentrative. To see this, let p ∈ P
and Ω a countably bounded non-p-precompact subset of C. Then since

G(Ω) ⊆ F (r(Ω)) ⊆ F (co({0} ∪ Ω) ∩ U),
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we have

αp(G(Ω)) < αp(Ω).

Thus G is countably P-concentrative. Now Theorem 2.3 guarantees that there exists
y ∈ C such that y ∈ G(y).
Thus, in each case, we can find y ∈ C with y ∈ G(y) = Fr(y). Let x = r(y). Then
x ∈ rF (x), i.e., x = r(w) for some w ∈ F (x). Now either w ∈ U or w 6∈ U . If
w ∈ U = U ∪ ∂U (notice that intCU = U since U is open in E), then r(w) = w

and so x = w ∈ F (x). If w 6∈ U , then x = r(w) = w
µ(w)

with µ(w) > 1. Thus

x = λw (i.e., w ∈ λF (w)) with 0 < λ = 1
µ(w)

< 1. Notice that x ∈ ∂U since µ(x) =

µ(λw) = 1 (note that ∂U = ∂EU since intCU = U). Consequently, x ∈ λF (x) with
λ = 1

µ(w)
∈ (0, 1) and x ∈ ∂U . �

Next we assume

(3.1)

{

for any map F ∈ s − KKM(U, U, C) and any
λ ∈ R, we have that λF ∈ s − KKM(U, U, C).

As an application of Theorem 3.1, we derive some Birkhoff-Kellogg type theo-
rems.

Theorem 3.2. Let E be a Hausdorff locally convex topological vector space, C a
closed convex subset of E, U ⊆ C convex, U an open subset of E, and 0 ∈ U .
Suppose C is a normal space, s : U → U is surjective and F ∈ s−KKM1(U, U, C)
is closed and assume (3.1) holds. In addition suppose the following condition holds

(3.2) there exists µ ∈ R with µF (U) ∩ U = ∅.

Then there exists λ ∈ (0, 1) and x ∈ ∂U with (λ−1µ−1)x ∈ Fx (i.e. F |∂U has an
eigenvalue); here µ 6= 0 is chosen as in (3.2).

PROOF: Choose µ 6= 0 as in (3.2). By (3.1), we have µF ∈ s − KKM(U, U, C).
Also we have µF is closed and compact since F ∈ s−KKM(U, U, C) is closed and
compact. Now (3.2) guarantees that µF has no fixed points in U . An application
of Theorem 3.1 yields that there exists λ ∈ (0, 1) and x ∈ ∂U with x ∈ λ(µF )x.
Consequently, (λ−1µ−1)x ∈ Fx. This completes the proof. �

Theorem 3.3. Fix i ∈ {2, 3} and let E be a Hausdorff locally convex topological
vector space, C a closed convex subset of E, U ⊆ C convex, U an open subset
of E, and 0 ∈ U . Suppose C is a normal space, s : U → U is surjective and
F ∈ s−KKM i(U, U, C) is closed. In addition suppose the following conditions are
satisfied:

(3.3)

{

for any mapF ∈ s − KKM(U, U, C) and anyλ ∈ R

with |λ| ≤ 1 we have thatλF ∈ s − KKM(U, U, C)

(3.4) there exists µ ∈ R with |µ| ≤ 1 and µF (U) ∩ U = ∅

and

(3.5)

{

if i = 2, assume eitherµ > 0 in (3.4)
or − F (D) = F (D) for anyD ⊆ U.
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Then there exists λ ∈ (0, 1) and x ∈ ∂U with (λ−1µ−1)x ∈ Fx.

PROOF: Choose µ 6= 0 as in (3.4) and notice that µF ∈ s − KKM(U, U, C) from
(3.3). We claim

(3.6) µF ∈ s − KKM i(U, U, C).

Let i = 2 and let D ⊆ U with D ⊆ co({0} ∪ µF (D)). From (3.5), we have
µF (D) ⊆ co({0} ∪ F (D)). As a result, we have

D ⊆ co({0} ∪ co({0} ∪ F (D))) = co(co({0} ∪ F (D))) = co({0} ∪ F (D)).

Since F ∈ s − KKM2(U, U, C), D is compact. So (3.6) holds if i = 2. Now let
i = 3, then (3.6) holds since |µ| ≤ 1. Now Theorem 3.1 guarantees that there exists
λ ∈ (0, 1) and x ∈ ∂U with x ∈ λ(µF )x. Hence (λ−1µ−1)x ∈ Fx. �

Remark 3.1. In Theorem 3.3, (3.5) can be replaced by the more general condition

(3.7)

{

if i = 2, and ifD ⊆ U with D ⊆ co({0} ∪ µF (D)),
then D is compact; here µ is chosen as in (3.4)

(with this assumption we do not require to assume |µ| ≤ 1 in (3.4) if i = 2). For
example, if F is P -concentrative (here E is Fréchet), then clearly (3.7) is satisfied
(if |µ| ≤ 1).

Theorem 3.4. Let E be a normal locally convex topological vector space, C a closed
convex subset of E, U ⊆ C convex, U an open subset of E, and 0 ∈ U . Suppose
s : U → U is surjective and F ∈ s−KKM1(U, U, C) is closed. In addition suppose
(3.2) holds Then there exists λ ∈ (0, 1) and x ∈ ∂U with (λ−1µ−1)x ∈ Fx.

PROOF: Choose µ 6= 0 as in (3.2). Define f(x) = µx for x ∈ C. Then f ∈ C(C, E).
By Remark 2.4 we have µF ∈ s − KKM(U, U, E). Furthermore µF is closed and
compact. Now (3.2) guarantees that µF has no fixed points in U . An application
of Theorem 3.1 yields that there exists λ ∈ (0, 1) and x ∈ ∂U with x ∈ λ(µF )x. As
a result, we have (λ−1µ−1)x ∈ Fx. �

Essentially the same reasoning as above yields the following result.

Theorem 3.5. Fix i ∈ {2, 3} and let E be a normal locally convex topological vector
space, C a closed convex subset of E, U ⊆ C convex, U an open subset of E, and
0 ∈ U . Suppose s : U → U is surjective and F ∈ s − KKM i(U, U, C) is closed.
In addition suppose (3.4) and (3.5) holds. Then there exists λ ∈ (0, 1) and x ∈ ∂U

with (λ−1µ−1)x ∈ Fx.

In Theorem 3.2 (respectively Theorem 3.3) if µ > 0 in (3.2) (respectively (3.4)),
we say that F |∂U has an invariant direction (i.e., has a positive eigenvalue). Some of
the ideas here are borrowed from the literature (see [8] and the references therein).

Theorem 3.6. Let E = (E, ||.||) be an infinite dimensional normed linear space,
C = E, U = B, Suppose s : B → B is surjective and F ∈ s − KKM1(B, B, E) is
closed; here B = {x ∈ E : ||x|| < 1}. In addition suppose the following conditions
are satisfied:
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(3.8) 0 6∈ F (S);

here S = {x ∈ E : ||x|| = 1}. Then F has an invariant direction.

PROOF: It is known [3] that there exists a continuous retraction r : B → S. Let
G = Fr. Then, as before, G ∈ 1B − KKM(B, B, E). We claim that we can find a
number µ > 0 such that

(3.9) µF (S) ∩ B = ∅.

If this is not true, then for each n ∈ {1, 2, 3, ...}, there exists yn ∈ F (S) and wn ∈ B

with yn = 1
n
wn. This implies that 0 ∈ F (S). This contradicts (3.8).

Using (3.9), we have
µG(B) ∩ B = ∅.

Now Theorem 3.4 (applied to G with U = B and C = E) guarantees that there
exists λ ∈ (0, 1) and x ∈ ∂B = S with λ−1µ−1x ∈ Gx = Frx = Fx. Hence F has
an invariant direction.

Remark 3.2. Let E be a normal locally convex topological vector space and U any
open set with 0 ∈ U . Theorem 3.6 remains valid if we replace B by U provided ∂U

is a retract of U . However, in this case, (3.8) is replaced by

(3.10) there exists µ > 0 with µF (∂U) ∩ U = ∅.

Remark 3.3. In Theorem 3.6, F ∈ s − KKM1(B, B, E) could be replaced by
F ∈ s − KKM1(S, S, E).

It was shown [3] that if E is an infinite dimensional normed linear space, then
there exists a Lipschitzian retraction r : B → S with Lipschitz constant k0(E), say;
here B and S are as in Theorem 3.4. In fact, there exists a k0 with k0(E) ≤ k0 for
any space E (as described above).

Let r : B → S be a Lipschitzian retraction with Lipschitz constant k0(E).

Theorem 3.7. Let E = (E, ||.||) be an infinite dimensional normed linear space,
C = E, U = B, Suppose s : B → B is surjective and F ∈ s − KKM(B, B, E)
is closed; here B = {x ∈ E : ||x|| < 1}. In addition suppose the following two
conditions are satisfied:

(3.11)

{

F is countably k-set-contractive with 0 ≤ k < 1
k0(E)

;

here k0(E) is a Lipschitz constant as described above

and

(3.12) there exists µ > 0 with 0 < µ ≤ 1 and µF (S) ∩ B = ∅.

Then F has an invariant direction.

PROOF: Let G = Fr, where r is a Lipschitzian retraction with Lipschitz constant
k0(E). Then as before G ∈ 1B−KKM(B, B, E). Clearly G is countably kk0(E)-set
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contractive. Thus G ∈ s − KKM3(B, B, E). Now Theorem 3.4 (applied to G with
U = B and C = E) guarantees that there exists λ ∈ (0, 1) and x ∈ ∂B = S with
λ−1µ−1x ∈ Gx = Frx = Fx. Hence F has an invariant direction.

Remark 3.4. In Theorem 3.7, F ∈ s − KKM(B, B, E) could be replaced by F ∈
s − KKM(S, S, E).

4 Best Proximity Pair Results

Let A and B be nonempty subsets of a normed space E = (E, ||.||). Then A is called
approximately compact if for each y in E and each {xn} in A with ||xn − y|| →
d(y, A), there exists a subsequence of {xn} converging to an element of A. The set

PA(x) = {a ∈ A : ||a − x|| = d(x, A)}

is the set of all best approximations in A to any element x ∈ E. It is known [12] that
if A is an approximately compact convex subset of E, then PA(x) is a nonempty
compact convex subset of A and the multivalued mapping PA : E → 2A is upper
semicontinuous on E.

A mapping f from a topological space X to another topological space Y is called
proper if f−1(K) is compact in X whenever K is compact in Y .

If B is convex, a mapping f : B → E is said to be quasi-affine if for every real
number r ≥ 0 and x ∈ E, the set {b ∈ B : ||f(b) − x|| ≤ r} is convex.

We recall the following notations (see [11, 13]).

d(A, B) = inf{||a − b|| : a ∈ A, b ∈ B}

Prox(A, B) = {(a, b) ∈ A × B : ||a − b|| = d(A, B)}

A0 = {a ∈ A : ||a − b|| = d(A, B) for some b ∈ B}

B0 = {b ∈ B : ||a − b|| = d(A, B) for some a ∈ A}.

Various sufficient conditions for the non-emptiness of the set Prox(A, B) were
explored by many authors, see, for example, [12, 14].

Remark 4.1. Note PA(B0) ⊂ A0. Indeed, let y ∈ PA(B0). Then y ∈ PA(b) for some
b ∈ B0. This implies that ||y−b|| = d(b, A). Since b ∈ B0, we have ||a−b|| = d(A, B)
for some a ∈ A and so ||y − b|| = d(b, A) ≤ ||a − b|| = d(A, B). On the other hand,
d(A, B) ≤ ||y − b|| for all y ∈ A and b ∈ B. Consequently, ||y − b|| = d(A, B) and
so y ∈ A0.

Theorem 4.1. Let E = (E, ||.||) be a normed space. Let A be a nonempty, approx-
imately compact convex subset of E and B a nonempty closed convex subset of E

such that Prox(A, B) is nonempty and A0 is compact. Let C be a nonempty subset
of E containing a nonempty convex set C0. Assume that
(a) F ∈ PK(A, C) such that F (A0) ⊂ C0

(b) G ∈ Aκ
c (C, B) such that G(C0) ⊂ B0

(c)f : A → A is a continuous, proper, quasi-affine, surjective single-valued map
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such that f−1(A0) ⊂ A0.
Then there exists x0 ∈ A0 such that

d(fx0, GFx0) = d(A, B).

PROOF: By Remark 2.5, there exists a continuous function g : A → C such that
g(x) ∈ F (x) for each x ∈ A . Let T = HGg, where H = f−1PA : B0 → 2A0 . Then
T (A0) ⊂ A0 since G(C0) ⊂ B0, PA(B0) ⊂ A0 and f−1(A0) ⊂ A0. Also T : A0 → 2A0

is a compact multifunction because A0 is compact.
Now we show that H is a convex, compact-valued upper semicontinuous function.

Let D be a closed subset of A0 and {xn} ⊂ H−1(D) such that xn → x as n → ∞.
Then for each n, choose yn ∈ H(xn) ∩ D such that ||f(yn) − xn|| = d(xn, A). Since
D is compact, we may assume that yn → y for some y ∈ D. Using the triangle
inequality, we have

||f(y)− xn|| ≤ ||f(y) − f(yn)|| + ||f(yn) − xn|| + |xn − x||

= ||f(y) − f(yn)|| + d(xn, A) + ||xn − x||,

which on letting n → ∞ yields

||f(y)− x|| ≤ d(x, A)

since f is continuous and d(xn, A) → d(x, A). On the other hand, d(x, A) ≤ ||f(y)−
x||. Thus

||f(y)− x|| = d(x, A)

and so f(y) ∈ PA(x). As a result y ∈ H(x) ∩ D. Hence x ∈ H−1(D) and so H is
upper semi-continuous.

Let x1, x2 ∈ H(x) and λ ∈ [0, 1]. Then

||f(x1) − x|| = d(x, A) = ||f(x2) − x||.

Since f is quasi-affine, the set {a ∈ A : ||f(a) − x|| ≤ d(x, A)} is convex. Set
y = λx1 + (1 − λ)x2. Then

||f(y)− x|| = d(x, A)

and so H(x) is convex.
Since f is a proper map and PA(x) is compact, H(x) is compact. Hence H ∈

Aκ
c (B0, A0). Since Aκ

c is closed under compositions, T ∈ Aκ
c (A0, A0). Next we show

that A0 is convex. Let a1, a2 ∈ A0 and λ ∈ [0, 1]. Then ||a1 − b1|| = d(A, B) and
||a2 − b2|| = d(A, B) for some b1, b2 ∈ B. Since A and B are convex, λa1 + (1 −
λ)a2 ∈ A and λb1 + (1 − λ)b2 ∈ B. Now ||λa1 + (1 − λ)a2 − [λb1 + (1 − λ)b2]|| ≤
λ||a1 − b1|| + (1 − λ)||a2 − b2|| = d(A, B). Consequently,

||λa1 + (1 − λ)a2 − [λb1 + (1 − λ)b2]|| = d(A, B)

and so λa1 + (1− λ)a2 ∈ A0. Thus A0 is convex. Now Theorem 2.4 guarantees that
there exists x0 ∈ A0 such that x0 ∈ T (x0). Set y0 = g(x0). Then y0 ∈ F (x0) and
x0 ∈ H(z0) for some z0 ∈ G(y0). This implies that f(x0) ∈ PA(z0) and so

d(f(x0), GF (x0)) ≤ ||f(x0) − z0|| = d(z0, A).



654 D. O’Regan – N. Shahzad – R. P. Agarwal

Since y0 ∈ C0 and G(C0) ⊂ B0, we have z0 ∈ G(y0) ⊂ G(C0) ⊂ B0 and so there
exists a ∈ A with ||a − z0|| = d(A, B). Therefore

d(f(x0), GF (x0)) ≤ d(z0, A) ≤ ||a − z0|| = d(A, B).

On the other hand, d(A, B) ≤ d(f(x0), GF (x0)). Hence

d(f(x0), GF (x0)) = d(A, B).

Corollary 4.2. Let E = (E, ||.||) be a normed space. Let A be a nonempty, ap-
proximately compact convex subset of E and B a nonempty closed convex subset of
E such that Prox(A, B) is nonempty and A0 is compact. Assume that
(a) F ∈ PK(A, B) such that F (A0) ⊂ B0

(b)f : A → A is a continuous, proper, quasi-affine, surjective single-valued map
such that f−1(A0) ⊂ A0.
Then there exists x0 ∈ A0 such that

d(fx0, Fx0) = d(A, B).

Corollary 4.3. Let E = (E, ||.||) be a normed space. Let A be a nonempty, compact
convex subset of E and C a nonempty convex subset of E. Assume that
(a) F ∈ PK(A, C)
(b) G ∈ Aκ

c (C, A).
If the multifunction GF is closed-valued, then it has a fixed point and hence G and
F have coincidence (i.e., there exist x0 ∈ A and y0 ∈ C such that y0 ∈ F (x0) and
x0 ∈ G(y0)).

PROOF: Theorem 4.1 (note B = A) guarantees that there exists x0 ∈ A0 = A with
d(x0, GFx0) = 0. Now since GF has closed values we get the result.
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